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ABSTRACT

The aim of this paper is to present the PRIAM Toolbox

(Poincare ~ Resolution  of  Interplanetary  and

Astrodynamic ~ Missions), designed to  study
interplanetary missions and particularly suited to the
dynamics analysis near collinear libration points defined
as isolated zeros of a smooth gravitational vector field.

Orbits computation and optimal transfers constitute the

core of the toolbox.

1. INTRODUCTION

The study of the dynamics around the libration points
has brought out the existence of low-energy
interplanetary transfers, exploiting geometric invariant
objects under Hamiltonian phase flow.

In order to design future missions near and between
we have developed the PRIAM
toolbox which offers advanced methods providing a full

libration points,

analysis of the three-body dynamics. These methods are
derived from the theory of dynamical systems using
techniques originally developed by Poincaré [13] and
taken up by several authors.

Different semi-analytical methods has been carried out
in order to compute accurately all the orbits around the
libration points. The study of the central manifold
enables to provide the entire family of orbits for each
level of energy. Our tool is able to give a suitable 2D
representation of all these trajectories from which users
can choose the desired one.

Then, stable and unstable manifolds associated to these
orbits have been computed to provide the low-energy

trajectories approaching or leaving libration points.

The tool offers many applications from the computation
of these manifolds, such as the search of heteroclinic
connection and optimal transfer between a planet and its
libration points.

Once we have reached this point, the user can run a
station keeping procedure or can carry out a transfer to
another orbit around the same libration point.

Finally we have developed a perturbing model which
integrates JPL ephemerides and takes into account the
perturbations of the Moon and other planets of the solar
system.

2. ORBITS COMPUTATION

Orbits in the circular restricted three body problem
(CR3BP) are view as integral curve of the Hamiltonian
vector field (expressed in Eq. 2).

As well known there exists five fixed points of this
Hamiltonian flow called libration points.

According to Lyapunov definition [16], two of them are
stable (L4, L5) and the others are unstable (L1, L2 and
L3).

Around the unstable collinear libration points, at a given
level of energy, there is a family of orbits which are
contained in invariant 2D tori related to Lissajous
solutions.  The proof of their existence can be
associated to the KAM theorem [14],[15].

The PRIAM toolbox is able to compute the entire
family of theses orbits, including periodic ones like



Halo and Lyapunov orbits (vertical and horizontal
ones).

These orbits have been computed using numerical
integration of the 3 body problem, coupled with a
parallel shooting algorithm which uses the transition
state matrix to refine nominal orbits .

In order to provide accurate initial conditions for the
integration, we have developed two analytic methods
suited to the Hamiltonian systems resolution: the first
one is the Lindstedt-Poincare procedure and the second
one is the reduction of the centre manifold.

2.1. Lindstedt-Poincare procedure

This L-P method is based on finding solutions in the
form of trigonometric expansions which depends on
orbits excursions Ax and Az, and satisfy the CR3BP's
equations of motion.

The trigonometric series are expanded up to a fixed
order N and appears as the product of two oscillatory

components of frequencies Ql and {2 )
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A recursive algorithm has been implemented to
compute the coefficients Xijxm » Yijxm and zijxm.

It performs the factorisation of the potential in Legendre
polynomials and put them on the form of Eq. 1. Starting
from the linear solutions of the CR3BP and identifying
the terms of each order, we are able to compute the
desired coefficients.

In order to reach suitable order, we have created
specific tools for algebraic operators, in particular for
the factorisation of trigonometric series. We have also
taken the advantages of the symmetries of CR3BP.

Figure 1 : Quasi-Halo of the CR3BP in the Sun-Earth
system around L1 (Energy = 0.5, Az = 175 000 km) by
order 10

The convenience of this method is that solutions are
known at any time by direct valuation of the series. By
covering all the excursions parameters, one can obtain
the entire family of orbits.

However, the procedure is very sensitive to resonance
and does not provide good results for low number of
rotation (orbits near halo).

The coefficients of series expansions have been
compared with [1] and [6].

2.2. Reduction of the centre manifold

The second method is based on expanding the initial
Hamiltonian of the system around the collinear libration
point and carrying out a partial normal form of this
Hamiltonian, uncoupling the hyperbolic modes from the
elliptic ones.

To provide the Hamiltonian normal form we used the
method of Lie transforms developed by Deprit [12].
According to this method we consider a continuous map
of symplectic change of coordinates depending on a
small parameter. This map is the general solution of a
new Hamiltonian system called G [17].

Beforehand, the Hamiltonian is expanded in a series of
Legendre polynomials up to a fixed
order as expressed in Eq. 2 :
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The canonical transformation has been performed by

using Lie algebraic operators, dealing with

homogeneous polynomials.

EI:H+[HG}+;—H1LLGLG]+5H[H,G},GLG}JF...

3)

The main algorithm, based on a recursive scheme,
compute the monomials of H in the new coordinates and
kill those which are related to the hyperbolic directions

[6].

Once the reduction have been performed, selecting a
level of energy and a 2D Poincaré section, we choose a
point on this section and use it as initial conditions for a
numerical integration of the restricted Hamiltonian.

At each time the trajectories crosses the Poincare
section z=0, an initial condition is taken. After a certain
time of computation, we obtained a 2D representation of
all the dynamics in the centre manifold. This
representation is known as a 'Poincare map'. Each point
on this map stand for an intersection of an orbit when it
crosses the section.

The boundary of this map is the Lyapunov horizontal
periodic orbit. If the energy is sufficient, one can see
two fixed point by the side of the map. They are related
to the Halo orbit.

. Libration Point

X Vertical Lyapunov
Horizontal

0 Lyapunov

Halo orbit

Energy =0.5
Figure 2 : Poincare map : representation of the whole
family of orbits near L1

The PRIAM toolbox open the possibility of generating
orbits starting from a point in the Poincare map.

The energy parameter and the coordinates inside this
map can be connected with excursions and phases
parameters. Therefore we are able to make a correlation
between this method and the Lindstedt-Poincare
procedure, which have different input parameters.

One of the advantage of the reduction of central
manifold is that it provides a global and intuitive view
of the dynamics at fixed energy.

3. PERTURBATIONS ANALYSIS AND REAL
EPHEMERIDES MODEL

The PRIAM Toolbox was designed initially in order to
study the dynamics of the CR3BP. Nevertheless, due to
the high sensitivity to the initial conditions and exterior
environment, the development of perturbing model
turned out to be essential.

This model takes account :

* the gravitational attraction of the Moon and
other planets of the solar system (Jupiter,
Venus, Saturn...)

* The contribution of the radiation pressure of
the Sun. The force depends on the rs vector
(position with respect to the Sun) and alpha,
which is a constant related to the mass and the
section of the satellite.

Y, =«
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*  The effect of the non-circularity of the second
body orbit (like Earth). It takes into account the
variation of the distance between the two
primaries.

If the perturbations remain small compared to the
potentials of the two primaries, the libration points are
still defined.

However the non-uniform movement of the secondary



body around the primary induces a displacement of the
libration point with respect to the secondary body.
The computation of the perturbing forces, including the
inertial acceleration, has been carried out by taking into
account the real ephemeris of the different bodies.

These ephemeris are interpolated from a JPL DE405
model available on the web site interface HORIZONS.

The basic ephemeris are expressed in the ecliptic system
of reference, centred on Sun. But the equations of
motions have been developed in the synodical frame of
reference with origin at the libration point. Therefore,

the tool attend to transfer the initial data to this frame of
reference.

Simulations highlight that perturbations disturb periodic
orbits and those with small excursions. The most
important effect is clearly due to the real movement of
the secondary body like Earth which have an
eccentricity of 0.016.
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Figure 3 : Quasi around L1 computed and refine in the
perturbed model with parallel shooting method.

4. STATION KEEPING

Station keeping strategies allows spacecraft to keep
close to nominal orbits, defined by the mission analysis.
Due to the initial  injection error or to the use of a
rough model of forces, the spacecraft can be derived

from its nominal path.

To estimate the cost of a mission near libration points,

two different method of on/off control have been used
and tested during integration.

The first one is the Floquet mode approach, developed
by Simé [10]. It consists in eradicating the unstable
component of the error between the nominal orbit and
the current path. It is based on the computation of
Floquet vectors and projection factors of the orbit.

Actually the unstable component increases in an
exponential way by a factor Al in one period (Al is the
dominant eigenvalue of the monodromy matrix).
Generally a manoeuvre is done when this component
has increased by a factor e, which correspond to a one-
month control.

Figure 4 : Normalised unstable component of the error
during 7 years around a quasi-halo orbit (L1 of the Sun
Earth system)

The second one, developed by Howell and Pernika [11],
is the Target Points method: a set of points are chosen
on the nominal orbit and each of them are compared
with a predicted state computed from the previous one.
By this way, the satellite tends to keep close to the
nominal path. It boils down to cancel the error vector,
whereas the Floquet modes approach was designed to
cancel the unstable component of this error.

Correction manoeuvres are calculated linearly by
propagating the transition matrix state @ along the
nominal orbit. 6r; and &v; stand for the position and
velocity error at the time of the manoeuvre and ti+1 is
the time of the next impulse :

or.
p(t,t.,,) ol=0 O

6n+6V



The frequency of the control depends on the stability
and the accuracy of the nominal orbit. But it has to be
more than eight manoeuvres per year.

Figure 5 : Module of the error vector between nominal
and current path. Same orbit as Figure 2.

Finally, we include the effect of a tracking error in the
execution of the manoeuvres and also in the state
restitution. Typically we use error of 10 km for position
and 10 cm/s for velocities. These errors allows to take
account the sensors and actuators drawbacks.

The following table sum up the results obtained for the
specified tracking error and an error of 10 km in the
initial conditions (quasi halo around L1):

Floquet Taget
modes points
Cost per year (m/s) 5,1 11,2
Mean error (with the nominal 0.02 0.005
orbit)
Number of manoeuvres per year 9 10

Table 1 : Outputs from the station-keeping procedure

In the case of Target Points method, the cost is higher
but the error between the nominal and the current path
is reduced.

5. TRANSFERS

5.1. Stable and unstable manifolds

The set of all points in phase space which are attracted
to an invariant orbit in positive time admit a manifolds

structure and called stable manifold (unstable manifold
for negative time). This manifolds are also invariant
under the Hamiltonian flow (see [14].

PRIAM toolbox is able to compute stable and unstable
manifold associated to a nominal orbit. Theses
manifolds are very useful since they provide optimal
path to reach or leave an orbit around a libration point.

The eigenvectors of the variational matrix after one
revolution give the directions of the tangent spaces to
theses invariant manifolds at a fixed point.

From a selected point Xo on the orbit, the linear
approximation of the manifold is given by :

Xm=Xo+eVw (6)

where € is a small distance (about 200 km) and Vw is
the scaled eigenvector (stable or unstable).

In order to obtain the entire manifold, we propagate the
initial conditions Xm backwards in time if we want to
compute the stable manifold and forward in time if we
deal with unstable one.

Figure 6 : Stable and unstable manifolds around halo
orbits of L1 and L2.

5.2. Transfer from Earth to libration points

The way to obtain a low-energy transfer from the Earth
to an halo or quasi-halo orbit is to insert the spacecraft
into the stable manifold of this orbit (Manifold Orbit
Insertion strategy).

Then theoretically, no manoeuvres have to be done at



the time of arrival near the libration point.

We suggest a transfer with two manoeuvres, one to
leave a circular parking orbit near the Earth (of radius
rp) (AV,) and the other to inject the spacecraft into the
stable manifold at a radius ri (AV,).

By a way of optimisation, we are able to compute the
best connection orbit between the times of the two
manoeuvres. This orbit is determined with its Keplerian
parameters by minimizing the total fuel consumption
and satisfying the boundary conditions.

We proceeds as follow :

*  First we obtain the trajectory of the manifold
that minimize the distance from the Earth.

*  We select the point of radius ri in the manifold
path.

e We look for an optimal conic orbit whose
perigee is rp and which pass through the
selected point of the manifold. Two parameters
as Argument of perigee and Right Ascension
are previously sorted and then covered. We
obtain finally the remainder parameters,
especially the corresponding inclination.

the first
manoeuvre is deduced. The second one is also

e From the initial parking orbit
evaluated.

* By mean of numerical integration, we refine
the second manoeuvre in order to be exactly at
the selected point on the manifold.

If the last manoeuvre is done far away from the Earth
(large value of ri) , the total cost is reduced but the
injection error might increase, due to the fact that a long
time separate the two velocity increments.

For the simulations, a suitable value of ri has been taken
between 30000 and 60000 km.

An example of transfer is given as follow :

Figure 7 : Transfer to the L1 from the Earth

Departure inclination (with respect to the 0.1040
ecliptic frame)
Departure radius (km) 7200
Semi-major axis of the connection orbit (km) 139600
Eccentricity of the connection orbit 0.9484
Injection Manoeuvre AV, (m/s) 2957
Insertion Manoeuvre AV, (m/s) 400
Radius ri of AV, (km) 58880
Time between the two manoeuvres 3h45
Total time of the transfer 3,4 mts

Table 2 : Example of transfer between Earth and L1
from a 800 km orbit parking

5.3. Transfers between Lissajous orbits of the
same libration point

A methodology for the transfer between two Lissajous
orbits around the same libration point, making use the
linear geometry of the phase space, has been drown
from the work of University of Catalunya [4].

These kind of transfers were first motivated by the
missions Planck and Gaia of the ESA Space Program,
which planned to change their orbit amplitudes.

PRIAM toolbox has been designed in order to deal with
these new requirements. It is able to compute the
manoeuvres to change the in plane or out-plane



amplitudes of a Lissajous orbit. It also handles with
change of orbit phases. This last case will be very useful
for the design of eclipse avoidance strategies.

The approach is to insert the satellite into the stable
manifold of the final Lissajous orbit starting at a point
of the initial orbit. The transfer is not possible at any
time, especially in the case of amplitude reduction.
Therefore we have to compute the possible and optimal
time of the manoeuvres.

For instance, the Hershel mission of the ESA Space
Program have dropped its x-y excursion by a factor 2
(see [3]). The velocity increment is about 50 m/s.

5.4. Eclipse avoidance

A new mission requirement is to avoid some exclusion
zones: for orbits near L1, the exclusion zone is three
degrees about the solar disk since the radiation of the
Sun in this area can disturb communications with Earth.
For orbits near L2, the area to be avoided is the Earth
half-shadow.

Halo orbits are attractive because satellites never cross
exclusion zones, but the major drawback is that the y
excursions is too large.

If Lissajous orbits are used for long missions, the
spacecraft will enter the exclusions zone. The time
before the first entrance depends on the initial phases of
the orbit

Therefore a LOEWE strategy (Lissajous Orbit Ever
Without Eclipse), studied by [4], has been implemented
to deal with these exclusions zones. The idea is to find
the best initial phases in such a way that the spacecraft
remain the maximum time outside the exclusion zones.

For instance this time is about 4 to 6 years around the
L1 of Sun-Earth system. If the mission is longer than
the maximum possible time, an optimal manoeuvre is
done to change the phase of the orbit.

The exclusions zone appears in the plan yz as a disk of
radius y’+z° < R?

Radius R is about 90000 km for L1 and 14000 km for
L2.

If we denote by @ and W the phases of the orbit at
epoch t, of the in-plane component and the out-plane
one respectively, the border of the disk will depends
linearly of the excursions Ax and Az such that :

k,A%sin(p)+A’cos(¥)=R* (7)

This equation define an smooth curve C isotopic to a
point in the quotient space T°=R* (mR x TR). The
phases variables ({(®,W) € R’}, p) are considered as
the covering space of torus T> where p is the canonical
projection.

When a Lissajous trajectory, following a straight line of
constant speed in, intersect one of the curve belonging
to p'(C), it means that the spacecraft is entering a
exclusion zone.

We can prove that if we choose initial phases that are
tangential to one of these curve, the time without
collisions will be longer.

For long term missions, the strategy consists in doing a
jump at each collision to be tangential to the
corresponding border curve.
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Figure 7 : Phases tangent to one motif of
p'(C) to avoid exclusions zones.

The cost of the LOEWE strategy is less than 50 m/s per
year and decrease as amplitudes become larger.

5.5. Heteroclinic connections

Heteroclinic ~ connections consist in matching the
unstable manifold of an orbit around L1 (or L2) with the
stable manifold of an orbit of L2 (or L1). This is a way
to join to libration points of the same system.



The chosen cross-section is the plan orthogonal to the
x-axis that split the secondary body (Earth).

Since a level of energy has been fixed, the toolbox scan
several orbits and search for the intersection of there
manifolds in the plane (y,ydot) then (z,zdot). When a
suitable matching has been founded, we propagate the
manifolds from the intersection and obtain one

heteroclinic trajectory.

These connections could be very useful to realise
interplanetary missions since they provide a zero-cost
transfer between two distant areas of the solar system.
The same approach could be used to link two planets
looking for the intersection of two equilibrium points of
different system - but the distance are so far that the
manifolds do not coincide. However a technical
procedure has been carried out by [18] to realise these
kind of transfer. This method combines patched conic

transfer and invariant manifolds trajectories.
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