A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs

Abstract : We propose a discrete functional analysis result suitable for proving compactness in the framework of fully discrete approximations of strongly degenerate parabolic problems. It is based on the original exploitation of a result related to compensated compactness rather than on a classical estimate on the space and time translates in the spirit of Simon (Ann. Mat. Pura Appl. 1987). Our approach allows to handle various numerical discretizations both in the space variables and in the time variable. In particular, we can cope quite easily with variable time steps and with multistep time differentiation methods like, e.g., the backward differentiation formula of order 2 (BDF2) scheme. We illustrate our approach by proving the convergence of a two-point flux Finite Volume in space and BDF2 in time approximation of the porous medium equation.
Type de document :
Article dans une revue
Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3633-3670
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01142499
Contributeur : Clément Cancès <>
Soumis le : mercredi 15 avril 2015 - 14:42:18
Dernière modification le : vendredi 4 janvier 2019 - 17:32:31
Document(s) archivé(s) le : lundi 14 septembre 2015 - 09:12:04

Fichiers

ACM-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01142499, version 1
  • ARXIV : 1504.03891

Citation

Boris Andreianov, Clément Cancès, Ayman Moussa. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3633-3670. 〈hal-01142499〉

Partager

Métriques

Consultations de la notice

677

Téléchargements de fichiers

457