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Abstract

We use tail expectiles to estimate Value at Risk (VaR), Expected Shortfall (ES) and
Marginal Expected Shortfall (MES), three instruments of risk protection of utmost
importance in actuarial science and statistical finance. The concept of expectiles is a
least squares analogue of quantiles. Both expectiles and quantiles were embedded in
the more general class of M-quantiles as the minimizers of an asymmetric convex loss
function. It has been proved very recently that the only M-quantiles that are coherent
risk measures are the expectiles. Moreover, expectiles define the only coherent risk
measure that is also elicitable. The elicitability corresponds to the existence of a natural
backtesting methodology. The estimation of expectiles did not, however, receive yet
any attention from the perspective of extreme values. The first estimation method
that we propose enables the usage of advanced high quantile and tail-index estimators.
The second method joins together the least asymmetrically weighted squares estimation
with the tail restrictions of extreme-value theory. We establish the limit distributions of
the proposed estimators when they are located in the range of the data or near and even
beyond the maximum observed loss. A main tool is to first estimate the intermediate
large expectile-based VaR, ES and MES, and then extrapolate these estimates to the
very far tails. We show through a detailed simulation study the good performance of
the procedures, and also present concrete applications to medical insurance data and
three large US investment banks.

Key words : Asymmetric squared loss; Coherency; Expected shortfall; Expectiles; Ex-
trapolation; Extreme values; Heavy tails; Marginal expected shortfall; Value at Risk.

1 Introduction

The concept of expectiles is a least squares analogue of quantiles, which summarizes the

underlying distribution of an asset return or a loss variable Y in much the same way that

quantiles do. It is a natural generalization of the usual mean EpY q, which bears the same

relationship to this noncentral moment as the class of quantiles bears to the median. Both

expectiles and quantiles are found to be useful descriptors of the higher and lower regions

of the data points in the same way as the mean and median are related to their central

behavior. Koenker and Bassett (1978) elaborated an absolute error loss minimization frame-

work to define quantiles, which successfully extends the conventional definition of quantiles



as left-continuous inverse functions. Instead, Newey and Powell (1987) substituted the “ab-

solute deviations” in the asymmetric loss function of Koenker and Bassett with “squared

deviations” to obtain the population expectile of order τ P p0, 1q as the minimizer

ξτ � argminθPRE tητ pY � θq � ητ pY qu , (1)

where ητ pyq � |τ � 1Ipy ¤ 0q| y2, with 1Ip�q being the indicator function. The first advantage

of this asymmetric least squares approach relative to quantiles lies in the computational ex-

pedience of sample expectiles using only scoring or iteratively-reweighted least squares. The

second advantage is that expectiles are more efficient as the weighted least squares rely on

the distance to data points, while empirical quantiles only utilize the information on whether

an observation is below or above the predictor. This benefit in terms of increased efficiency

comes at the price of increased sensitivity to the magnitude of extremes. Henceforth, the

choice between expectiles and quantiles usually depends on the application at hand, as is the

case in the duality between the mean and the median. In this paper, we shall discuss how

tail expectiles can serve as a more efficient instrument of risk protection than the traditional

quantile-based risk measures, namely Value at Risk (VaR) and Expected Shortfall (ES).

The classical mean being a special case pτ � 1
2
q of expectiles, this indicates that the

latter are closer to the notion of explained variance in least squares estimation. Furthermore,

sample expectiles provide a class of smooth curves as functions of the level τ , which is not

the case for sample quantiles. Most importantly, inference on expectiles is much easier than

inference on quantiles. Unlike quantiles, the estimation of the asymptotic variance of sample

expectiles does not involve the tedious “smoothing” of the values of the density function

at quantiles. In terms of interpretability, the τ -quantile determines the point below which

100τ% of the mass of Y lies, while the τ -expectile specifies the position such that the average

distance from the data below that position to itself is 100τ%, i.e.,

τ � E t|Y � ξτ |1IpY ¤ ξτ qu {E |Y � ξτ | .

Thus, the τ -expectile shares an intuitive interpretation similar to the τ -quantile, replacing

the number of observations by the distance. Jones (1994) established that expectiles are

precisely the quantiles, not of the original distribution, but of a related transformation.

Abdous and Remillard (1995) proved that expectiles and quantiles of the same distribution

coincide under the hypothesis of weighted-symmetry. Yao and Tong (1996) showed that

quantiles are identical to expectiles, but with different orders τ . Very recently, Zou (2014)

has derived the class of generic distributions for which expectiles and quantiles coincide.

Both families of quantiles and expectiles were embedded in the more general class of

M-quantiles defined by Breckling and Chambers (1988) as the minimizers of an asymmetric

convex loss function. This class is one of the basic tools in statistical applications as has
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been well reflected by the large amount of recent literature on M-quantiles. These statistical

M-functionals have been extensively investigated especially from the point of view of the

axiomatic theory of risk measures. In particular, Bellini (2012) has shown that expectiles

with τ ¥ 1
2

are the only M-quantiles that are isotonic with respect to the increasing convex

order. More recently, Bellini et al. (2014) have proved that the only M-quantiles that

are coherent risk measures are the expectiles. They have also established that expectiles

are robust in the sense of lipschitzianity with respect to the Wasserstein metric. Perhaps

most importantly, expectiles benefit from the property of elicitability that corresponds to the

existence of a natural backtesting methodology. The relevance of this property in connection

with backtesting has been discussed, for instance, by Embrechts and Hofert (2014) and Bellini

and Di Bernardino (2015) while its relationship with coherency has been addressed in Ziegel

(2014) among others. Actually, expectiles define the only coherent risk measure that is also

elicitable. As such, it has been shown by Gneiting (2011) that ES, the most popular coherent

risk measure, is not elicitable. It is generally accepted that elicitability is a desirable property

for model selection, computational efficiency, forecasting and testing algorithms.

Theoretical and numerical results, obtained very recently by Bellini and Di Bernardino

(2015), indicate that expectiles are perfectly reasonable alternatives to classical quantile-

based VaR and ES. They also provide a transparent financial meaning of expectiles in terms

of their acceptance sets as being the amount of money that should be added to a position

in order to have a prespecified, sufficiently high gain-loss ratio. Ehm et al. (2015) have

shown that expectiles are optimal decision thresholds in binary investment problems with

fixed cost basis and differential taxation of profits versus losses. Expectiles are also becoming

increasingly popular in the econometric literature as can be seen, for instance, from Kuan

et al. (2009), De Rossi and Harvey (2009), Embrechts and Hofert (2014) and the references

therein. The statistical problem of expectile estimation did not, however, receive yet any

attention from the perspective of extreme values.

Although least asymmetrically weighted squares estimation of expectiles dates back to

Newey and Powell (1987) in case of linear regression, it recently regained growing interest

in the context of nonparametric, semiparametric and more complex models [see for example

Sobotka and Kneib (2012) and the references therein]. Attention has been, however, re-

stricted to ordinary expectiles of fixed order τ staying away from the tails of the underlying

distribution. The purpose of this paper is to extend their estimation and asymptotic theory

far enough into the tails. This translates into considering the expectile level τ � τn Ñ 0 or

τn Ñ 1 as the sample size n goes to infinity. Bellini et al. (2014), Mao et al. (2015), Bellini

and Di Bernardino (2015) and Mao and Yang (2015) have already initiated and studied

the connection of such extreme population expectiles with their quantile analogues when Y

belongs to the domain of attraction of a Generalized Extreme Value distribution. They do
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not enter, however, into the crucial statistical question of how to estimate in practice these

unknown tail quantities from available historical data.

There are many important applications in econometrics, environment, finance and insur-

ance, where extending expectile estimation and large sample theory further into the tails is a

highly welcome development. Motivating examples include big financial losses, highest bids

in auctions, large claims in (re)insurance, and high medical costs, to name a few. In this

article, we focus on high expectiles ξτn in the challenging maximum domain of attraction of

Pareto-type distributions, where standard expectile estimates at the tails are often unsta-

ble due to data sparsity. It has been found in statistical finance and actuarial science that

Pareto-type distributions describe quite well the tail structure of losses. The rival quantile-

based VaR and ES are investigated extensively in theoretical statistics and used widely in

applied work. Notice that in applications, extreme losses correspond to tail probabilities τn

at an extremely high level that can be even larger than p1� 1{nq. Therefore, estimating the

corresponding quantile-based risk measures is a typical extreme value problem. We refer the

reader to the books of Embrechts et al. (1997), Beirlant et al. (2004), de Haan and Ferreira

(2006), and the recent and elegant devices of El Methni et al. (2014) and Cai et al. (2015).

Let us point out some conceptual results of this paper. We first estimate the interme-

diate tail expectiles of order τn Ñ 1 such that np1 � τnq Ñ 8, and then extrapolate these

estimates to the very extreme expectile level τn which approaches one at an arbitrarily fast

rate in the sense that np1 � τnq Ñ c, for some constant c. Two such estimation methods

are considered. One is indirect, based on the use of asymptotic approximations involving in-

termediate quantiles, and the other relies directly on least asymmetrically weighted squares

(LAWS) estimation. Our main results establish the asymptotic normality of the thus ob-

tained estimators, which makes statistical inference for both expectile-based VaR and ES

feasible. Also, we provide adapted extreme expectile-based tools for the estimation of the

Marginal Expected Shortfall (MES), an important factor when measuring the systemic risk

of financial institutions. Denoting by X and Y , respectively, the loss of the equity return

of a financial firm and that of the entire market, the MES is equal to EpX|Y ¡ tq, where

t is a high threshold reflecting a systemic crisis, i.e., a substantial market decline. For an

extreme expectile t � ξτn and for a wide nonparametric class of bivariate distributions of

pX, Y q, we construct two asymptotically normal estimators of the MES. A rival procedure

by Cai et al. (2015) is based on extreme quantiles. To our knowledge, this is the first work

to actually join together the expectile perspective with the tail restrictions of extreme-value

theory. Simulation evidence suggests that the direct LAWS method is more efficient for

estimating the expectile-based VaR and ES than the MES.

We organize this paper as follows. Section 2 discusses the basic properties of the expectile-

VaR including its connection with the standard quantile-VaR for high levels of prudentiality.
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Section 3 presents the two estimation methods of intermediate and extreme expectiles. Sec-

tion 4 explores the notion of expectile-based ES and discusses interesting axiomatic and

asymptotic developments. Section 5 considers the problem of estimating the MES when the

related variable is extreme. The good performance of the presented procedures is shown in

Section 6 and concrete applications to medical insurance data and three large US investment

banks are provided in Section 7.

2 Basic properties

In this paper, the generic financial position Y is a real-valued random variable, and the

available data tY1, Y2, . . .u are the negative of a series of financial returns. As such, a positive

value of �Y denotes a profit and a negative value denotes a loss. This implies that the right-

tail of the distribution of Y corresponds to the negative of extreme losses. Following Newey

and Powell (1987), the expectile ξτ of order τ P p0, 1q of the random variable Y can be

defined as the minimizer (1) of a piecewise-quadratic loss function or, equivalently, as

ξτ � argminθPR
 
τE

�pY � θq2� � Y 2
�

�� p1� τqE �pY � θq2� � Y 2
�

�(
,

where y� :� maxpy, 0q and y� :� maxp�y, 0q. The first-order necessary condition for opti-

mality related to this problem can be written in several ways, one of them being

ξτ � EpY q � 2τ � 1

1� τ
E rpY � ξτ q�s . (2)

These equations have a unique solution for all Y such that E|Y |   8 [i.e. Y P L1]. Thence-

forth expectiles of a distribution function FY with finite absolute first moment are well-

defined. They summarize the distribution function in much the same way that the quantiles

qτ :� F�1
Y pτq � infty P R : FY pyq ¥ τu do. A justification for their use to describe distribu-

tions and their tails, as well as to quantify the “riskiness” implied by the return distribution

under consideration, may be based on the collection of properties given in Supplement A.

The sign convention we have chosen for values of Y as the negative of returns implies

that extreme losses correspond to levels τ close to one. Only Bellini et al. (2014), Mao

et al. (2015) and Mao and Yang (2015) have described what happens for large population

expectiles ξτ and how they are linked to extreme quantiles qτ when FY is attracted to the

maximum domain of Pareto-type distributions with tail-index 0   γ   1. According to

Bingham et al. (1987), such a heavy-tailed distribution function can be expressed as

FY pyq � 1� `pyq � y�1{γ (3)

where `p�q is a slowly-varying function at infinity, i.e, `pλyq{`pyq Ñ 1 as y Ñ 8 for all λ ¡ 0.

The extreme-value index γ tunes the tail heaviness of the distribution function FY . Note also
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that the moments of FY do not exist when γ ¡ 1. For most applicational purposes in risk

management, it has been found in previous studies that assumption (3) describes sufficiently

well the tail structure of actuarial and financial data. Writing F Y :� 1 � FY , Bellini et al.

(2014) have shown in the case γ   1 that

F Y pξτ q
F Y pqτ q

� γ�1 � 1 as τ Ñ 1, (4)

or equivalently FY pξτ q
1�τ

� γ�1 � 1 as τ Ñ 1. It follows that extreme expectiles ξτ are more

spread than extreme quantiles qτ when γ ¡ 1
2
, whereas ξτ   qτ for all large τ when γ   1

2
.

The connection (4) between high expectiles and quantiles can actually be refined appreciably

by considering the second-order version of the regular variation condition (3). Assume that

the tail quantile function U of Y , namely the left-continuous inverse of 1{F Y , satisfies the

second-order condition indexed by pγ, ρ, Aq, that is, there exist γ ¡ 0, ρ ¤ 0, and a function

Ap�q converging to 0 at infinity and having constant sign such that

C2pγ, ρ,Aq for all x ¡ 0,

lim
tÑ8

1

Aptq
�
Uptxq
Uptq � xγ

�
� xγ

xρ � 1

ρ
.

Here and in what follows, pxρ � 1q{ρ is to be understood as log x when ρ � 0. The interpre-

tation of this extremal value condition can be found in de Haan and Ferreira (2006) along

with abundant examples of commonly used continuous distributions satisfying C2pγ, ρ, Aq.

Proposition 1. Assume that condition C2pγ, ρ, Aq holds, with 0   γ   1. Then

F Y pξτ q
1� τ

� pγ�1 � 1qp1� εpτqq

with εpτq � �pγ
�1 � 1qγEpY q

qτ
p1� op1qq � pγ�1 � 1q�ρ

γp1� ρ� γqApp1� τq�1qp1� op1qq as τ Ò 1.

Even more strongly, one can establish the precise bias term in the asymptotic approxi-

mation of pξτ{qτ q itself.

Corollary 1. Assume that condition C2pγ, ρ, Aq holds, with 0   γ   1. If FY is strictly

increasing, then

ξτ
qτ

� pγ�1 � 1q�γp1� rpτqq

with rpτq � γpγ�1 � 1qγEpY q
qτ

p1� op1qq

�
�pγ�1 � 1q�ρ

1� ρ� γ
� pγ�1 � 1q�ρ � 1

ρ
� op1q



App1� τq�1q as τ Ò 1.
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Other refinements under similar second order regular variation conditions can also be

found in Mao et al. (2015) and Mao and Yang (2015). In practice, the tail quantities ξτ ,

qτ and γ are unknown and only a sample of random copies pY1, . . . , Ynq of Y is typically

available. While extreme-value estimates of high quantiles and of the tail-index γ are used

widely in applied work and investigated extensively in theoretical statistics, the problem of

estimating ξτ , when τ � τn Ñ 1 at an arbitrary rate as n Ñ 8, has not been addressed

yet. Direct expectile estimates at the tails are incapable of extrapolating outside the data

and are often unstable due to data sparseness. This motivated us to construct estimators of

large expectiles ξτn and derive their limit distributions when they are located in the range

of the data or near and even beyond the sample maximum. We shall assume the extended

regular variation condition C2pγ, ρ, Aq to obtain some convergence results.

3 Estimation of the expectile-VaR

Our main objective in this section is to estimate ξτn for high levels of prudentiality τn

that may approach one at any rate, covering both scenarios of intermediate expectiles with

np1� τnq Ñ 8 and extreme expectiles with np1� τnq Ñ c, for some constant c. We assume

that the available data consists of an n-tuple pY1, . . . , Ynq of independent copies of Y , and

denote by Y1,n ¤ � � � ¤ Yn,n their ascending order statistics.

3.1 Intermediate expectile estimation

Here, we first use an indirect estimation method based on intermediate quantiles, and then

discuss a direct asymmetric least squares estimation method.

3.1.1 Estimation based on intermediate quantiles

The rationale for this first method relies on the regular variation property (3) and on the

asymptotic equivalence (4). Given that F Y is regularly varying at infinity with index �1{γ
[i.e. it satisfies, for any x ¡ 0, the property F Y ptxq{F Y ptq Ñ x�1{γ as t Ñ 8], it follows

that U is regularly varying as well with index γ. Hence, (4) entails that

ξτ
qτ

� pγ�1 � 1q�γ as τ Ò 1. (5)

This is also an immediate consequence of Corollary 1. Therefore, for a suitable estimator pγ
of γ, we may suggest estimating the intermediate expectile ξτn by

pξτn :� ppγ�1 � 1q�pγ pqτn , where pqτn :� Yn�tnp1�τnqu,n

and t�u stands for the floor function. This estimator parallels the intermediate quantile-VaRpqτn and crucially hinges on the estimated tail-index pγ. Accordingly, it is more conservative
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than pqτn when pγ ¡ 1
2
, but more liberal when pγ   1

2
. A simple and widely used estimator of

γ is given by the popular Hill estimator

pγH � 1

k

ķ

i�1

log
Yn�i�1,n

Yn�k,n
, (6)

where k � kpnq is an intermediate sequence in the sense that kpnq Ñ 8 such that kpnq{nÑ 0

as nÑ 8. See, e.g., Section 3.2 in de Haan and Ferreira (2006) for a detailed review of the

properties of pγH .

Next, we formulate conditions that lead to asymptotic normality for pξτn .

Theorem 1. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0   γ   1, that τn Ò 1 and np1� τnq Ñ 8. Assume further thata
np1� τnq

�pγ � γ,
pqτn
qτn

� 1



dÝÑ pΓ,Θq. (7)

If
a
np1� τnqq�1

τn Ñ λ1 P R and
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, then

a
np1� τnq

�pξτn
ξτn

� 1

�
dÝÑ mpγqΓ�Θ� λ

with mpγq :� p1� γq�1 � logpγ�1 � 1q and

λ :� γpγ�1 � 1qγEpY qλ1 �
�pγ�1 � 1q�ρ

1� ρ� γ
� pγ�1 � 1q�ρ � 1

ρ



λ2.

When using the Hill estimator (6) of γ with k � np1�τnq, sufficient regularity conditions

for (7) to hold can be found in Theorems 2.4.1 and 3.2.5 in de Haan and Ferreira (2006,

p.50 and p.74). Under these conditions, the limit distribution Γ is then Gaussian with mean

λ2{p1 � ρq and variance γ2, while Θ is the standard Gaussian distribution. Lemma 3.2.3

in de Haan and Ferreira (2006, p.71) shows that both Gaussian limiting distributions are

independent. As an immediate consequence we get the following.

Corollary 2. If FY verifies C2pγ, ρ, Aq with 0   γ   1 and τn Ñ 1 is such that np1�τnq Ñ 8,a
np1� τnqq�1

τn Ñ 0 and
a
np1� τnqApp1� τnq�1q Ñ 0, then

a
np1� τnq

�pξτn
ξτn

� 1

�
dÝÑ N p0, vpγqq , with vpγq � 1�

�
γ

1� γ
� γ log

�
1

γ
� 1



2

.

Yet, a drawback to the resulting estimator pξτn lies in its heavy dependency on the esti-

mated quantile pqτn and tail-index pγ in the sense that pξτn may inherit the vexing defects of

both pqτn and pγ. Note also that pξτn is asymptotically biased, which is not the case for pqτn . An-

other efficient way of estimating ξτn is by joining together the least asymmetrically weighted

squares (LAWS) estimation with the tail restrictions of modern extreme-value theory.
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3.1.2 Asymmetric least squares estimation

Here, we consider estimating the expectile ξτn by its empirical counterpart defined through

rξτn � arg min
uPR

1

n

ņ

i�1

ητnpYi � uq,

where ητ pyq � |τ � 1Ity ¤ 0u|y2 is the expectile check function. This LAWS minimizer

can easily be calculated by applying the function “expectile” implemented in the R package

‘expectreg’. It is not hard to verify that

a
np1� τnq

�rξτn
ξτn

� 1

�
� arg min

uPR
ψnpuq (8)

with ψnpuq :� 1

2ξ2τn

ņ

i�1

�
ητnpYi � ξτn � uξτn{

a
np1� τnqq � ητnpYi � ξτnq

�
.

It follows from the continuity and the convexity of ητ that pψnq is a sequence of almost

surely continuous and convex random functions. A result of Geyer (1996) [see also Theorem

5 in Knight (1999)] then states that to examine the convergence of the left-hand side term

of (8), it is enough to investigate the asymptotic properties of the sequence pψnq. Built on

this idea, we get the asymptotic normality of the LAWS estimator rξτn by applying standard

techniques involving sums of independent and identically distributed random variables.

Theorem 2. Assume that 0   γ   1{2 and τn Ò 1 is such that np1� τnq Ñ 8. Then

a
np1� τnq

�rξτn
ξτn

� 1

�
dÝÑ N p0, V pγqq with V pγq � 2γ3

1� 2γ
.

Interestingly, in contrast to Theorem 1 and Corollary 2, the limit distribution in Theo-

rem 2 is derived without recourse to either the extended regular variation condition C2pγ, ρ, Aq
or any bias condition. The mild assumption 0   γ   1{2 suffices. Most importantly, unlike

the indirect expectile estimator pξτn , the new estimator rξτn does not hinge by construction

on any particular type of quantile or tail-index estimators. A comparison of the asymptotic

variance V pγq of rξτn with the asymptotic variance vpγq of pξτn is provided in Figure 1. It

can be seen that V pγq   vpγq almost overall the domain p0, 1{2q, and that both asymptotic

variances are extremely stable for values of γ   0.3. Also, while vpγq remains lower than the

level 2, V pγq explodes in the neighborhood of 1{2.

3.2 Extreme expectile estimation

We now discuss the important issue of estimating extreme tail expectiles ξτ 1n , where τ 1n Ò 1

with np1 � τ 1nq Ñ c   8 as n Ñ 8. The basic idea is to extrapolate intermediate expectile
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Figure 1: Asymptotic variances V pγq of rξτn in blue and vpγq of pξτn in red, with γ P p0, 1{2q.

estimates of order τn Ñ 1, such that np1 � τnq Ñ 8, to the very extreme level τ 1n. This is

achieved by transferring the elegant device of Weissman (1978) for estimating an extreme

quantile to our expectile setup. Note that, in standard extreme-value theory and related

fields of application, the levels τ 1n and τn are typically set to be τ 1n � 1 � pn for a pn much

smaller than 1
n
, and τn � 1� kpnq

n
for an intermediate sequence of integers kpnq.

The model assumption of Pareto-type tails (3) means that Uptxq{Uptq Ñ xγ as t Ñ 8,

which in turn suggests that

qτ 1n
qτn

� Upp1� τ 1nq�1q
Upp1� τnq�1q �

�
1� τ 1n
1� τn


�γ

and thus
ξτ 1n
ξτn

�
�

1� τ 1n
1� τn


�γ

by (5), for τn, τ
1
n satisfying suitable conditions. This approximation motivates the following

class of ξτ 1n plug-in estimators

ξ
�

τ 1n
� ξ

�

τ 1n
pτnq :�

�
1� τ 1n
1� τn


�pγ

ξτn (9)

where pγ is an estimator of γ, and ξτn stands for either the estimator pξτn or rξτn of the

intermediate expectile ξτn . As a matter of fact, we have ξ
�

τ 1n
{ξτn � q̂�τ 1n{pqτn where pqτn �

Yn�tnp1�τnqu,n is the intermediate quantile estimator introduced above, and q̂�τ 1n is the extreme

Weissman quantile estimator defined as

q̂�τ 1n � q̂�τ 1npτnq :�
�

1� τ 1n
1� τn


�pγ pqτn . (10)

Next we show that p ξ
�

τ 1n

ξτ 1n
�1q has the same limit distribution as ppγ�γq with a different scaling.

Theorem 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

ρ   0, that τn, τ 1n Ò 1, with np1� τnq Ñ 8 and np1� τ 1nq Ñ c   8. If moreover

a
np1� τnq

�
ξτn
ξτn

� 1

�
dÝÑ ∆ and

a
np1� τnqppγ � γq dÝÑ Γ,

10



with
a
np1� τnqq�1

τn Ñ λ1 P R and
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, thena

np1� τnq
logrp1� τnq{p1� τ 1nqs

�
ξ
�

τ 1n

ξτ 1n
� 1

�
dÝÑ Γ.

More specifically, we can choose ξτn in (9) to be either the indirect intermediate expectile

estimator pξτn , the resulting extreme expectile estimator ξ̂�τ 1n :� ξ
�

τ 1n
being

ξ̂�τ 1n �
�

1� τ 1n
1� τn


�pγ pξτn � �pγ�1 � 1
��pγ

q̂�τ 1n , (11)

or we may choose ξτn to be the LAWS estimator rξτn , yielding the extreme expectile estimator

rξ�τ 1n � �
1� τ 1n
1� τn


�pγ rξτn , (12)

Their respective asymptotic properties are given in the next two corollaries of Theorem 3.

Corollary 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0   γ   1 and ρ   0, and that τn, τ 1n Ò 1 with np1 � τnq Ñ 8 and np1 � τ 1nq Ñ c   8.

Assume further that a
np1� τnq

�pγ � γ,
pqτn
qτn

� 1



dÝÑ pΓ,Θq.

If
a
np1� τnqq�1

τn Ñ λ1 P R and
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, thena

np1� τnq
logrp1� τnq{p1� τ 1nqs

�
ξ̂�τ 1n
ξτ 1n

� 1

�
dÝÑ Γ.

Corollary 4. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0   γ   1{2 and ρ   0, and that τn, τ 1n Ò 1 with np1 � τnq Ñ 8 and np1 � τ 1nq Ñ c   8. If

in addition a
np1� τnqppγ � γq dÝÑ Γ

and
a
np1� τnqq�1

τn Ñ λ1 P R,
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, thena
np1� τnq

logrp1� τnq{p1� τ 1nqs

�rξ�τ 1n
ξτ 1n

� 1

�
dÝÑ Γ.

4 Expectile-based expected shortfall

The conventional quantile-based VaR was often criticized for being too optimistic since it only

depends on the frequency of tail losses and not on their values. Acerbi (2002), Rockafellar and

Uryasev (2002) proposed to change the measurement method for calculating losses from the

11



usual quantile-VaR to an alternative coherent quantile-based method known as Expected

Shortfall (ES). This proposal was criticized though for being too pessimistic because the

ES only depends on the tail event. This motivated Kuan et al. (2009) to introduce the

expectile-based VaR which depends on both the tail realizations of the loss variable and

their probability. When estimating these three risk measures from a sample of historical

data of size n, it is customary to choose “ordinary” tail probability levels τ substantially

smaller than p1 � 1{nq. However, with the recent crisis in the financial industry, the vast

majority of market participants (investors, risk managers, clearing houses), academics and

regulators are more concerned with the risk exposure to a catastrophic event that might wipe

out an investment in terms of the size of potential losses. In this respect, τ should be at an

extremely high level that can be even larger than p1�1{nq. Unfortunately, with this required

extreme perspective, both quantile-based VaR and ES tend, by construction, to break down

and hence to change drastically the order of magnitude of the capital requirements. In

contrast, since the realized values of the tail-index γ were found to be smaller than 1
2

in

most studies on actuarial and financial data, the expectile-VaR ξτ becomes in view of (5)

definitely more liberal than the quantile-VaR qτ , as the level τ Ñ 1. Next, we introduce

a new concept of expectile-based ES which steers asymptotically an advantageous middle

course between the optimism of the expectile-VaR and the pessimism of the quantile-ES.

4.1 Basic properties

The standard ES, also known under the names Conditional Value at Risk or Average Value

at Risk, is defined as the average of the quantile function above a given confidence level τ .

It is traditionally expressed at the 100p1� τq% security level as

QESpτq :� 1

1� τ

» 1

τ

qαdα.

When the financial position Y is continuous, QESpτq is just the conditional expectation

of Y given that it exceeds the VaR qτ . In this sense, it is referred to as Tail Conditional

Expectation, with �QESpτq being interpreted as the expected return on the portfolio in the

worst 100p1� τq% of cases. Similarly, one may define an alternative expectile-based ES as

XESpτq :� 1

1� τ

» 1

τ

ξαdα.

Both XESpτq and QESpτq obey the reasonable rule of assigning bigger weights to worse cases.

Before moving to a deep study of the presented expectile-ES, we first illustrate its sensitive-

ness to tail events by comparing its relative performance with the quantile-VaR, expectile-

VaR and quantile-ES in the presence of catastrophic loss via a Monte Carlo experiment.

Similar to Kuan et al. (2009), the data are independently drawn from N p0, 1{?1� P q with

12



probability 1 � P or from N pc, 1{?P q with probability P , where P � 0.005 and c P r1, 50s.
Hence the observations shall be often taken from N p0, 1{?1� P q, but there may be infre-

quent catastrophic losses drawn from the more disperse scenario N pc, 1{?P q. For each c,

we simulate 1000 samples of size n � 1000 and compute the Monte Carlo averages of the

empirical versions of the four risk measures. The results are graphed in Figure 2, where

τ � 0.99, 0.995   1� 1
n

in top panels and τ � 0.999, 0.9995 ¥ 1� 1
n

in bottom panels.
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Figure 2: The catastrophic loss sensitivity of empirical quantile-VaR (QVaR), expectile-VaR
(XVaR), quantile-ES (QES) and expectile-ES (XES). From left to right and from top to
bottom, we have τ � 0.99, 0.995, 0.999, 0.9995.

As expected, when τ   1� 1
n
, the expectile-VaR (XVaR), the quantile-ES (QES) and the

expectile-ES (XES) are affected by the extreme values from N pc, 1{?P q for all c and in all

scenarios, whereas the quantile-VaR (QVaR) may not respond properly to such catastrophic

losses. It should be also clear that, in the case of QVaR, it is customary to choose in

applications the level τ � 0.99. Interestingly, in this case where the QVaR is not affected

by any infrequent disaster, the XES is clearly more alert to all catastrophic losses as its

magnitude is overall larger than that of all the other risk measures. When the QVaR becomes

sensitive to the magnitude of extreme losses (i.e. τ � 0.995), it remains too optimistic and

even the conservative XES and QES still underestimate the infrequent catastrophic losses for

c ¥ 10. This advocates the use of extremely higher levels τ ¥ 1� 1
n
. But in this case, it may

be seen from the bottom panels that both quantile-based VaR and ES become excessively
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pessimistic, whereas their expectile-based analogues tend to be more realistic.

As a matter of fact, by considering the challenging maximum domain of attraction of

Pareto-type distributions FY p�q with tail-index γ   1, we show that the choice between

the expectile-ES and quantile-ES depends on the value at hand of γ º 1
2

as is the case

in the duality between the expectile-VaR and quantile-VaR. More precisely, the theoretical

expectile-ES, defined earlier as XESpτq :� p1 � τq�1
³1
τ
ξαdα, is more conservative (respec-

tively, liberal) than the quantile-ES QESpτq :� p1 � τq�1
³1
τ
qαdα, for all τ large enough,

when γ ¡ 1
2

(respectively, γ   1
2
).

Proposition 2. Assume that the distribution of Y belongs to the Fréchet maximum domain

of attraction with tail-index γ   1, or equivalently, that condition (3) holds. Then

XESpτq
QESpτq �

ξτ
qτ

and
XESpτq
ξτ

� 1

1� γ
as τ Ñ 1.

These connections are very useful when it comes to proposing estimators for XESpτq. One

may also establish, in the spirit of Proposition 1, a precise control of the remainder term

which arises when using Proposition 2. This will prove to be quite useful when examining

the asymptotic properties of the extreme expectile-ES estimators.

Proposition 3. Assume that condition C2pγ, ρ, Aq holds, with 0   γ   1. Then, as τ Ñ 1,

XESpτq
ξτ

� 1

1� γ

�
1� γ2pγ�1 � 1qγEpY q

qτ
p1� op1qq

� 1� γ

p1� ρ� γq2 pγ
�1 � 1q�ρApp1� τq�1qp1� op1qq



.

From the point of view of the axiomatic theory, an influential paper in the literature by

Artzner et al. (1999) provides an axiomatic foundation for coherent risk measures. Like

the quantile-ES and the expectile-VaR, the expectile-ES satisfies all of their requirements

(Translation invariance, Monotonicity, Subadditivity, and Positive homogeneity). However,

in contrast to the quantile-ES, the coherence of the expectile-ES is actually a straightforward

consequence of the coherence of the expectile-VaR above the median in conjunction with the

fact that the expectile-ES is an increasing linear functional of the expectile-VaR above some

high level.

Proposition 4. For all τ ¥ 1{2, the expectile-based expected shortfall XESpτq induces a

coherent risk measure.

This result does not seem to have been appreciated in the literature before. It affords

an additional convincing reason that the use of both expectile-based VaR and ES may be

preferred over the classical quantile-based versions.
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4.2 Estimation and asymptotics

Typically, financial institutions and insurance companies are interested in the region τ �
τ 1n Ò 1, as the sample size n Ñ 8, which is particularly required to handle extreme events.

The asymptotic equivalence XESpτ 1nq � p1 � γq�1ξτ 1n , established in Proposition 2, suggests

the following estimators of the expectile-ES:zXES
�pτ 1nq � p1� pγq�1 � ξ̂�τ 1n and �XES

�pτ 1nq � p1� pγq�1 � rξ�τ 1n (13)

where ξ̂�τ 1n and rξ�τ 1n are the extreme expectile estimators defined above in (11)-(12), and pγ is an

estimator of γ. Another option motivated by the second asymptotic equivalence XESpτ 1nq �
ξτ 1n
qτ 1n

�QESpτ 1nq would be to estimate XESpτ 1nq by

zXES
:pτ 1nq � ξ̂�τ 1n �

zQES
�pτ 1nq
q̂�τ 1n

or �XES
:pτ 1nq � rξ�τ 1n � zQES

�pτ 1nq
q̂�τ 1n

(14)

for a suitable estimator zQES
�pτ 1nq of QESpτ 1nq [see, e.g., El Methni et al. (2014)], with q̂�τ 1n

being the extreme Weissman quantile estimator defined in (10). Our experience with real

and simulated data indicates, however, that the estimates zXES
�pτ 1nq and zXES

:pτ 1nq [respec-

tively, �XES
�pτ 1nq and �XES

:pτ 1nq] point toward very similar results. We therefore restrict our

theoretical treatment to the initial versions given in (13). Our first asymptotic result is for

the extreme XES estimator zXES
�pτ 1nq:

Corollary 5. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0   γ   1 and ρ   0, and that τn, τ 1n Ò 1 with np1 � τnq Ñ 8 and np1 � τ 1nq Ñ c   8.

Assume further that a
np1� τnq

�pγ � γ,
pqτn
qτn

� 1



dÝÑ pΓ,Θq.

If
a
np1� τnqq�1

τn Ñ λ1 P R and
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, thena

np1� τnq
logrp1� τnq{p1� τ 1nqs

�zXES
�pτ 1nq

XESpτ 1nq
� 1

�
dÝÑ Γ.

Regarding the LAWS-type estimator �XES
�pτ 1nq, we have the following result.

Corollary 6. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0   γ   1{2 and ρ   0, and that τn, τ 1n Ò 1 with np1 � τnq Ñ 8 and np1 � τ 1nq Ñ c   8. If

in addition a
np1� τnqppγ � γq dÝÑ Γ

and
a
np1� τnqq�1

τn Ñ λ1 P R,
a
np1� τnqApp1� τnq�1q Ñ λ2 P R, thena

np1� τnq
logrp1� τnq{p1� τ 1nqs

��XES
�pτ 1nq

XESpτ 1nq
� 1

�
dÝÑ Γ.
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Both results are derived by noticing that, on the one hand, the extreme expectile estima-

tors ξ̂�τ 1n and rξ�τ 1n converge to the same distribution as the estimator pγ but with a slower rate

in view of Corollaries 3 and 4. On the other hand, the nonrandom remainder term coming

from the use of Proposition 2 can be controlled by applying Proposition 3, so detailed proofs

are omitted.

5 Marginal expected shortfall

5.1 Setting and objective

With the recent financial crisis and the rising interconnection between financial institutions,

interest in the concept of systemic risk has grown. Acharya et al. (2012), Brownlees and

Engle (2012) and Engle et al. (2014) define systemic risk as the propensity of a financial

institution to be undercapitalized when the financial system as a whole is undercapitalized.

They have proposed econometric and statistical approaches to measure the systemic risk

of financial institutions. An important step in constructing a systemic risk measure for a

financial firm is to measure the contribution of the firm to a systemic crisis. A systemic event

or crisis is specified as a major stock market decline that happens once or twice a decade.

The total risk measured by the expected capital shortfall in the financial system during a

systemic crisis is typically decomposed into firm level contributions. Each financial firm’s

contribution to systemic risk can then be measured as its marginal expected shortfall (MES),

i.e., the expected loss on its equity return conditional on the occurrence of an extreme loss

in the aggregated return of the financial market. More specifically, denote the loss return on

the equity of a financial firm as X and that of the entire market as Y . Then the MES at

probability level p1� τq is defined as

QMESpτq � EtX|Y ¡ qY,τu, τ P p0, 1q,

where qY,τ is the τth quantile of the distribution of Y . Typically, a systemic crisis defined

as an extreme tail event corresponds to a probability τ at an extremely high level that

can be even larger than p1 � 1{nq, where n is the sample size of historical data that are

used for estimating QMESpτq. The estimation procedure in Acharya et al. (2012) relies on

daily data from only 1 year and assumes a specific linear relationship between X and Y . A

nonparametric kernel estimation method has been performed in Brownlees and Engle (2012)

and Engle et al. (2014), but cannot handle extreme events required for systemic risk measures

(i.e. 1� τ � Op1{nq). Very recently, Cai et al. (2015) have proposed adapted extreme-value

tools for the estimation of QMESpτq without recourse to any parametric structure on pX, Y q.
Here, instead of the extreme τth quantile qY,τ , we will explore the use of the τth expectile

analogue ξY,τ in the MES at least for the following two respects: (i) The first advantage is
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that expectile estimation is more efficient as the weighted least squares rely on the distance to

data points, while quantile estimation only knows whether an observation is below or above

the predictor. It would be awkward to measure extreme risk based only on the frequency

of tail losses and not on their values. Perhaps most importantly, (ii) since loss distributions

typically belong to the maximum domain of attraction of Pareto-type distributions with tail-

index γ   1{2, the extreme quantile qY,τ is more spread (conservative) than the expectile ξY,τ

as the level τ Ñ 1. Accordingly, the use of the more liberal τth expectile as an extremely

high threshold in the marginal expected shortfall

XMESpτq � EtX|Y ¡ ξY,τu
would result in less excessive amounts of required capital reserve, which might be good

news to financial institutions (we expect that high values of Y correspond to high values of

X). A formal asymptotic connection between XMESpτq and QMESpτq is provided below in

Proposition 5. It is the goal of the next section to establish estimators of the tail expectile-

based MES and to unravel their asymptotic behavior. The asymptotic normality is derived

for a large class of bivariate distributions of pX, Y q, which makes statistical inference for

XMESpτq feasible.

5.2 Tail dependence model

Suppose the random vector pX, Y q has a continuous bivariate distribution function FpX,Y q

and denote by FX and FY the marginal distribution functions of X and Y . Given that our

goal is to estimate XMESpτq at an extreme level τ , we adopt the same conditions as Cai

et al. (2015) on the right-hand tail of X and on the right-hand upper tail dependence of

pX, Y q. Here, the right-hand upper tail dependence between X and Y is described by the

following joint convergence condition:

JCpRq For all px, yq P r0,8s2 such that at least x or y is finite, the limit

lim
tÑ8

tPpFXpXq ¤ x{t, F Y pY q ¤ y{tq :� Rpx, yq

exists, with FX � 1 � FX and F Y � 1 � FY . The limit function R completely determines

the so-called tail dependence function ` [Drees and Huang (1998)] via the identity `px, yq �
x � y � Rpx, yq for all x, y ¥ 0 [see also Beirlant et al. (2004), Section 8.2]. Regarding the

marginal distributions, we assume that X and Y are heavy-tailed with respective tail indices

γX , γY ¡ 0, or equivalently, for all z ¡ 0,

UXptzq
UXptq Ñ zγX and

UY ptzq
UY ptq Ñ zγY as tÑ 8,

with UX and UY being, respectively, the left-continuous inverse functions of 1{FX and 1{F Y .

Compared with the quantile-based MES framework in Cai et al. (2015), we need the extra
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condition of heavy-tailedness of Y which is quite natural in the financial setting. Under

these regularity conditions, we get the following asymptotic approximations for XMESpτq.

Proposition 5. Suppose that condition J CpRq holds and that X and Y are heavy-tailed

with respective indices γX , γY P p0, 1q. Then

lim
τÒ1

XMESpτq
UXp1{F Y pξY,τ qq

�
» 8

0

Rpx�1{γX , 1qdx, (15)

lim
τÒ1

XMESpτq
QMESpτq �

�
γ�1
Y � 1

��γX . (16)

The first convergence result indicates that XMESpτq is asymptotically equivalent to the

small exceedance probability UXp1{F Y pξY,τ qq up to a multiplicative constant. Since as usual

in the financial setting 0   γX , γY   1{2, the second result shows that XMESpτq is more

liberal than QMESpτq as τ Ñ 1. This is visualised in Figure 3 in the case of a standard

bivariate Student tν-distribution on p0,8q2 with density

fνpx, yq � 2

π

�
1� x2 � y2

ν


�pν�2q{2

, x, y ¡ 0, (17)

where ν � 3, 5, 7, 9, respectively from left to right. It can be seen that QMESpτq becomes

overall much more conservative than XMESpτq as τ approaches 1.
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Figure 3: QMESpτq in red and XMESpτq in blue, with τ P r0.95, 1q.

5.3 Estimation and results

The asymptotic equivalences in Proposition 5 are of particular interest when it comes to

proposing estimators for tail expectile-based MES. Two approaches will be distinguished.

We consider first asymmetric least squares estimation by making use of the asymptotic

equivalence (15). Subsequently we shall deal with a nonparametric estimator derived from

the asymptotic connection (16) with the tail quantile-based MES.
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5.3.1 Asymmetric least squares estimation

On the basis of the limit (15) and then of the heavy-tailedness assumption on X, we have

for τ   τ 1   1 that, as τ Ñ 1,

XMESpτ 1q � UXp1{F Y pξY,τ 1qq
UXp1{F Y pξY,τ qq

XMESpτq �
�
F Y pξY,τ q
F Y pξY,τ 1q


γX

XMESpτq.

It follows then from Proposition 1 that

XMESpτ 1q �
�

1� τ 1

1� τ


�γX

XMESpτq. (18)

Hence, to estimate XMESpτ 1q at an arbitrary extreme level τ 1 � τ 1n, we first consider the

estimation of XMESpτq at an intermediate level τ � τn, and then we use the extrapola-

tion technique of Weissman (1978). For estimating XMESpτnq � EtX|Y ¡ ξY,τnu at an

intermediate level τn Ñ 1 such that np1� τnq Ñ 8, as nÑ 8, we use the empirical version

�XMESpτnq :�
°n
i�1Xi1ItXi ¡ 0, Yi ¡ rξY,τnu°n

i�1 1ItYi ¡ rξY,τnu ,

where rξY,τn is the LAWS estimator of ξY,τn . As a matter of fact, in actuarial settings, we

typically have a positive loss variable X, and hence 1ItXi ¡ 0u � 1. When considering a

real-valued profit-loss variable X, the MES is mainly determined by high, and hence positive,

values of X as shown in Cai et al. (2015).

We shall show under general conditions that the estimator �XMESpτnq is
a
np1� τnq-

relatively consistent. By plugging this estimator into approximation (18) together with aa
np1� τnq-consistent estimator pγX of γX , we obtain the following estimator of XMESpτ 1nq:

�XMES
�pτ 1nq � �XMES

�pτ 1n; τnq :�
�

1� τ 1n
1� τn


�pγX �XMESpτnq.

To determine the limit distribution of this estimator, we need to quantify the rate of con-

vergence in condition J CpRq as follows:

JC2pR, β, κq Condition J CpRq holds and there exist β ¡ γX and κ   0 such that

sup
xPp0,8q
yPr1{2,2s

����tPpFXpXq ¤ x{t, F Y pY q ¤ y{tq �Rpx, yq
minpxβ, 1q

���� � Optκq as tÑ 8.

This is exactly condition (a) in Cai et al. (2015) under which an extrapolated estimator of

QMESpτ 1nq converges to a normal distribution. See also condition (7.2.8) in de Haan and

Ferreira (2006). We also need to assume that the tail quantile function UX (resp. UY )

satisfies the second-order condition C2pγX , ρX , AXq (resp. C2pγY , ρY , AY q). The following

generic theorem gives the asymptotic distribution of XMESpτ 1nq. The asymptotic normality

follows by using for example the Hill estimator pγX of the tail-index γX .
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Theorem 4. Suppose that condition J C2pR, β, κq holds, and UX and UY satisfy conditions

C2pγX , ρX , AXq and C2pγY , ρY , AY q with γX , γY P p0, 1{2q and ρX   0. Assume further that

• τn, τ 1n Ò 1, with np1� τnq Ñ 8 and np1� τ 1nq Ñ c   8 as nÑ 8;

• 1� τn � Opnα�1q for some α   min

� �2κ

�2κ� 1
,

2γXρX
2γXρX � ρX � 1



;

• The bias conditions
a
np1� τnqq�1

Y,τn
Ñ λ1 P R,

a
np1� τnqAXpp1 � τnq�1q Ñ λ2 P R

and
a
np1� τnqAY pp1� τnq�1q Ñ λ3 P R hold;

•
a
np1� τnqppγX � γXq dÝÑ Γ.

Then, if X ¡ 0 almost surely, we have thata
np1� τnq

logrp1� τnq{p1� τ 1nqs

� �XMES
�pτ 1nq

XMESpτ 1nq
� 1

�
dÝÑ Γ.

This convergence remains still valid if X P R provided


 E|X�|1{γX   8; (19)


 np1� τnq � o
�p1� τ 1nq�2κp1�γXq

�
as nÑ 8, (20)

where X� � X �X� with X� � X _ 0.

5.3.2 Estimation based on tail QMES

On the basis of the limit (16), we consider the alternative estimator

{XMES
�pτ 1nq :� �pγ�1

Y � 1
��pγX {QMES

�pτ 1nq,

where pγX , pγY and {QMES
�pτ 1nq are suitable estimators of γX , γY and QMESpτ 1nq, respectively.

Here, we use the Weissman-type device

{QMES
�pτ 1nq �

�
1� τ 1n
1� τn


�pγX {QMESpτnq (21)

of Cai et al. (2015) to estimate QMESpτ 1nq, where

{QMESpτnq � 1

tnp1� τnqu
ņ

i�1

Xi1ItXi ¡ 0, Yi ¡ pqY,τnu,
with pqY,τn :� Yn�tnp1�τnqu,n being an intermediate quantile-VaR. As a matter of fact, Cai et

al. (2015) have suggested the use of two intermediate sequences in pγX and {QMESpτnq to be

chosen in two steps in practice. To ease the presentation, we restrict to the same intermediate

sequence τn in both pγX and {QMESpτnq. Next, we derive the asymptotic distribution of the

new estimator {XMES
�pτ 1nq.
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Theorem 5. Suppose that condition J C2pR, β, κq holds, and UX and UY satisfy conditions

C2pγX , ρX , AXq and C2pγY , ρY , AY q with γX P p0, 1{2q and ρX   0. Assume further that

• τn, τ 1n Ò 1, with np1� τnq Ñ 8 and np1� τ 1nq Ñ c   8 as nÑ 8;

• 1� τn � Opnα�1q for some α   min

� �2κ

�2κ� 1
,

2γXρX
2γXρX � ρX � 1



;

• The bias conditions
a
np1� τnqq�1

Y,τn
Ñ λ P R and

a
np1� τnqAXpp1 � τnq�1q Ñ 0

hold;

•
a
np1� τnqppγX � γXq dÝÑ Γ and

a
np1� τnqppγY � γY q � OPp1q.

Then, if X ¡ 0 almost surely, we have thata
np1� τnq

logrp1� τnq{p1� τ 1nqs

� {XMES
�pτ 1nq

XMESpτ 1nq
� 1

�
dÝÑ Γ.

This convergence remains still valid if X P R provided that (19) and (20) hold.

6 Simulation study

The aim of this section is to highlight some of the theoretical findings with numerical simu-

lations. We will briefly touch on the presented tail XVaR and XES estimators in section 6.1

and tail XMES estimators in section 6.2.

6.1 Expectile-based VaR and ES

This section provides Monte-Carlo evidence that the direct estimation method is more effi-

cient relative to the indirect method in terms of Mean-Squared Error (MSE), and is also the

winner when it comes to making and evaluating point forecasts. Recall that the direct type

estimator rξ�τ 1n � rξ�τ 1npτnq, described in (12) and utilized in (13), is obtained via LAWS estima-

tion. The indirect type estimator ξ̂�τ 1n � ξ̂�τ 1npτnq, introduced in (11) and used in (13), results

from a plug-in procedure based on an asymptotic equivalence with intermediate quantiles.

To evaluate finite-sample performance of these estimators, we have considered simulated

samples from various Student’s t-scenarios: t3, t5, t7 and t9. We used in all our simulations

the Hill estimator of γ, the extreme level τ 1n � 0.995 for n � 100 and τ 1n � 0.9994 for

n � 1000, and the intermediate levels τn � 1� k
n
, where the integer k can actually be viewed

as the effective sample size for tail extrapolation. We only present the results for n � 1000

here, a full comparison including additional results for optimal k is given in Supplement B.1.

Figure 4 gives the root-MSE and bias estimates computed over 10, 000 replications for

samples of size 1000. Each figure displays the evolution of the obtained Monte-Carlo re-

sults, for the two normalized estimators rξ�τ 1npkq{ξτ 1n and ξ̂�τ 1npkq{ξτ 1n , as functions of the sample
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fraction k. Our tentative conclusion is that the accuracy of the direct estimator rξ�τ 1n is quite

respectable, especially for heavier tails (i.e. df � 3, 5). When n � 100, as can be clearly

seen from Supplement B.1, rξ�τ 1n performs better than ξ̂�τ 1n in terms of both MSE and bias,

whatever the thickness of the tails. It may also be seen that most of the error is due to

variance, the squared bias being much smaller in all cases. It is interesting that in almost

all cases the bias was positive. This may be explained by the sensitivity of high expectiles

to the magnitude of heavy tails, since they are based on “squared” error loss minimization.
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Figure 4: Root MSE estimates (top) and Bias estimates (bottom) of rξ�τ 1npkq{ξτ 1n (blue) and

ξ̂�τ 1npkq{ξτ 1n (red), for the t3, t5, t7, t9-distributions, respectively, from left to right.

Another way of validating the presented estimation procedures for ξτ 1n on historical data

is by using the elicitability property of expectiles as pointed out in Section 1. Following

the ideas of Gneiting (2011), the competing estimates ξ̂�τ 1n and rξ�τ 1n can be compared from a

forecasting perspective by means of their realized losses. A more comprehensive description of

this comparison including Monte Carlo verification and validation is given in Supplement B.2,

where the resulting average values of the realized losses seem to favor rξ�τ 1n over ξ̂�τ 1n for making

and evaluating point forecasts. We also investigate the normality of the estimators ξ̂�τ 1n andrξ�τ 1n in Supplement B.3, where the Q–Q-plots indicate that the limit Theorem 3 and its

Corollaries 3 and 4 provide adequate approximations for finite sample sizes.

Other simulation experiments have been undertaken to assess the finite-sample perfor-

mance of the expectile-ES estimators zXES
�pτ 1nq, �XES

�pτ 1nq, zXES
:pτ 1nq and �XES

:pτ 1nq. The
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experiments all employed the same family of Student’s t-distributions as before. The lessons

were similar to those from the expectile-VaR setting, hence the results are not reported

here. It may also be noticed that the Monte-Carlo estimates corresponding to zXES
�pτ 1nq andzXES

:pτ 1nq [respectively, �XES
�pτ 1nq and �XES

:pτ 1nq] are very similar.

6.2 Expectile-based MES

When it comes to estimate XMESpτ 1nq, in contrast to the expectile-based VaR and ES, this

section provides Monte-Carlo evidence that the indirect estimation method is superior to the

direct one in terms of both MSE and bias. Also, the indirect method seems to provide better

adequacy in terms of asymptotic normality approximations for finite sample sizes. Recall

that the direct estimator �XMES
�pτ 1nq is obtained via LAWS estimation, while the indirect

estimator {XMES
�pτ 1nq is built on the quantile-based MES estimator of Cai et al. (2015).

To investigate the finite sample performance of the two estimators, the simulation experi-

ments employ the Student tν-distribution on p0,8q2 with density fνpx, yq described in (17). It

can be shown that this distribution satisfies the conditions J C2pR, β, κq and C2pγX , ρX , AXq
of Theorems 4 and 5 (see Cai et al. (2015) for the case ν � 3). Other motivating examples of

distributions that satisfy these conditions can also be found in section 3 of Cai et al. (2015).

All the experiments have ν P t3, 5, 7, 9u and n � 1000. For the choice of the intermediate

and extreme expectile levels τn and τ 1n, we used the same considerations as in Section 6.1.

A comparison of the two estimators is shown in Figure 5, where we present the root-MSE

(top panels) and bias estimates (bottom panels) computed over 10, 000 simulated samples.

Each picture displays the evolution of the obtained Monte-Carlo results, for the two nor-

malized estimators �XMES
�{XMESpτ 1nq and {XMES

�{XMESpτ 1nq, as functions of the sample

fraction k. Surprisingly, we observe that the latter estimator is clearly the winner in all cases

in terms of both root-MSE and bias. The LAWS method is thus more suitable for estimating

the expectile-based VaR and ES than the MES. As can be seen also in Supplement B.3, the

limit Theorems 4 and 5 provide adequate approximations for finite sample sizes, with a slight

advantage for the estimator {XMES
�pτ 1nq.

7 Applications

In this section, we apply our estimation methods to first estimate the tail VaR and ES for

the Society of Actuaries (SOA) Group Medical Insurance Large Claims, and then to estimate

the tail MES for three large investment banks in the USA.
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Figure 5: Root MSE estimates (top) and Bias estimates (bottom) of �XMES
�{XMES (blue)

and {XMES
�{XMES (red), for the t3, t5, t7, t9-distributions, respectively, from left to right.

7.1 VaR and ES for medical insurance data

The SOA Group Medical Insurance Large Claims Database records all the claim amounts

exceeding 25,000 USD over the period 1991-92. As in Beirlant et al. (2004), we only deal

here with the 75,789 claims for 1991. The histogram shown in Figure 6 (top) gives evidence

of an important right-skewness. Accordingly, nothing guarantees that the future does not

hold some unexpected higher claim amounts. Insurance companies are then interested in

estimating the worst tail value of the corresponding loss severity distribution. One way

of measuring this value at risk is by considering the Weissman quantile estimate q̂�1�pn �
Yn�k,n

�
k
npn

	
pγH

as described in (10), where pγH is the Hill estimator defined in (6), with

τ 1n � 1 � pn and τn � 1 � k
n
. Insurers typically are interested in pn � 1

100,000
  1

n
, that is,

in an estimate of the claim amount that will be exceeded (on average) only once in 100,000

cases. Figure 6 (bottom) shows the quantile-VaR estimates q̂�1�pn against the sample fraction

k (rainbow curve). A commonly used heuristic approach for selecting a pointwise estimate is

to pick out a value of k corresponding to the first stable part of the plot [see, e.g., Section 3

in de Haan and Ferreira (2006)]. Here, a stable region appears for k from 150 up to 500,

leading to an estimate between 3.73 and 4.12 million. This estimate does not succeed in

exceeding the sample maximum Yn,n � 4, 518, 420 (indicated by the horizontal pink line),
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which is consistent with the earlier analysis of Beirlant et al. (2004, p.125 and p.159). The

effect of pγH on q̂�1�pn is highlighted by a colour-scheme, ranging from dark red (low pγH) to

dark violet (high pγH). This Hill estimate of the extreme-value index γ seems to mainly vary

within the interval r0.27, 0.43s.
Given that pγH   1

2
, the proposed “indirect” estimate ξ̂�1�pn of the alternative expectile-

based VaR, described in (11), is by construction more liberal than the quantile-VaR q̂�1�pn .

Its plot graphed in Figure 6 (bottom) in yellow indicates a more optimistic VaR between 3.02

and 3.40 million, for k P r150, 500s. The “direct” asymmetric-least-squares based estimatorrξ�1�pn of the expectile-VaR, defined in (12), is also displayed in the same figure in orange.

It is more liberal than the quantile-VaR q̂�1�pn as well, but appears to be more conservative

than the indirect version ξ̂�1�pn . It varies between 3.18 and 3.57 million over k P r150, 500s.
Another alternative option for measuring risk, which is more capable of extrapolating

outside the range of the available observations, is by using the estimated quantile-ES

zQES
�p1� pnq � 1

k

ņ

i�1

Yi1I pYi ¡ Yn�k,nq �
�

k

npn



pγH

[see El Methni et al. (2014)]. Its graph shown in Figure 6 (bottom) in black line indicates

a stable region for k P r150, 500s with an averaged estimate of around 6.13 million, which is

successfully extrapolated beyond the data but seems unrealistically high for the SOA.

To summarize, both estimates ξ̂�1�pn and rξ�1�pn of the expectile-VaR are too liberal, while

the quantile-ES zQES
�p1 � pnq is too conservative. Although the quantile-VaR q̂�1�pn is less

liberal, it remains too optimistic as it does not even succeed in exceeding the sample maxi-

mum. Our proposed estimates zXES
�p1� pnq, �XES

�p1� pnq, zXES
:p1� pnq and �XES

:p1� pnq
of the alternative expectile-based expected shortfall, described in (13) and (14), steer an

advantageous middle course between the optimism of the ξ̂�1�pn , rξ�1�pn and q̂�1�pn values at

risk and the excessive pessimism of the quantile-based expected shortfall zQES
�p1� pnq. The

two estimates zXES
�p1�pnq and zXES

:p1�pnq, based on the indirect expectile-VaR ξ̂�1�pn and

graphed in Figure 6 in gray and red lines, indicate a more realistic averaged risk estimate of

around 5 million for k P r150, 500s, which might be a good compromise to both insurers and

pessimist regulators. The remaining two estimates �XES
�p1 � pnq and �XES

:p1 � pnq, based

on the direct expectile-VaR rξ�1�pn and shown in Figure 6 in cyan and magenta lines, indicate

a slightly higher averaged risk estimate of around 5.30 million, for k P r150, 500s.
If the political decision is to use the quantile-ES to determine the capital reserve, insur-

ance companies would be motivated to merge in order to diminish the amount of required

capital that is of the order of 6.13 million USD. This incentive to merge may create non-

competitive effects and increase the risk. This may not occur, however, if the less pessimistic

expectile-ES were favored, since it only requires the amount of 5 million USD or at most
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Figure 6: SOA Group Medical Insurance data. (top) Histogram and scatterplot of the
log-claim amounts; (bottom) The expectile-based VaR and ES plots tpk, ξ̂�1�pnpkqquk in yel-

low, tpk, rξ�1�pnpkqquk in orange, tpk,zXES
�

kp1 � pnqquk in gray, tpk,zXES
:

kp1 � pnqquk in red,

tpk,�XES
�

kp1� pnqquk in cyan and tpk,�XES
:

kp1� pnqquk in magenta, along with the quantile-

based VaR and ES plots tpk, q̂�1�pnpkqquk as rainbow curve and tpk,zQES
�

kp1� pnqquk in black.
The sample maximum Yn,n is indicated by the horizontal pink line.

5.30 million USD as a hedge against extreme risks. This exceeds the sample maximum

Yn,n � 4, 518, 420 USD, but not by much compared to the quantile-ES.

In contrast, if the political decision is to favor the use of a VaR in order to avoid changing

severely the order of magnitude of the capital requirements, then the expectile-based VaR

might be favored as it is the winner in terms of coherency, but also a priori psychologically in

terms of its optimism or, say, realism in certain sectors of activity of the financial industry.

Extreme expectile estimators are indeed more liberal than their quantile analogues, since

they are by construction less spread in the usual encountered practical settings where pγ   1
2
.

7.2 MES of three large US financial institutions

We consider the same investment banks as in the studies of Brownlees and Engle (2012)

and Cai et al. (2015), namely Goldman Sachs, Morgan Stanley and T. Rowe Price. For the
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three banks, the dataset consists of the loss returns pXiq on their equity prices at a daily

frequency from July 3rd, 2000, to June 30th, 2010. We follow the same set-up as in Cai et

al. (2015) to extract, for the same time period, daily loss returns pYiq of a value-weighted

market index aggregating three markets: the New York Stock Exchange, American Express

stock exchange and the National Association of Securities Dealers Automated Quotation

system.

Cai et al. (2015) used {QMES
�pτ 1nq, as defined in (21), to estimate the quantile-based

MES, QMESpτ 1nq � EtX|Y ¡ qY,τ 1nu, where τ 1n � 1 � 1
n
� 1 � 1{2513, with two intermediate

sequences involved in pγX and {QMESpτnq to be chosen in two steps. Instead, we use our

expectile-based method to estimate XMESpτ 1nq � EtX|Y ¡ ξY,τ 1nu, with the same extreme

level τ 1n that corresponds to a once-per-decade systemic event. As a benchmark, we employ{QMES
�pτ 1nq with the same intermediate sequence τn � 1 � k

n
in both pγX and {QMESpτnq.

The conditions required by the procedure were already checked empirically in Cai et al.

(2015). It only remains to verify that γY   1
2

as it is the case for γX . This assumption is

confirmed by the plot of the Hill estimates of γY against the sample fraction k (green curve)

in Figure 7 (a). Indeed, the first stable region appears for k P r70, 100s with an averaged

estimate pγY � 0.349. Hence, by Proposition 5, our estimates {XMES
�pτ 1nq and �XMES

�pτ 1nq
of XMESpτ 1nq are expected to be less conservative than the benchmark values {QMES

�pτ 1nq.
This is visualised in Figure 7 (b)-(d), where the three estimates are graphed as functions

of k for each bank: (b) Goldman Sachs; (c) Morgan Stanley; (d) T. Rowe Price. The first

stable region of the plots (b)-(d) appears, respectively, for k P r85, 105s, k P r85, 115s and

k P r70, 100s. The final estimates based on averaging the estimates from these stable regions

are reported in Table 1. It may be seen that both expectile- and quantile-based MES levels

for Morgan Stanley are largely higher than those for Goldman Sachs and T. Rowe Price. It

may also be noted that the estimates {QMES
�pτ 1nq, obtained here with a single intermediate

sequence, are slightly smaller than those obtained in Table 1 of Cai et al. (2015) by using

two intermediate sequences. These estimates represent the average daily loss return for a

once-per-decade market crisis. They are appreciably more pessimistic than the {XMES
�pτ 1nq

and �XMES
�pτ 1nq estimates. This substantial difference is visualised in Figure 7 (b)-(d) for all

values of k, where it may also be seen that the curves of {XMES
�

(pink) and �XMES
�

(black)

show a very similar evolution for the three banks. The effect of the Hill estimates pγX on the

MES estimates is highlighted by a “colouring-scheme” of {QMES
�pτ 1nq, ranging from dark red

(low) to dark violet (high).
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Figure 7: (a) Hill estimates pγY based on daily loss returns of market index (green), along

with pγX based on daily loss returns of three investment banks. (b)-(d) The estimates {XMES
�

(pink), �XMES
�

(black) and {QMES
�

(rainbow) for the three banks.
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Bank {XMES
�

�XMES
�

{QMES
�

Goldman Sachs 0.225 0.231 0.285
Morgan Stanley 0.372 0.387 0.480
T. Rowe Price 0.227 0.240 0.286

Table 1: Expectile- and quantile-based MES of the three investment banks.

Supplementary materials

The supplement to this article contains additional simulations, technical lemmas and the

proofs of all theoretical results in the main article.
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