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Linear circuit analysis based on parallel

asynchronous fixed-point method
Manuel Marin, Student Member, IEEE, David Defour, and Federico Milano, Senior Member, IEEE

Abstract—Time-domain circuit analysis and simulation is com-
monly performed through intrinsically serial methods, such as
those implemented in the popular software package SPICE.
However, the practical utilization of these methods is limited
to circuits of a certain size, as for larger problems the simulation
time becomes prohibitive. Parallelization of such serial routines
has been proposed as the main alternative to accelerate the
analysis and overcome the problem, even if the speed-up that
can be achieved by this strategy is bounded, according to
the Amdahl’s law. Currently, there is a lack of intrinsically
parallel methods which would allow to detach the efficacy of
the solution from the problem size. In this article, we develop a
new theoretical approach to circuit analysis from an intrinsically
parallel point of view. We propose a fixed-point method and
determine its convergence condition according to the theory of
asynchronous iterations. We also perform a series of tests that
show that our method is faster in most cases than those based
on the traditional intrinsically serial approach. In particular, we
obtain an empirical proof that our approach is independent of

the problem size, offering great opportunities for scalability.

Index Terms—Linear circuits, time-domain analysis, fixed-
point arithmetic, parallel algorithms, iterative method.

I. INTRODUCTION

C
IRCUIT simulation has become an extremely important

part in integrated circuit evaluation and design and a

continuously growing field [1], [2], especially after the intro-

duction of the SPICE simulator [3]. Meanwhile, as the number

of components in modern applications continues to expand,

there is a constant necessity to analyze larger and larger

circuits, eventually without increasing the simulation time [4],

[5]. Most attempts to achieve such goal have consisted of

taking one of the existing methods, which are intrinsically

serial, and parallelize part of it in order to obtain a speed-up

[6]–[11]. Nevertheless, in doing this, there is always a fraction

of the algorithm that remains sequential, which according to

the Amdahl’s Law determines that the speedup to be achieved

is fairly limited [12]. This would not be the case of an

algorithm that is intrinsically parallel; however, the task of

developing such algorithm requires to reformulate the way in

which we analyze circuits. In this article, we present a novel

approach to accelerate circuit analysis and simulation which

instead of parallelizing existing, intrinsically serial routines,

proposes a new, intrinsically parallel method allowing to
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sité Montpellier 2, LIRMM, France, and also with the School of Electrical,
Electronic and Communications Engineering of the University College Dublin,
Dublin, Ireland (e-mail: manuel.marin@univ-perp.fr).
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detach the complexity of the solution from the problem size.

The proposed model attempts to change circuit simulation

paradigm and is inspired from the circuit component dynamics

that can be observed in real life.

The transient response of a circuit is typically obtained as

a series of system states computed for several time instants.

Computing one state involves the resolution of the circuit

equations evaluated at that point. In SPICE, this is done in

two sequential steps, load and solve. During the load step,

the circuit equations are obtained from evaluating component

models; during the solve phase, a linear system is solved. As

component models are generally non-linear, the resolution of

the system equations usually involves the repetition of the two

steps in an iterative procedure, such as the Newton-Raphson

method. In some applications, the load phase takes up to 75%

of the total time, although this ratio tends to decrease with the

circuit size.

The load phase is easy parallelizable: it is done by dis-

tributing the evaluation of several independent components

among independent processors. Some successful examples

of this, involving Field-Programmable Gate Arrays (FPGA)

and Graphic Processing Units (GPU) are presented in [6],

[7]. The solve phase, on the other hand, requires a more

delicate approach. The original version of SPICE uses sparse

matrix routines to solve the linear system, and PARASPICE

is one of the first attempts of parallelizing such routines [8].

More recently, in [9], the same approach is revisited using

the KLU algorithm [13] and FPGA. Other researchers have

proposed relaxation techniques (e.g., Gauss-Seidel, Gauss-

Jacobi) as an alternative, more parallel-friendly approach to

matrix factorization. A survey of those techniques, including

timing simulation, iterative timing simulation and waveform

relaxation is done in [10]. In [11], a novel approach consisting

of decomposing the domain and distributing it into several

parallel processors is presented. However, at the end, sequen-

tiality persists in all these models, thus, limiting the maximum

speed-up according to Amdahl’s Law.

The approach that we develop in this article attempts to

avoid sequentiality by mimicking the actual behaviour of

an electrical circuit, where each component evolves in a

continuous cycle, permanently reevaluating its state regardless

of external factors. To efficiently model such a process, we

apply the concept of team algorithms, developed in [14]. In

this concept, the value of a critical unknown is computed

through running several different algorithms and forming

convex combinations of the results; the obtained value is used

as starting guess in a new cycle, until all the algorithms reach

an agreement on the unknown’s value. An analog idea is

presented in [15] under the name of agreement algorithm.
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Similarly, in the real operation of an electrical circuit, we

have a number of electrical components connected through

a common node; the components impose their dynamics on

the node, affecting and modifying the node’s voltage, until it

becomes stable after a certain number of interactions. We can

argue that this kind of physical phenomena that occur in real

life are intrinsically parallel.

This paper intends to bring the following main contributions

to the existing literature:

1) It proposes a novel method for time-domain transient

circuit simulation, which is based on an intrinsically par-

allel iteration and so is unaffected by the Amdahl’s ar-

gument. A proof of convergence of the iterative method

is given for the case of linear component models.

2) It presents an empirical comparison of the proposed

method with traditional approaches based on matrix

factorization. In particular, it is shown that the number

of iterations performed by our method is independent

from the problem size, allowing performance to scale

with the amount of computing units available.

The remaining of the article is organized as follows. In

Section II, we offer a discussion on several alternatives to

implement an iterative process on a parallel computer, which

serves as theoretical background for the following sections.

In Section III, we present our model of intrinsically parallel

circuit simulator and our convergence result. Implementation

details and the results of a series of tests, along with compar-

isons with existing circuit simulators based on the traditional,

serial approach, are given in Section IV. Finally, Section V

concludes the paper.

II. BACKGROUND

Usually, iterative processes are implemented on a paral-

lel computer by assigning each component of the system

state vector to an independent processor. From that point

on, different synchronization schemes lead to different types

of iteration. The first one that we want to revisit is the

synchronous iteration, defined as follows.

Definition 1 (Synchronous iteration). Let x ∈ Rn and

f : Rn → Rn. Given an initial value x0, the series defined

by:

xk+1 = f(xk), k ∈ N, (1)

is termed a synchronous iteration associated to F (·).

In this model the vector is updated as a block, i.e., all the

components are updated before the process moves to a next

iteration. In order to implement it, a synchronization step is

needed at the end of each cycle. In this synchronization step,

processors that have finished their update wait for the others to

catch up. The idle time will depend on a series of factors, e.g.,

load balancing, processor frequency, communication network

and memory access patterns [16].

An alternative to the synchronous model is the so-called

asynchronous iteration, in which individual processors are

always allowed to work, independently of the state of others.

Typically, one processor will update the component assigned

to it using the most recent data available, then communicate

its action to other processors and restart the cycle, without

waiting. In consequence, only certain vector components are

updated at each asynchronous iteration, and some of the

components used in these updates have values that do not

correspond to the very last iteration. In order to specify the

model, we need to introduce the update function and the delay

function.

The update function, noted U(·), receives the iteration

counter k ∈ N, and returns a subset of {1, . . . , n} indicating

the list of processors that will update their components during

iteration k. The delay function, noted d(·), receives the indices

i, j ∈ {1, . . . , n} and the iteration counter k ∈ N, and returns

the delay of processor j with respect to processor i at iteration

k.

Definition 2 (Asynchronous iteration). Let x ∈ Rn and

f : Rn → Rn. For k ∈ N, i, j ∈ {1, . . . , n}, let U(k) ⊆
{1, . . . , n} and d(i, j, k) ∈ N0, such that:

d(i, j, k) ≥ 0, ∀i, j, k, (2a)

lim
k→∞

d(i, j, k) <∞, ∀i, j, (2b)

|{k : i ∈ U(k)}| =∞, ∀i. (2c)

Given an initial value x0, the series defined by:

xk+1
i =

{

fi(x
k−d(i,1,k)
1 , . . . , x

k−d(i,n,k)
n ) if i ∈ U(k),

xki if i 6∈ U(k),
(3)

is termed an asynchronous iteration associated to f(·), with

update function U(·) and delay function d(·).

The assumption in (2a) states that only values computed

in previous iterations are used in any update. The one in (2b)

states that newer values of the components are eventually used.

Finally, the assumption in (2c) states that no component ceases

to be updated during the course of the iteration. In the case of

a shared memory machine, the two latter assumptions become

equivalent, as there are no delay associated to the communica-

tions. Indeed, as soon as a component is updated, its new value

becomes visible and available to all the processors. Also; note

that a synchronous iteration is a special case of asynchronous

iteration with U(k) = {1, . . . , n} and d(i, j, k) = 0, for all

i, j, k.

Regarding convergence of asynchronous iterations, several

results have been published. In particular, when the application

function f(·) is linear we have the following theorem by

Chazan and Miranker [17].

Theorem 1 (Sufficient condition for convergence in the asyn-

chronous case [17]). Let x ∈ Rn, and f : Rn → Rn be a

linear application, i.e.,

f(x) = Lx+ b, L ∈ R
n×n, b ∈ R

n. (4)

Let |L| denote the matrix of absolute values of the entries

of L, and ρ(|L|) its spectral radius (see Appendix A for a

definition of spectral radius). If

ρ(|L|) < 1, (5)

then the asynchronous iteration xk, k ∈ N associated to f

converges to x∗, the unique fixed point of f , regardless of the
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selection of U(·), d(·) and x0. Furthermore, if ρ(|L|) ≥ 1,

then there exists U(·), d(·) and x0 such that xk does not

converge to x∗.

In some cases, if the assumption in (5) is not met, one can

still build a series that converges to a fixed point x∗. However

this requires additional assumptions on the update and shift

functions, leading to a new kind of iteration known as partially

asynchronous.

Definition 3 (Partially asynchronous iteration). Consider Defi-

nition 2 of an asynchronous iteration. Replace the assumptions

in (2b) and (2c) by the following:

∃d̄ ∈ N : d(i, j, k) ≤ d̄, ∀i, j, k, (6a)

∃s̄ ∈ N : i ∈
s̄
⋃

s=1

U(k + s), ∀i, k. (6b)

d(i, i, k) = 0, ∀i, k, (6c)

The series xk is now termed a partially asynchronous iteration.

The assumption in (6a) establishes that not only newer

values of the components are eventually used, but each of

these values is used before d̄ iterations have passed from their

calculation. The assumption in (6b), in turn, states that each

component is updated at least once in every s̄ consecutive

iterations. These assumptions require to introduce a synchro-

nization step every once in a while (for example, every d̄

or s̄ iterations). In the case of a shared memory machine,

only one of the two is needed and d̄ = s̄. The assumption

in (6c) establishes that every component is updated using its

last calculated value. In practical terms this is equivalent to

having each component assigned to only one processor.

Now we can enunciate the following result, regarding con-

vergence of partially asynchronous iterations.

Theorem 2 (Sufficient condition for convergence in the par-

tially asynchronous case [18]). Let x ∈ Rn, and f : Rn → Rn

be a linear application, i.e.,

f(x) = Lx+ b, L ∈ R
n×n, b ∈ R

n. (7)

Also, let g : Rn → Rn, defined by:

g(x) = (1− α)x+ α(Lx+ b), (8)

where α ∈ R and 0 < α < 1.

If L = (lij) is irreducible (see Appendix A for a definition

of irreducibility) and

n
∑

j=1

|lij | ≤ 1, ∀i, (9)

then the partially asynchronous iteration xk, k ∈ N, associated

to g(·) converges to x∗, fixed point of f(·).

In [19], Lubachevsky and Mitra presented a special case in

which convergence occurs for α = 1, at a linear (geometric)

rate. They also showed that the average rate of convergence

per iteration in the long-term, is low-bounded by an expression

which combines the problem size n, the measurements of

asynchronism d̄ and s̄, the entries of matrix L and the fixed

point x∗, as follows:

(1− σr)1/r , (10)

where

r = 1 + d̄+ (n− 1)(s̄+ d̄), (11a)

σ = min
i,j

+

(

x∗i lij

x∗j

)

, (11b)

and min+(·) refers to the minimum of the positive elements.

This means that the error cannot be reduced by a factor greater

than (1 − σr)1/r in any average iteration. Note that as σ is

always lower than 1, for increasing values of n, d̄ and s̄,

the rate of convergence approaches 1, i.e., the convergence

becomes sub-linear.

Assume that we are in the synchronous case, in which

d̄ = s̄ = 0. Then from equation (11a) we have r = 1, so the

expression in (10) becomes simply

1− σ. (12)

In other words the rate of convergence is unaffected by the

size of the problem, n.

Now assume that we are in a shared memory environment,

that only allows for the slightest desynchronization (1 itera-

tion) between processors, i.e., d̄ = s̄ = 1. In this case we

have r = 2n. Let’s see how this affects the convergence rate:

Figure 1 shows the bound on the convergence rate (lower is

better) as a function of the problem size, for different values

of the parameter σ. We observe that for very small problems

(n < 2) the convergence is already sub-linear. Only for ’very

good’ values of σ (e.g., 0.9) the problem can grow, although

very slightly, without the convergence rate being affected so

much.
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Fig. 1: Bound on the convergence rate as a function of the

problem size, for different values of the parameter σ.

This may be a strong reason to prefer the synchronous

approach over the partially asynchronous. However, depend-

ing on the implementation issues, the partially asynchronous

strategy may become advantageous in certain cases, e.g., when

the costs of synchronization are relatively high, or when the

number of iterations needed to converge is relatively low.
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III. MODEL DESCRIPTION

Following the precedent discussion on parallel iterations we

now introduce our model of an intrinsically parallel circuit

simulator, through a top-down approach. Consider Table I as

a synthesis of the variables and parameters of the model, which

we introduce gradually.

TABLE I: List of variables and parameters of the model.

Symbol Type Definition

N Fixed Set of circuit’s nodes.

C Fixed Set of circuit’s components.

Ih Fixed Set of influencers of node h.

vh Variable Voltage at node h.

φh Variable Sum of current injections on node h.

ψhk Variable Voltage at node h according to the influencer
k.

ihk Variable Current flowing from node k to node h.

rhk Fixed Resistance of the component situated between
nodes h and k.

v̂hk Fixed Voltage source of the component situated be-
tween nodes h and k.

zh Fixed Weight within node h of its own voltage.

whk Fixed Weight within node h of the voltage deter-
mined by the influencer k.

The general layout of a discrete-time circuit simulator is

given in Algorithm 1. Instruction 5 is the crucial step, in which

the system state is updated. Here is where our approach differs

from SPICE and such classic techniques, in that the method

applied to compute the state consists of an intrinsically parallel

iteration. We will now describe this method and the structures

that support it.

Algorithm 1 Discrete-time simulator.

Input: Circuit specification including initial state v0, time

step length ∆t and total time T .

Output: Circuit state v(t), at t = 0,∆t, 2∆t, . . . ≤ T .

1: t← 0
2: v(t)← v0

3: repeat

4: t← t+∆t
5: calculate new v(t)
6: until t ≥ T

A. Circuit model

The circuit is represented as a set of nodes and components,

N and C, respectively. Each component is connected between

two nodes, and each node has at least two components con-

nected on it. The circuit is well defined if there are components

connecting all the nodes in a closed chain.

For each non-ground node nh ∈ N , we define a set of

influencers Ih ⊂ N , that groups all the nodes separated from

nh by exactly one component. Some authors call these the

fanin nodes [10].

Consider the circuit in Fig. 2 as illustration. In this case

N = {nA, nB, nC , nD} and C = {c0, c1, c2, c3, c4}. The

circuit is well defined since c0, c1, c3 and c4 connect all the

nodes in a closed loop. The set of influencers of nB is IB =
{nA, nC}, the set of influencers of nC is IC = {nA, nB, nD}
and the set of influencers of nD is ID = {nA, nC}.

nA

nB nC nD

c0

c1

c2

c3

c4

Fig. 2: Example circuit.

The iteration is performed in two steps. In the first step,

every component reads, from each of its terminal nodes, the

voltage v and the sum of current injections φ. Using these

values it calculates a new voltage at each node, ψ, and a new

current injected to each node, i. Finally it returns these values

to the respective nodes. Figure 3 illustrates this procedure for

c1 in our example, which is connected between nB and nC .

c1nB nC

vB , φB

vC , φC

ψBC ψCB

iBC iCB

Fig. 3: Component-level procedure.

In the second step every node reads, from each one of the

components connected to it, the voltage ψ and the current

injection i. Using these values it computes the actual voltage

v and the sum of current injections φ. Finally it returns these

values to all those components to restart the cycle. Figure 4

illustrates this procedure for nC in our example, whose set of

influencers is IC = {nA, nB, nD}.

nA

nB

nD

c2

c1

c3

nC
vC

φC

ψCA

iCA

ψCB

iCB

ψCD

iCD

Fig. 4: Node-level procedure.

B. Component and node models

Now we will enter the boxes of components and nodes and

describe how their inputs are converted into outputs.
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1) Component: We represent all components as a voltage

source in series with a resistance. This universal component

model allows us to describe the behaviour of any of the

following: voltage source, resistor, inductor and capacitor. The

benefits of using a universal component model will be high-

lighted later in Section IV, when we discuss implementation

issues.

Consider chk, a component connected between nh and nk.

For this component, we define two parameters: v̂hk, corre-

sponding to the voltage source, measured from nh to nk, and

rhk, corresponding to the resistance. Note that v̂hk = −v̂kh
and rhk = rkh. Next we show how the parameters v̂hk and

rhk are obtained depending on the specific component type.

a) Voltage source: This component consists of an inde-

pendent voltage source β of maximum current µ. Here, v̂hk
takes the value β, and the resistance rhk is set to a value

sufficiently small to ensure that the voltage drop across its

two terminals is negligible, i.e., lower than a positive, small

real number ǫ:

0 ≤ rhkµ < ǫ. (13)

We achieve this by setting rhk = ǫ
2µ .

b) Resistor: This component consists of a constant re-

sistance ̺. Here v̂hk is set to zero and rhk takes the value

̺.

c) Inductor: This component consists of a constant in-

ductance λ. From Dommel [20], we know that the dynamic

behaviour of an inductance during a time interval [t, t+∆t],
can be emulated by an equivalent circuit of a voltage source

in series with a resistance. This gives the values of rhk and

v̂hk in this case:

rhk =
2λ

∆t
, (14a)

v̂hk(t) = vk(t)− vh(t)− rhkihk(t), (14b)

where t is the simulation clock.

d) Capacitor: A constant capacitance γ. We follow the

same procedure as for the inductor. Now:

rhk =
∆t

2γ
, (15a)

v̂hk(t) = vh(t)− vk(t) + rhkihk(t), (15b)

where t is the simulation clock.

TABLE II: Model parameters per component type.

Component rhk v̂hk

Voltage source ǫ
2µ

β

Resistor ̺ 0

Inductor 2λ
∆t

vk(t) − vh(t) − rhkihk(t)

Capacitor ∆t
2λ

vh(t) − vk(t) + rhkihk(t)

Table II synthesizes the expressions of v̂hk and rhk for

each component type. Once these parameters are obtained, the

outputs of chk are computed as follows:

ψhk = vh + rhkφh, (16a)

ihk =
vk − vh − v̂hk

rhk
. (16b)

These equations correspond to the Ohm’s Law and the

Kirchhoff’s Current Law applied on chk, nh and nk. (See

Appendix B for the deduction of these equations.) Note that

when the sum of current injections on nh is equal to zero,

i.e., φh = 0, we have from equation (16a) ψhk = vh. In other

words, the voltage according to the influencer k is the same

as the voltage according to the node itself. This corresponds

to a condition of convergence at component-level.

2) Node: Consider now nh and its set of influencers Ih. For

this node, we define positive real numbers zh and whk, k ∈ Ih
such that

zh +
∑

k∈Ih

whk = 1. (17)

These numbers correspond to the weights of a convex combi-

nation that will be used to update vh. In Subsection III-C we

show that there is a condition to respect when selecting these

weights, in order to ensure convergence.

Once the weights are chosen, the outputs of nh are deter-

mined as follows:

v′h = zhvh +
∑

k∈Ih

whkψhk, (18a)

φh =
∑

k∈Ih

ihk. (18b)

Equation (18a) states that a new value of the voltage is

computed as a convex combination of its own value, available

from the previous iteration, and the values according to all its

influencers. Equation (18b) is self-explanatory.

Note that when all the influencers agree on the value of

the voltage at nh, i.e., ψhk = vh, ∀k ∈ Ih, we have from

equation (18a) v′h = vh. This corresponds to a condition of

convergence at node-level. When this condition is satisfied at

all the nodes, the iteration converges at system-level. In the

next subsection we will determine whether this situation is

ever reached, and which assumptions need to be made in order

to ensure convergence, regarding the theoretical background

presented earlier in Section II.

C. Convergence study

Let nG be the ground-node andN ′ the set of all nodes in the

circuit minus the ground, i.e., N ′ = N \{nG}. Let m = |N ′|,
and v ∈ Rm be the vector of voltages at all non-ground nodes.

We define the function f : Rm → Rm as follows:

fh(v) = vh+
∑

k∈Ih

∑

j∈Ih

whkrhk
vj − vh − v̂hj

rhj
, h ∈ N ′. (19)

This expression is obtained by combining equations (16a),

(16b), (17), (18a) and (18b) and defining v′ = f(v). Then,

f(·) becomes the iteration function. This is a linear applica-

tion, i.e.,

f(v) = Lv + b, (20)



6

where L and b are given by:

lhh = 1−
∑

k∈Ih

∑

j∈Ih

whkrhk

rhj
,

lhj =







∑

k∈Ih

whkrhk

rhj
if j ∈ Ih,

0 otherwise.

bh = −
∑

k∈Ih

∑

j∈Ih

whkrhk
v̂hj

rhj
.

(21)

The following theorem establishes that a totally asyn-

chronous iteration associated to f(·) is not certain to converge.

Theorem 3. Let vk, k ∈ N be an asynchronous iteration

associated to f(·), defined in (20). Then, there exist an update

function U(·), a delay function d(·) and an initial guess v0

such that vk does not converge to a fixed point.

Proof. To apply Theorem 1 in Section II, we just need to prove

that ρ(|L|) ≥ 1, where L is given by (21). Now, as the sum

of the elements in any row of L is equal to 1, then 1 is an

eigenvalue of L and ρ(L) ≥ 1. And by applying Theorem 5

in Appendix A, ρ(|L|) ≥ 1.

This means that to ensure convergence we need further

assumptions. The following theorem establishes a sufficient

condition for convergence.

Theorem 4. Let vk, k ∈ N be a partially asynchronous

iteration associated to g(·) defined by:

g(v) = (1 − α)v + α(Lv + b), (22)

where 0 < α < 1 and L and b are given by (21). Let the

weights zh and whk, k ∈ Ih satisfy

1−
∑

k∈Ih

∑

j∈Ih

whkrhk

rhj
≥ 0, ∀h. (23)

Then vk converges to v∗, fixed point of f(·).

Proof. We will use Theorem 2 in Section II. Since we are

assuming (23), we have lhh ≥ 0 (note that lhk ≥ 0 by

definition) and then

n
∑

k=1

|lhk| =
n
∑

k=1

lhk = 1, ∀h.

So L verifies the assumption in (9).

It remains to prove that L is irreducible. According to

Theorem 6 in Appendix A, we need to look at the digraph

D(L) and see if it is strongly connected. This digraph can

actually be obtained from the circuit diagram, as follows. For

each node in the circuit, we place a vertex in D. Next, for each

component we place a pair of anti-parallel arcs, connecting

the two vertices corresponding to its terminals. Finally, we

place an arc from each vertex to itself. Figure 5 illustrates

this transformation process. As result, the directed arcs going

into each vertex in the graph identify that node’s influencers.

And as the circuit is well defined, this graph is strongly

connected.

nA nB

(a) Circuit diagram.

nA nB

(b) Digraph of matrix L.

Fig. 5: Equivalence between the circuit diagram and the

digraph of the application matrix L. Some authors call this

the dependency graph [10].

IV. IMPLEMENTATION AND TESTS

Now that we have described our model, we can complement

Algorithm 1 in Section III with the details of the proposed

intrinsically parallel iteration. Let C′ ⊂ C be the set of all

inductors and capacitors in the circuit. Algorithm 2 details the

implementation of the method using synchronous iterations.

The totally asynchronous version can be obtained by elimi-

nating the instruction in line 8; the partially asynchronous, by

replacing that instruction by “synchronize processors every d̄

iterations.”

Algorithm 2 Intrinsically parallel discrete-time circuit simu-

lator, synchronous case.

Input: Circuit specification including set of nodes N , com-

ponents C, sets of influencers I(·), node and component

parameters and initial state v0; iteration function f(·);
time step length ∆t and total time T .

Output: Circuit state v(t), at t = 0,∆t, 2∆t, . . . ≤ T .

1: t← 0
2: v(t)← v0

3: repeat

4: t← t+∆t
5: for all i ∈ N in parallel do

6: repeat

7: vi ← fi(v)
8: synchronize processors

9: until convergence

10: end for

11: save current state v(t)
12: for all h ∈ C′ in parallel do

13: update v̂h(t)
14: end for

15: until t ≥ T

Note that in instruction 7 of Algorithm 2 all the processors

update their coordinate of vector v, by evaluating the iteration

function, F (). As we are using a universal component model,

the arithmetic operations involved in this function evaluation

are actually the same for all processors; only the data differs.

This is an ideal situation for the implementation of the model

on architectures of the class SIMD (Single Instruction Multiple

Data) such as GPU, where such configuration allows for the

most data-level parallelism to be exploited.
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Next we will present different implementations of Algo-

rithms 1 and 2 along with the results of some tests. We

use GPU to implement and run our algorithm, and CPU to

implement and run the algorithms from the classic approach.

(For a detailed review of GPU architecture, see reference [21].)

Our computing environment is synthesized in Table III.

TABLE III: Computing environment used in the tests.

Hardware Clock rate (GHz) Number of cores

Xeon X560 CPU 2.67 12 (1 used)

GeForce GTX 560 GPU 1.62 336

GeForce GTX 480 GPU 1.40 480

GeForce GTX 680 GPU 1.06 1,536

Software Version

GCC 4.8.2

CUDA 6.0

LAPACK 3.5.0

KLU 1.2.1

A. Implementation alternatives

1) Intrinsically parallel, synchronous (IPS): We first con-

sidered Algorithm 2 and implemented it in CUDA C++ [22],

in order to run it on our Nvidia GPUs. Generally speak-

ing, CUDA is a platform and language for General Purpose

GPU programming (GPGPU) allowing to declare and specify

kernels, which are executed concurrently by thousands of

threads on the GPU. The threads are grouped into blocks and

distributed to several CUDA cores, where they can make use

of the several GPU resources (e.g., parallel floating-point units,

different memory layers, etc.)

The IPS implementation revolves around two classes, Com-

ponent and Node; both of them are implemented as “structure

of arrays,” so the program can benefice of coalesced mem-

ory accesses (i.e., adjacent GPU threads reading or writing

consecutive locations in GPU memory), which is a standard

lever for performance. The implementation has two kernels,

iterate() and update(), for performing instructions 7 and

13 in Algorithm 2, respectively. These kernels operate at

component-level, i.e., the program launches as many threads

as components in the circuit and each thread performs the

calculations associated to one component. In this way we have

a constant number of operations (each component is linked to

exactly two nodes), as opposed to a variable number (each

node could be linked to any arbitrary number of components)

per iteration. This improves the regularity of our solution

which is another lever for performance.

Note that CUDA does not provide any explicit block-level

mechanism of synchronization. This means that threads from

different blocks can get out of phase when running a sequential

loop. Therefore in order to ensure synchronization, we let the

CPU control the loop in instructions 6 to 9. At every iteration

of the loop, the CPU launches the iterate() kernel onto the

GPU, so the GPU computes a new approximation of the bus

voltages and evaluates the condition of convergence. The CPU

waits for the kernel to finish before progressing into the next

iteration. The synchronization step in line 8 is implicit in this

model.

2) Intrinsically parallel, partially asynchronous (IPPA):

Next we considered the modified version of Algorithm 2, in

which synchronization between processors is only enforced

after a given number of asynchronous iterations. This number

is passed as a parameter to the kernel, so the GPU can iterate

that many times before returning the control to the CPU. When

this parameter is set to one, we obtain the IPS implementation,

i.e., the program performs only one (asynchronous) iteration

before synchronizing all processors.

3) Classic approach: Last, for fair comparison purposes,

we implemented two versions of the classic circuit simulator

(see Algorithm 1 in Section III) that relies on matrix factor-

ization to compute the bus voltages. One of these versions

utilizes the dense solver LAPACK [23]; the other one uses the

optimized sparse solver KLU [13]. In both cases, the matrix

is fully re-factorized at each time step to simulate the case in

which there are nonlinearities in the component models.

Both implementations run on single-core CPU. However, it

is worth noting that some parallel versions of LAPACK opti-

mized for GPU can yield a speed-up of one order of magnitude

[24]. In KLU, in turn, parallelization seems constrained by the

Gilbert-Peierls phase of the algorithm [25].

B. Tests and results

Next, in order to evaluate our method (IPS and IPPA

implementations) in comparison to the classic approach to

circuit simulation (LAPACK and KLU implementations), we

randomly generated test circuits with sizes from 500 to above

10,000 nodes. Then we asked our programs to simulate one

second of real time operation of these circuits, with a time step

of 5 milliseconds, and collected several performance figures.

(By default, we use the GTX 680 GPU.)

To generate the test circuits we developed a dedicated C++

program, which uses the Boost library implementation of the

Mersenne twister [26] as a pseudo-random number generator.

The strategy used in generating the circuits is the following:

first, we generate a random circuit of 16 components that

we call a cluster; second, we increase the number of nodes

gradually by copying this cluster several times and linking

random nodes between the copies; third and final, a random

node in every cluster is linked to ground. The idea behind

this method is to really isolate the effect of the problem size

from all the other factors that could impact on performance

(e.g., topology, numerical values, etc.) A similar approach for

measuring the performance of the Spice simulator is presented

in [10].

1) IPS v/s IPPA: Our first experiment consisted in mea-

suring the effect of asynchronicity over performance, by

comparing the IPS and IPPA implementations.

Figure 6(a) shows the execution time of IPS and IPPA on

four of the test circuits. On the horizontal axis, we have the

number of asynchronous iterations performed by the kernel

in IPPA (the first point in these curves corresponds to the

output of IPS, i.e., the case where the number of asynchronous
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iterations is set to one). The different curves represent different

values of the problem size, n. Clearly, there is a benefit in

allowing asynchronism. Furthermore, in this experiment all the

four test circuits behave in a very similar way: the simulation

time decreases as the number of asynchronous iterations starts

increasing, until a certain point after 20 iterations where the

gains seem to stall.

Figure 6(b) shows, for the same experiment as before, the

average number of iterations executed per time step. Here we

observe that the more asynchronous iterations the model is

allowed to perform, the more total iterations are needed to

converge. In other words, asynchronism has a negative impact

on the rate of convergence, which is consistent with the theory

exposed in Section II. However, even if that is the case, the

overall effect of asynchronism is positive as the cost of these

‘extra’ iterations is compensated by having to perform fewer

global synchronization steps on the CPU side.
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Fig. 6: Effect of asynchronism on performance: (a) simulation

time and (b) average number of iterations per time step, as

functions of the number of asynchronous iterations allowed.

2) IPPA v/s KLU and LAPACK: Next we compared IPPA

with the classic circuit simulator, represented by the LAPACK

and KLU implementations. To maximize performance based in

our previous observations, we set the number of asynchronous

iterations in IPPA to 40 (see Figure 6(a)).

Figure 7 shows the execution time on a logarithmic scale

of IPPA, LAPACK and KLU as a function of the problem

size, n. We observe that the IPPA implementation is faster

than both the LAPACK and KLU implementations on almost

all the considered range. However, as n grows, the simulation

time increases faster in IPPA than in KLU.
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Fig. 7: Related performance of IPPA, LAPACK and KLU.

This last situation is most certainly an effect of our im-

plementation not being tuned to yield maximum GPU per-

formance just yet. To illustrate how much room is there for

improvement, Fig. 8 presents the IPPA simulation time (left

vertical axis) along with the average number of iterations

performed per time step (right vertical axis). The horizontal

axis contains the problem size, n. Whereas the simulation

time grows exponentially with the problem size, the number

of iterations seems to be unaffected by n. In other words,

it is only the concurrent access to shared resources, which

become scarce as the occupancy grows, that prevents maxi-

mum performance to be achieved and increases the simulation

time more than it can be explained by the amount of work

effectively performed by each thread. If the application was

tuned to keep every thread working at all times, then it would

be only a matter of having enough computing cores for the

simulation time to become independent from the problem size.

Of course this may be impossible to achieve in practice, as the

resources of any computing architecture are essentially limited.

However, there are many techniques that can be implemented

in order to ‘mask’ the scarcity of resources as the occupancy

grows [22].

As it is implemented today, we can already observe how

the performance of our application scales with the amount

of available resources. Figure 9 shows the simulation time

of IPPA on different GPU architectures. Notice how, as the

number of cores in the architecture grows, the time needed to

complete the analysis decreases accordingly. Additionally, the

speedup is higher for higher problem sizes.

Our current implementation of IPPA uses GPU’s global

memory, which is off-chip, to store and load all the relevant

data during the course of the iteration. The advantage of

doing so is that all the threads can access the data at all

times. However, GPU also provides on-chip memory which

is only shared by threads within the same thread-block; the

access to this shared memory is about one hundred times faster
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Fig. 8: Simulation time and number of iterations performed

by IPPA.
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running IPPA.

than the access to global memory. Thus, we can conceive an

optimization strategy where we assign subsets of strongly-

connected components in the circuit, to threads within the

same block on the GPU. Then we let these threads perform

a number of local iterations on shared memory, before com-

mitting their results to global memory for their integration

with those from other blocks. This technique will reduce the

number of accesses to global memory by a factor equal to the

number of iterations performed locally; however, it might also

damage the convergence of our iteration. The full study and

implementation of this idea will be addressed in future works.

V. CONCLUSION

We have presented a model for time-domain transient circuit

simulation which successfully competes in terms of perfor-

mance with available state-of-the-art solutions. Furthermore,

our approach is intrinsically parallel so it can be efficiently

implemented on today’s parallel machines. Our tests using a

GPU implementation of the model show that the amount of

parallel iterations needed to compute the result is independent

of the number of nodes in the circuit. However, in order to

fully exploit this interesting property, the current implemen-

tation must be tuned to achieve maximum utilization of the

GPU architecture.

The optimization of the current GPU implementation ac-

cording to the previous point, as well as the implementation

of the proposed method on other parallel architectures, will

be addressed in future works. We will also expand our model

and investigate convergence issues and applicability of the

proposed solution in the non-linear case.

APPENDIX A

MATHEMATICAL REMINDERS

In this section we present some classical definitions and

mathematical results, for the sake of completion.

Definition 4 (Spectral radius). Let A ∈ Cn×n with eigenval-

ues λi, 1 ≤ i ≤ n. Then,

ρ(A) := max
1≤i≤n

|λi|, (24)

is the spectral radius of A.

Theorem 5 (Bound for the spectral radius [27]). Let A ∈
Cn×n, and let |A| be the matrix of absolute values of the

entries of A. Then ρ(A) ≤ ρ(|A|).

Definition 5 (Reducible matrix). Let A ∈ C
n×n. A is called

reducible if there exists a permutation matrix P such that

P TAP is of the form








A1 A12

0 A2









,

where A1 and A2 are square matrices of size at least 1. If A

is not reducible, then A is called irreducible.

Definition 6 (Digraph of a matrix). Let A = (aij) ∈ Cn×n.

The digraph D with vertices 1, . . . , n, in which there is an arc

(i, j) if and only if aij 6= 0, is called the digraph of A. We

note D = D(A).

Definition 7 (Strong connection). Let D be a digraph and i, j

any pair of vertices. If there are directed walks from i to j

and from j to i, then D is strongly connected.

Theorem 6 (Interpretation of irreducibility in terms of the

digraph of the matrix [27]). Let A ∈ Cn×n. Then A is

irreducible if and only if D(A) is strongly connected.

APPENDIX B

DEDUCTION OF THE COMPONENT MODEL EQUATIONS

Assuming the steady-state is attained, in which case

vh = ψhk, we apply Ohm’s Law on chk:

ψhk = vh = vk − rhkihk − v̂hk. (25)

Next we apply Kirchhoff’s Current law on nh:

φh =
∑

j∈Ih

ihj =
∑

j∈Ih
j 6=k

ihj + ihk = 0 (26)

We clear ihk from (26) and replace it in (25):

ψhk = vk + rhk
∑

j∈Ih
j 6=k

ihj − v̂hk. (27)
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Expanding, and applying (25):

ψhk = vk + rhk
∑

j∈Ih

ihj − rhkihk − v̂hk

= vh + rhk
∑

j∈Ih

ihj. (28)

Finally, taking φh from (26) and replacing it in (28) we obtain

the first formula:

ψhk = vh + rhkφh. (29)

And clearing ihk from (25) we obtain the second formula:

ihk =
vk − vh − v̂hk

rhk
. (30)
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versité Montpellier 2, Montpellier, France, in 2000
and his Ph.D. degree in computer science from
Ecole Normale Supérieure de Lyon, Lyon, France, in
2003. Since 2004, he is an associate professor in the
Faculty of Computer Science at Université de Per-
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