Skip to Main content Skip to Navigation
Journal articles

Reflected BSDEs when the obstacle is not right-continuous and optimal stopping

Abstract : In the first part of the paper, we study reflected backward stochastic differential equations (RBSDEs) with lower obstacle which is assumed to be right upper-semicontinuous but not necessarily right-continuous. We prove existence and uniqueness of the solutions to such RBSDEs in appropriate Banach spaces. The result is established by using some tools from the general theory of processes such as Mertens decomposition of optional strong (but not necessarily right-continuous) supermartingales, some tools from optimal stopping theory, as well as an appropriate generalization of Itô's formula due to Gal'chouk and Lenglart. In the second part of the paper, we provide some links between the RBSDE studied in the first part and an optimal stopping problem in which the risk of a financial position $\xi$ is assessed by an $f$-conditional expectation $\mathcal{E}^f(\cdot)$ (where $f$ is a Lipschitz driver). We characterize the "value function" of the problem in terms of the solution to our RBSDE. Under an additional assumption of left upper-semicontinuity on $\xi$, we show the existence of an optimal stopping time. We also provide a generalization of Mertens decomposition to the case of strong $\mathcal{E}^f$-supermartingales.
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01141801
Contributor : Miryana Grigorova <>
Submitted on : Saturday, May 6, 2017 - 1:54:24 PM
Last modification on : Friday, March 27, 2020 - 3:30:26 AM
Document(s) archivé(s) le : Monday, August 7, 2017 - 12:19:32 PM

Files

RBSDE and optimal stopping FIN...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01141801, version 2
  • ARXIV : 1504.06094

Citation

Miryana Grigorova, Peter Imkeller, Elias Offen, Youssef Ouknine, Marie-Claire Quenez. Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2017. ⟨hal-01141801v2⟩

Share

Metrics

Record views

656

Files downloads

590