The splitting process in free probability theory

Kurusch Ebrahimi-Fard 1 Frédéric Patras 2
2 LJAD
JAD - Laboratoire Jean Alexandre Dieudonné
Abstract : Free cumulants were introduced by Speicher as a proper analog of classical cumulants in Voiculescu’s theory of free probability. The relation between free moments and free cumulants is usually described in terms of M ̈obius calculus over the lattice of non-crossing partitions. In this work we explore another approach to free cumulants and to their combinatorial study using a combinatorial Hopf algebra structure on the linear span of non-crossing partitions. The generating series of free moments is seen as a character on this Hopf algebra. It is characterized by solving a linear fixed point equation that relates it to the generating series of free cumulants. These phenomena are explained through a process similar to (though different from) the arborification process familiar in the theory of dynamical systems, and originating in Cayley’s work.
Type de document :
Article dans une revue
International Mathematics Research Notices, Oxford University Press (OUP), 2015, pp.rnv209. <10.1093/imrn/rnv209 >
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01141525
Contributeur : Patras Frédéric <>
Soumis le : lundi 13 avril 2015 - 11:26:10
Dernière modification le : mardi 22 mars 2016 - 09:43:56
Document(s) archivé(s) le : lundi 14 septembre 2015 - 07:32:34

Fichier

1502.02748.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Kurusch Ebrahimi-Fard, Frédéric Patras. The splitting process in free probability theory. International Mathematics Research Notices, Oxford University Press (OUP), 2015, pp.rnv209. <10.1093/imrn/rnv209 >. <hal-01141525>

Partager

Métriques

Consultations de
la notice

92

Téléchargements du document

75