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Abstract

We devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-di�usion equa-

tions that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators

(CDO), namely primal and dual discrete di�erential operators, a discrete contraction operator for advec-

tion, and a discrete Hodge operator for di�usion. Moreover, discrete boundary operators are devised to

weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs'

operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-

sup conditions is presented to incorporate divergence-free velocity �elds under some assumptions. Error

bounds and convergence rates for smooth solutions are derived, and numerical results are presented on

three-dimensional polyhedral meshes.

Keywords. Polyhedral meshes, compatible discretization, advection, di�usion, Peclet robustness, divergence-

free velocity

AMS Subject Classi�cation. 65N15, 65N12, 76Rxx

1 Introduction

The goal of this work is to approximate the scalar-valued functionp : 
 ! R solving the following advection-

di�usion problem:

�r� (� r p) + � �r p = s a.e. in 
 ; (1.1a)

p = pD a.e. on@
 ; (1.1b)

where 
 is a bounded polyhedral connected subset ofR3 with boundary @
 and outward unit normal

n , � a bounded, symmetric, uniformly positive-de�nite tensor-valued �eld in 
 , � a vector-valued �eld

in W 1;1 (
) , s 2 L 2(
) , and pD 2 H t (@
) , t > 1. We use boldface fonts for vector- and tensor-valued

quantities. In addition to the classical assumption on the sign ofr� � , we also include in our analysis an

extension to the case of divergence-free advection; see below. This extension is by no means straightforward

and is rarely addressed in the literature. We also brie�y discuss the (simpler) variants where the advection

term is written in divergence form and where there is a zero-order reactive term. Of particular interest is the
� Email : pircantin@gmail.com
yEmail : alexandre.ern@enpc.fr
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robustness of the approximation with respect to the local Péclet number measuring the relative magnitude

of advection and di�usion scaled by the local mesh size. Hence, we also study the pure advection problem

with � vanishing uniformly in (1.1a) and boundary condition (1.1b) modi�ed so as to prescribe the Dirichlet

condition only on the in�ow part of @
 .

The goal of the present work is to devise and analyze a lowest-order, vertex-based scheme for the

advection-di�usion problem (1.1) that is robust with respect to the Péclet number and that supports poly-

hedral meshes. The present scheme can be viewed as a polyhedral extension of Finite Element/Finite Volume

(FE/FV) schemes which combine a �nite element treatment of the di�usive term and an upwind �nite vol-

ume treatment of the advection term. Such schemes were devised by Baba and Tabata [3] for triangular

meshes using dual cells around vertices as control volumes and by Ohmori and Ushijima [33] using diamond

cells around edges. Schemes of these type have been considered more recently by Angotet al. [1], Bochev

et al. [6], Hilhorst and Vohralík [27], see also references therein.

A salient feature of the present work is that we investigate a possible way of relaxing the usual assumption

on the advection velocity which in the present setting states that

(� 1) There exists a real number� > 0 such that �r� � � � � 1 a.e. in 
 .

This assumption, which is classically used to achieveL 2-stability by means of a coercivity argument, does not

allow one to consider divergence-free advection velocities (a simple example could be a constant advection

velocity). In the present work, we extend the analysis so as to cover the following situation:

(� 2) r� � = 0 , and there exist a real number � > 0 and a function � 2 W 1;1 (
) , such that � � 1 and

�r� (� � ) � � � 1 a.e. in 
 .

Assumption (� 2) has been considered in Devinatzet al. [18] and more recently in Ayuso and Marini [2] for

discontinuous Galerkin (dG) schemes and in Deuringet al. [17] for FE/FV schemes. Su�cient conditions

on the existence of the function� can be found in [2]; loosely speaking, assumption (� 2) is reasonable when

the velocity �eld � has no closed curves and no stationary point in
 . We also notice that the lower bound

� � 1 is not restrictive since the condition �r� (� � ) � � � 1 is invariant by adding a constant to � . Moreover,

the function � is non-dimensional, and the real number� in both ( � 1) and (� 2) represents a reference time.

The analysis with assumption (� 2) is more complex than with assumption (� 1) since stability now hinges

on an inf-sup condition, and the handling of di�usive terms is delicate.

We formulate our schemes using the Compatible Discrete Operator (CDO) framework studied in [9] for

di�usion problems and in [10] for the Stokes equations; see also Hiptmair for discrete Hodge operators [28, 29],

Tarhasaari et al. [36] and Bossavit [11, 12]. The motivation for using theCDO formalism is twofold: we can

hinge on previous work concerning di�usion, and the present schemes can serve as a starting point forCDO

schemes discretizing the convective term in the Navier�Stokes equations. The algebraic viewpoint ofCDO

schemes also sheds new light on the theory of Friedrichs' operators [21, 22, 23] in the context of (discrete)

contraction operators.

Our work contains two new contributions concerning CDO schemes. The �rst one is to devise a CDO

scheme for pure advection. Here, the key idea is to build a discrete contraction (or interior product)

operator that is the discrete counterpart of the map g 7! � �g. This way, the advective derivative � �r p

can be discretized by two distinct operators: a (well-known) topological discrete gradient operator mapping

degrees of freedom (DoFs) attached to vertices to DoFs attached to edges and the above discrete contraction

operator. Our second new contribution is to devise a CDO scheme for di�usion with weakly enforced
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boundary conditions. Indeed, as for stabilized �nite element and dG methods, weak enforcement of Dirichlet

conditions yields better results for under-resolved out�ow layers. To this purpose, we extend Nitsche's

boundary penalty method [32] to the CDO setting.

Let us put our work in perspective with existing schemes. For pure advection, we emphasize that

the CDO scheme is essentially an upwind �nite volume scheme on a dual mesh with vertex-based con-

trol volumes. Thus, the analysis uses similar techniques to those used for dG methods; see Johnson and

Pitkäranta [30], Brezzi et al. [14], and [20]. We also mention the following recent approaches to discretize

pure advection equations in the setting of di�erential geometry. Using the notion of extrusion de�ned by

Bossavit in [13], Heumann and Hiptmair [25] and Mullenet al. [31] proposed a discretization of interior prod-

ucts respectively on triangular and Cartesian meshes. Stabilized Galerkin methods for di�erential forms are

considered by Heumann and Hiptmair [26]. Palhaet al. [34] proposed another approach using the wedge

product as the adjoint operator of the interior product. Furthermore, for advection-di�usion, the present

CDO scheme is, to our knowledge, the �rst polyhedral discretization that is only vertex-based and that is

robust for dominant advection up to the limit of zero di�usion. Another framework for vertex-based poly-

hedral schemes for elliptic PDEs is that of Virtual Element Methods (VEM), see Beirão da Veigaet al. [4].

The di�erence is that we use explicit reconstruction functions (typically piecewise constant on subcells) and

we treat dominant advection, but our schemes are only of lowest-order. A �rst alternative to vertex-based

schemes are face-based schemes: an arbitrary-order, Péclet-robust, face-based scheme for advection-di�usion

has been recently analyzed by Di Pietroet al. [19] (see also Beirão da Veigaet al. [5] for the lowest-order

and di�usion-dominated case). Another alternative is to use a cell-based dG method, but the treatment

of di�usion requires introducing interior penalty parameters and using order k � 1 in cells leading to an

increase of DoFs.

The material is organized as follows. In Section 2, we introduce the main notation for the discrete

setting. In Section 3, we devise and analyzeCDO schemes for pure advection. In Section 4, we treat

advection-di�usion. Both sections 3 and 4 focus on assumption (� 1) for the velocity �eld for simplicity. In

Section 5, we revisit the analysis in the case of a divergence-free velocity �eld under assumption (� 2). In

Section 6, we present numerical results on three-dimensional polyhedral meshes. Finally, in Section 7, we

collect some proofs of technical results.

2 Discrete setting

In this section, we introduce the main ingredients underlying the discrete setting: mesh entities, degrees of

freedom, and discrete di�erential operators. For brevity, we focus on the ideas needed in what follows; a

broader presentation can be found in Bossavit [11, 12], Tonti [37] and, more recently, in Bonelle [7].

2.1 Mesh entities

The primal mesh of the three-dimensional domain
 is denoted M := f V; E; F; Cg, where V collects the

mesh vertices generically denotedv (0-cells), E collects edges denotede (1-cells), F collects faces denoted

f (2-cells), and C collects cells denotedc (3-cells). The meshM has the structure of a cellular complex in

the sense that the boundary of ak-cell in M, 1 � k � 3, can be decomposed into(k � 1)-cells in M, see

Christiansen [15]. All the primal mesh entities are oriented; in what follows, we only need to assign a �xed

orientation to any edge e 2 E by means of a unit tangent vector t e.
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CDO schemes are formulated by considering a dual meshfM := f eV; eE; eF; eCg such that there is a one-to-

one pairing between primal vertices and dual cells, primal edges and dual faces, and so on (see Figure 1).

In particular, ~f (e) denotes the dual face associated with the primal edgee 2 E, and ~c(v) the dual cell

associated with the primal vertex v 2 V. Dual mesh entities are oriented by the associated primal entity;

for instance, n ~f (e) is the unit normal vector to ~f (e) oriented by t e. There are many possibilities to build a

dual mesh. In this work, we assume that primal faces are planar and star-shaped w.r.t. their barycenter and

that primal cells are star-shaped w.r.t. their barycenter, and we consider the fully barycentric dual mesh

built using barycenters of all the primal mesh entities.
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Figure 1: Illustration of primal and dual mesh entities

In what follows, we assume that the meshesM and fM satisfy a regularity requirement stating that there

exists a common simplicial sub-complex ofM and fM (i.e., any k-simplex, 1 � k � 3, in this sub-complex

belongs to only onek-cell of M and of fM) such that all the k-simplices are shape-regular in the usual sense of

Ciarlet and any k-cell of M or fM contains a uniformly bounded number ofk-simplices. This mesh regularity

assumption is only needed to analyze the schemes, but not for implementation. For any primal or dual mesh

entity x, hx denotes the diameter ofx; moreover, when deriving convergence rates for smooth solutions,

we useh to denote the largest primal cell diameter. To alleviate the notation, we abbreviateA . B the

inequality A � cB with positive constant c whose value can change at each occurrence as long as it is

uniform with respect to the mesh-size and the model parameters.

Since boundary conditions are enforced weakly in this work, we consider mesh entities at the boundary.

The trace of the primal mesh M at the boundary @
 de�nes a cellular complexM@ := f V@; E@; F@g, where

V@ collects all the primal vertices lying at the boundary, and so on. Instead, the dual mesh has no entities

lying at the boundary, so that we introduce an additional set of dual faceseF@ = f ~f @(v) j v 2 V@g with
~f @(v) := @~c(v) \ @
 ; observe the one-to-one pairing betweenV@ and eF@.

2.2 Degrees of freedom

The degrees of freedom (DoFs) of discrete �elds are attached to mesh entities according to their physical

nature. For instance, the degrees of freedom of a discrete potential �eld (0-cochain) are attached to vertices,

either primal or dual ones. In this work, we focus on vertex-basedCDO schemes where these DoFs are

attached to primal vertices. For a discrete potential q, we use the notationq 2 V � R#(V) , where V is the

4
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vector space composed of DoFs attached to primal vertices and#(V) denotes the cardinality of the setV.

We write qv for the value of q attached to the vertex v 2 V. We also consider discrete circulation �elds (1-

cochains) inE (attached to primal edges), discrete �ux �elds (2-cochains) in eF (attached to dual faces), and

discrete density �elds (3-cochains) in eC (attached to dual cells). Owing to the one-to-one pairing between

primal and dual mesh entities, the vector spacesV and eC are isomorphic, as well as the vector spacesE and
eF . This leads us to de�ne the algebraic duality products

��
q; s

��
V~C =

P
v2 V qvs~c(v) for all (q; s) 2 V � eC, and

��
g; �

��
E~F =

P
e2 E ge� ~f (e) for all (g; � ) 2 E � eF .

To weakly enforce boundary conditions, we consider discrete �elds at the boundary, and with obvious

notation, we introduce the isomorphic vector spacesV@ and eF @, along with the algebraic duality product
��
q@; � @

��
(V ~F )@ =

P
v2 V @q@

v � @
~f @(v)

. Furthermore, for all q 2 V , we use the notation q@ 2 V @ with q@
v = qv for

all v 2 V@, i.e., q@ collects the DoFs ofq attached to boundary vertices.

To measure the approximation error resulting from CDO schemes and to discretize the source terms

and boundary conditions, we de�ne DoFs for continuous �elds. One possibility is to consider the classical de

Rham maps (we also consider other choices below) for smooth enough �elds. In what follows, we consider

the maps RV : SV(
) ! V , RE : SE(
) ! E , ReF : S eF (
) ! eF and ReC : SeC(
) ! eC such that

(RV(p)) v = p(v) for all v 2 V; (RE(g))e =
Z

e
t e�g de for all e 2 E;

(ReF (� )) ~f =
Z

~f
n ~f �� d ~f for all ~f 2 eF; (ReC(s)) ~c =

Z

~c
s d~c for all ~c 2 eC:

Possible choices for the domains of the de Rham maps areSV(
) = H s(
) with s > 3
2 , SE(
) = H s(
)

with s > 1 or SE(
) = f g 2 L p(
) ; r� g 2 L t (
) g with p > 2 and t > 1
2 , and S eF (
) = H s(
) with s > 1

2

or S eF (
) = f � 2 L p(
) ; r� � 2 L 2(
) g with p > 2 and SeC = L 1(
) . At the boundary, we use the maps

RV@ : SV@(@
) ! V @ and ReF @ : SeF @(@
) ! eF @ such that

(RV@(p)) v = p(v) for all v 2 V@; (ReF @(� )) ~f @ =
Z

~f @
� d ~f for all ~f @ 2 eF@;

with SV@(@
) = H t (@
) , t > 1, and SeF @(@
) = L 1(@
) .

2.3 Discrete di�erential operators

For all v 2 V and all e 2 E, we set �v;e = 1 if v is the extremity of e toward which t e points, �v;e = � 1

if v is the other extremity of e, and �v;e = 0 if v is not an extremity of e. The discrete gradient operator

GRAD : V ! E is de�ned such that (GRAD(q))e =
P

v2 V �v;eqv for all q 2 V ; note that the algebraic

representation of GRAD is a rectangular matrix with entries in f 0; � 1g. We also de�ne a discrete dual

divergence operator gDIV : eF ! eC such that ( gDIV(� )) ~c(v) =
P

~f (e)2 eF � ~f (e);~c(v) � ~f (e) for all � 2 eF , with

� ~f (e);~c(v) = � �v;e. Observe that � ~f (e);~c(v) = 1 (resp., -1) if ~f (e) is a face of the dual cell~c(v) such that n ~f (e)

points outward (resp., inward) ~c(v), and � ~f (e);~c(v) = 0 if ~f (e) is not a face of~c(v).

The following discrete adjunction property holds:

��
GRAD(q); �

��
E~F = �

��
q; gDIV(� )

��
V~C; 8(q; � ) 2 V � eF : (2.1)
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Other important properties are the two following commuting properties with the de Rham maps:

GRAD(RV(p)) = RE(r p); 8p 2 SV(
) ; (2.2a)
��
q; ReC(r� � )

��
V~C =

��
q; gDIV(ReF (� ))

��
V~C +

��
q@; ReF @(n �� )

��
(V ~F )@; 8� 2 S eF (
) ; 8q 2 V : (2.2b)

Remark 2.1 (Boundary term). We have chosen the above de�nition of gDIV since it is naturally associated

with the dual mesh where dual cells attached to boundary vertices are, by de�nition, not closed by dual

faces. An alternative choice is to modify the de�nition of gDIV to include dual boundary faces attached to

primal boundary vertices; by doing so, the boundary term appears in (2.1) and no longer in (2.2b).

2.4 Restriction to primal cells and boundary faces

It is convenient to localize discrete objects to a primal cell or to a boundary face. Letc 2 C. We de�ne

the local subsetsVc := f v 2 V j v 2 @cg (collecting the vertices of the cell c) and Ec := f e 2 E j e � @cg

(collecting the edges of the cellc). For all e 2 Ec, we de�ne ~f c(e) := ~f (e) \ c as the portion of the dual face
~f (e) inside c (see Figure 2, left panel), and we seteFc := f ~f c(e); e 2 Ecg. The vector spaceEc is composed

of the DoFs of discrete circulation �elds g 2 E attached to Ec; similarly for Vc and for eFc. The de Rham

maps REc and ReF c
are such that (REc (g))e =

R
e(t e�g) de for all e 2 Ec, and (ReF c

(� )) ~f =
R

~f (n ~f �� ) d ~f for all
~f 2 eFc. The local discrete gradient operatorGRADc : Vc ! E c is de�ned similarly to GRAD. We also de�ne

the following local norms:

jjj qjjj 2
2;Vc

:= h3
c

X

v2 V c

q2
v ; jjj gjjj 2

2;Ec
:= hc

X

e2 Ec

g2
e; (2.3)

for all q 2 Vc and all g 2 Ec. The global counterparts of these norms are assembled cell-wise asjjj qjjj 2
2;V :=

P
c2 C jjj qjjj 2

2;Vc
and jjj gjjj 2

2;E :=
P

c2 C jjj gjjj 2
2;Ec

, for all q 2 V and all g 2 E.

Let now f 2 F@ be a primal boundary face. We de�ne the local subsetV@
f = f v 2 V@j v 2 @fg, collecting

boundary vertices attached to f . For all v 2 V@
f , we de�ne ~f @

f (v) := ~f @(v) \ f as the portion of the dual

face ~f @(v) inside f (see Figure 2, right panel), and we seteF@
f := f ~f @

f (v); v 2 V@
f g. The vector spaceV@

f

is composed of the DoFs of discrete boundary potential �eldsq@ attached to V@
f ; similarly for eF @

f . The de

Rham map ReF @
f

is such that (ReF @
f

(� )) ~f @ =
R

~f @ � d ~f @ for all ~f @ 2 eF@
f .
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Figure 2: Illustration of local mesh entities for a cell (left) and a boundary face (right)
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3 Pure advection

This section is concerned with the derivation and analysis of vertex-basedCDO schemes for the pure

advection problem

� �r p = s a.e. in 
 ; (3.1a)

p = pD a.e. on@
 � ; (3.1b)

where � satis�es assumption (� 1), and @
 � := f x 2 @
 j � � �n (x) > 0g correspond to the in�ow ( @
 � )

and out�ow ( @
 + ) parts of the boundary (� can be tangential to some part of the boundary). In what

follows, we consider the positive and negative parts of� �n de�ned as (� �n ) � = 1
2(j� �n j � � �n ) � 0. We

introduce the graph spaceV� (
) = f q 2 L 2(
); � �r q 2 L 2(
) g; functions in the graph space have a trace

in L 2(j� �n j; @
) provided @
 � and @
 + are well separated (see [21]). In this context, a well-posed weak

formulation of problem (3.1) (see [21, 20]) is as follows: Findp 2 V� (
) such that

a� (p; q) =
Z



qs d
 +

Z

@

q� D d@
 ; (3.2)

for all q 2 V� (
) , with boundary �ux � D = ( � �n ) � pD , and with bilinear form

a� (p; q) =
Z



q(� �r p) d
 +

Z

@

q(� �n ) � p d@
 : (3.3)

Note that the boundary integrals vanish outside @
 � .

3.1 CDO scheme

Vertex-basedCDO schemes for pure advection are built using two discrete operators: a discrete contraction

operator IEeC
� : E ! eC, which is the discrete counterpart of the mapg 7! � �g, and a discrete boundary Hodge

operator H@
� : V@ ! eF @ (indexed by a surface function� 2 L 1 (@
) ) which is the discrete counterpart of

the map p 7! �p at the boundary. Using these operators, the following discrete problem can be formulated:

Find p 2 V such that

A� (p; q) =
��
q; s

��
V~C +

��
q@; � D

��
(V ~F )@; 8q 2 V ; (3.4)

with bilinear form such that

A� (p; q) :=
��
q; IEeC

� (GRAD(p))
��

V~C +
��
q@; H@

(� �n ) � (p@)
��

(V ~F )@; (3.5)

and where we have sets := ReC(s) and � D := ReF @(� D ). A synthetic presentation of the scheme (3.4) is the

so-called Tonti diagram shown in Figure 3.

In the spirit of Friedrichs operators [21, 23], we assume that there is a second discrete contraction operator

IV eF
� , which is the discrete counterpart of the mapp 7! � p, and such that the following two properties hold:

(I1 ) [Discrete Leibniz rule] The bilinear map on V � V such that

��
p; HV~C

�r� � (q)
��

V~C :=
��
p; IEeC

� (GRAD(q))
��

V~C �
��
p; gDIV(IV eF

� (q))
��

V~C �
��
p@; H@

� �n (q@)
��

(V ~F )@; (3.6)

is symmetric and satis�es
��
p; HV~C

�r� � (q)
��

V~C � (ess inf
 �r� � )jjj qjjj 2
2;V for all q 2 V , so that HV~C

�r� � is

monotone under assumption (� 1); see Remark 3.1 below for the boundary term in (3.6).

7
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p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

IE !C
! HE ÷F

"
H!

( ! án ) !

RHS

p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

IV !F
! HE ÷F

"
H!

( ! án ) !

RHS

p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

HE ÷F
"

#H!
" /h N!

"

RHS

p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

P!
V

HE ÷F
"

#H!
" /h N!

"

RHS

2

Figure 3: Tonti diagram of the vertex-basedCDO scheme for pure advection

(I2 ) [Discrete integration by parts] The bilinear map on V � V such that

hp; qi upw;� :=
��
p; IEeC

� (GRAD(q))
��

V~C +
��
q; gDIV(IV eF

� (p))
��

V~C; (3.7)

de�nes a semi-inner product.

Concerning the discrete boundary Hodge operator, we assume the following:

(H @) For all � 2 L 1 (@
) , H@
� is self-adjoint, and it depends linearly and monotonically on� (i.e., � � � 0a.e.

in @
 implies that H@
� � H@

� 0 in the sense of quadratic forms), so that whenever� � 0,
��
q@; H@

� (p@)
��

(V ~F )@

de�nes a semi-inner product onV@ � V @.

Remark 3.1 (Discrete contraction operator). Recalling from Remark 2.1 that the discrete dual divergence

operator gDIV does not involve faces on the boundary@
 , property ( I1 ) is the discrete counterpart of

the Leibniz formula �
R


 p(r� � )q d
 =
R


 p(� �r q) d
 �
R


 pr� (� q) d
 , where the two rightmost terms

in (3.6) form together the discrete counterpart of
R


 pr� (� q) d
 . Furthermore, property ( I2 ) is the discrete

counterpart of
R


 p(� �r q)d
 +
R


 qr� (� p)d
 �
R

@
 q(� �n )pd@
 = 0 . At the discrete level, this quantity

can be non-zero owing to the use of stabilization. We also notice that the symmetry of the maphp; qi upw;�

results from hp; qi upw;� � h q; pi upw;� =
��
p; HV~C

�r� � (q)
��

V~C �
��
q; HV~C

�r� � (p)
��

V~C = 0 where we have used the self-

adjointness of H@
� �n and of HV~C

�r� � . Finally, we observe that IEeC
� does not, in general, depend linearly on its

argument � owing to the use of stabilization.

Remark 3.2 (Conservative advection). A possible variant of (3.1) is to consider the conservative form of the

advective derivative. The PDE becomesr� (� p) = s in 
 , and a Dirichlet boundary condition can still be

enforced at the in�ow boundary. Assumption ( � 1) is then modi�ed as follows: There exists a real number

� > 0 such that r� � � � � 1 a.e. in 
 . The discrete bilinear form then becomes

A� (p; q) =
��
q; gDIV(IV eF

� (p))
��

V~C +
��
q@; H@

(� �n )+ (p@)
��

(V ~F )@: (3.8)

The design of the discrete contraction and boundary Hodge operators still hinges on (I1 )-( I2 ) and (H @).

Remark 3.3 (Reaction). Another possible variant is to include a zero-order reaction term in the PDE which

becomes� �r p + �p = s in 
 with Lipschitz reaction coe�cient � (the conservative form of the advective

derivative can also be considered). Then, the reaction-related bilinear formA� (p; q) =
P

v2 V � vpvqv is added

to the discrete problem, where� v denotes (for instance) the mean-value of� in ~c(v).

8
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3.2 Example: CDO scheme with upwinding

Let us give a concrete example for theCDO scheme (3.4). We introduce the notation

� e := ( ReF (� )) ~f (e) =
Z

~f (e)
� �n ~f (e) d ~f ; 8e 2 E: (3.9)

We also setEv := f e 2 E j v 2 eg for all v 2 V, and Ve := f v 2 V j v 2 eg for all e 2 E, and we use the

notation n ~f (e);~c(v) = � ~f (e);~c(v)n ~f (e) for the unit normal to ~f (e) pointing outward ~c(v). For all e 2 E and all

v 2 Ve, we �x a real number � ve 2 [� 1; 1] (the algebraic upwinding parameter) such that the following

holds: For all e 2 E,

(�1)
P

v2 V e
� ve = 0 , and setting � e := 1

2
P

v2 V e
� ~f (e);~c(v) � ve, � e� e � 0 holds.

(�2) There exists c� > 0, uniform with respect to the mesh and the model parameters, such that� e� e �

c� j� ej.

The reason to distinguish the properties� e� e � 0 in (�1) and � e� e � c� j� ej in (�2) is that the former

is satis�ed by the so-called centered scheme corresponding to� ve = 0 for all v 2 Ve, and the latter by an

upwind scheme. Classical upwinding corresponds to the choice� ve = sign( � ~f (e);~c(v) � e) (with sign function

sign(t) = � 1 if t 2 R< 0, sign(0) = 0, and sign(t) = 1 if t 2 R> 0), so that (�2) holds with c� = 1 . With

this choice, the solution delivered by theCDO scheme coincides with that of the upwind FV scheme on the

dual mesh.

The discrete contraction operator IEeC
� : E ! eC is de�ned such that, for all g 2 E,

(IEeC
� (g))

~c(v)
:=

X

e2 Ev

ge
1
2

(1 � � ve)� e; 8v 2 V; (3.10)

while the companion operator IV eF
� : V ! eF is de�ned such that, for all q 2 V ,

(IV eF
� (q)) ~f (e)

:=
X

v2 V e

qv
1
2

(1 + � ve)� e; 8e 2 E: (3.11)

Moreover, the discrete boundary Hodge operatorH@
� : V@ ! eF @ with � 2 L 1 (@
) is de�ned such that, for

all q@ 2 V @,

(H@
� (q@)) ~f @(v) := q@

v

Z

~f @(v)
� d ~f ; 8v 2 V@: (3.12)

Observe that H@
� is algebraically represented by a diagonal matrix.

Remark 3.4 (Upwinding design). There are several possible variations in the geometric quantities considered

for upwinding. Instead of considering the full dual face ~f (e) as in (3.9), one possibility is to consider the

average of the normal advection velocity on the dual sub-faces~f c(e), and to design the upwinding parameters

based on the sign of these quantities. In general, the smaller the underlying geometric objects, the larger

the dissipation introduced by upwinding. The advantage of considering the dual sub-faces~f c(e) is that

upwinding is then compatible with the assembly of the scheme on primal cells.

Lemma 3.1 (Stability, ( I1 )-( I2 )) . Let the discrete contraction and surface Hodge operators be given by(3.10)-

9
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(3.11)-(3.12). Assume (�1 ). Then, ( I1 )-( I2 ) hold with bilinear maps

��
p; HV~C

�r� � (q)
��

V~C =
X

v2 V

pvqv

Z

~c(v)
�r� � d~c; (3.13a)

hp; qi upw;� =
X

e2 E

[[p]]e[[q]]e� e� e; (3.13b)

so that HV~C
�r� � is algebraically represented by a diagonal matrix, and where[[q]]e =

P
v2 V e

� ~f (e);~c(v)qv is the

jump of q across the dual face~f (e) for all q 2 V .

Remark 3.5 (First-order di�usion) . Since [[q]]e = � (GRAD(q))e, the right-hand side of (3.13b) corresponds

to the jump penalty term considered in dG methods; for k = 0 , it can be interpreted as adding a �rst-order

viscosity term.

Proof. Proof of (3.13a). Let v 2 V and let p; q 2 V . Using (3.10)-(3.11), we infer that

��
p; IEeC

� (GRAD(q))
��

V~C =
X

v2 V

X

e2 Ev

X

v02 V e

pvqv0�v0;e
1
2

(1 � � ve)� e;

��
p; gDIV(IV eF

� (q))
��

V~C =
X

v2 V

X

e2 Ev

X

v02 V e

pvqv0� ~f (e);~c(v)
1
2

(1 + � v0e)� e:

Using �v;e = � � ~f (e);~c(v) , the de�nition of � e, and (�1 ) leads to

��
p; IEeC

� (GRAD(q))
��

V~C �
��
p; gDIV(IV eF

� (q))
��

V~C =
X

v2 V

pvqv
X

e2 Ev

�
Z

~f (e)
� �n ~f (e);~c(v) d ~f :

To conclude, we observe that ifv 2 V n V@,
P

e2 Ev

R
~f (e) � �n ~f (e);~c(v) d ~f =

R
@~c(v) � �n ~c(v) d@~c =

R
~c(v) r� � d~c

owing to the divergence theorem, while for the boundary vertices, we use the de�nition (3.12) of the discrete

boundary Hodge operator to infer that

X

v2 V @

pvqv
X

e2 Ev

Z

~f (e)
� �n ~f (e);~c(v) d ~f =

X

v2 V @

pvqv

Z

~c(v)
r� � d~c �

��
p@; H@

� �n (q@)
��

(V ~F )@:

Proof of (3.13b). Using (3.10)-(3.11), the de�nition of [[�]]e, and the adjunction property between GRADand
gDIV, we infer that

��
p; IEeC

� (GRAD(q))
��

V~C =
X

v2 V

X

e2 Ev

pv [[q]]e
1
2

(� ve � 1)� e;

��
q; gDIV(IV eF

� (p))
��

V~C =
X

e2 E

X

v2 V e

[[q]]epv
1
2

(1 + � ve)� e:

Exchanging the summations in the �rst line leads to

��
p; IEeC

� (GRAD(q))
��

V~C +
��
q; gDIV(IV eF

� (p))
��

V~C =
X

e2 E

X

v2 V e

[[q]]epv � ve� e:

Since
P

v2 V e
pv � ve = [[ p]]e� e owing to (�1) , we infer (3.13b).

10
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3.3 Analysis: coercivity, consistency, and error bound

We de�ne the following stability norm for all q 2 V :

jjj qjjj 2
a;V := � � 1jjj qjjj 2

2;V + jjj qjjj 2
upw;� + jjj qjjj 2

j� �n j ; (3.14)

where � > 0 results from assumption (� 1), jjj�jjj 2;V is de�ned in Section 2.4, and we can de�nejjj qjjj 2
upw;� :=

hq; qi upw;� from assumption (I2 ), and jjj qjjj 2
j� �n j :=

��
q@; H@

j � �n j(q
@)

��
(V ~F )@ from assumption (H @).

Lemma 3.2 (Coercivity and well-posedness). Under hypotheses (� 1), ( I1 )-( I2 ), and (H @), the following

holds:

%jjj qjjj 2
a;V � A� (q; q); 8q 2 V ; (3.15)

with %= 1
2 . Consequently,(3.4) is well-posed.

Proof. Let q 2 V . Since (I1 )-( I2 ) imply that

��
q; IEeC

� (GRAD(q))
��

V~C =
1
2

��
q; HV~C

�r� � (q)
��

V~C +
1
2

hq; qi upw;� +
1
2

��
q@; H@

� �n (q@)
��

(V ~F )@;

we infer that the quantity A� (q; q) can be rewritten as

A� (q; q) =
1
2

��
q; HV~C

�r� � (q)
��

V~C +
1
2

hq; qi upw;� +
1
2

��
q@; H@

� �n (q@)
��

(V ~F )@ +
��
q@; H@

(� �n ) � (q@)
��

(V ~F )@:

Owing to (H @), the last two terms on the right-hand side can be recombined to yield

A� (q; q) =
1
2

��
q; HV~C

�r� � (q)
��

V~C +
1
2

hq; qi upw;� +
1
2

jjj qjjj 2
j� �n j : (3.16)

Since (I1 ) and (� 1) imply
��
q; HV~C

�r� � (q)
��

V~C � � � 1jjj qjjj 2
2;V , (3.15) holds and (3.4) is well-posed.

We now turn to the consistency of the CDO scheme (3.4) using commutators in the spirit of Bossavit [12],

Hiptmair [28], and [9]. To write the consistency error, we consider the reduction mapbRV : L 1(
) ! V such

that (bRV(p)) v equals the mean-value ofp in the dual cell ~c(v), and the following three commutators:

bIV eF
� ; bRe(q) := ReF (� q) � IV eF

� (bRV(q)) ; (3.17a)

bHV~C
�r� � ; bRe(q) := ReC(( �r� � )q) � HV~C

�r� � (bRV(q)) ; (3.17b)

bH@
(� �n )+ ; bRe(q) := ReF @(( � �n )+ q) � H@

(� �n )+ (( bRV(q)) @); (3.17c)

for all q 2 H s(
) , s > 1
2 , so that q is in the domain of the mapsReF and ReF @.

Lemma 3.3 (Error bound) . Let p 2 V� (
) be the unique solution of(3.1) and let p be the unique solution

of (3.4). Assume p 2 H s(
) , s > 1
2 . Then, under the assumptions of Lemma 3.2, the following holds:

%jjj p � bRV(p)jjj a;V � sup
q2V ;jjj qjjj a;V =1

E� (p;q); (3.18)

with consistency error de�ned as follows:

E� (p;q) :=
��
q; bHV~C

�r� � ; bRe(p)
��

V~C �
��
GRAD(q); bIV eF

� ; bRe(p)
��

E~F +
��
q@; bH@

(� �n )+ ; bRe(p)
��

(V ~F )@: (3.19)

11
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Proof. Owing to Lemma 3.2, it su�ces to show that A� (p� bRV(p); q) = E� (p;q). In the context of Friedrichs'

systems, the derivation of the error bound hinges on integration by parts. In the CDO framework, we use

the continuous and discrete Leibniz formulas, as well as the properties of the discrete di�erential operators.

We observe that

A� (p; q) =
��
q; ReC(� �r p)

��
V~C +

��
q@; ReF @(( � �n ) � p)

��
(V ~F )@

=
��
q; ReC(r� (� p))

��
V~C +

��
q; ReC(� (r� � )p)

��
V~C +

��
q@; ReF @(( � �n ) � p)

��
(V ~F )@

=
��
q; gDIV(ReF (� p))

��
V~C +

��
q; ReC(� (r� � )p)

��
V~C +

��
q@; ReF @(( � �n )+ p)

��
(V ~F )@

= �
��
GRAD(q); ReF (� p)

��
E~F +

��
q; ReC(� (r� � )p)

��
V~C +

��
q@; ReF @(( � �n )+ p)

��
(V ~F )@;

where we have used the continuous Leibniz formula (recall thatp is in the graph space), the discrete

commuting property (2.2b), the fact that � �n = ( � �n )+ � (� �n ) � , and the discrete adjunction property (2.1).

Moreover, setting bp = bRV(p), we observe that

A� (bp; q) =
��
q; IEeC

� (GRAD(bp))
��

V~C +
��
q@; H@

(� �n ) � (bp@)
��

(V ~F )@

=
��
q; gDIV(IV eF

� (bp))
��

V~C +
��
q; HV~C

�r� � (bp)
��

V~C +
��
q@; H@

(� �n )+ (bp@)
��

(V ~F )@

= �
��
GRAD(q); IV eF

� (bp)
��

E~F +
��
q; HV~C

�r� � (bp)
��

V~C +
��
q@; H@

(� �n )+ (bp@)
��

(V ~F )@;

where we have used the discrete Leibniz formula, assumption (H @) (linearity) together with � �n = ( � �n )+ �

(� �n ) � , and the discrete adjunction property (2.1). The conclusion is straightforward.

Theorem 3.4 (Convergence rate). Assume (� 1). Let L � be the Lipschitz constant of� and assume that

L � . � � 1. Let the discrete contraction and surface Hodge operators be given by(3.10)-(3.11)-(3.12). Assume

(�1 )-( �2 ). Let p be the unique solution of (3.1) and let p be the unique solution of (3.4). Assume that

p 2 H 1(
) . Then, the following holds:

%jjj p � bRV(p)jjj a;V . (j� j
1
2
] + h

1
2 �

1
2 jr� � j] )h

1
2 jpjH 1 (
) ; (3.20)

with stability constant %de�ned in Lemma 3.2, j� j] := jj � jjL 1 (
) , and jr� � j] := jjr� � jjL 1 (
) .

Proof. We need to bound the three terms in the right-hand side of (3.19) for allq 2 V such that jjj qjjj a;V = 1 .

A direct calculation shows that

��
q; bHV~C

�r� � ; bRe(p)
��

V~C =
X

v2 V

qv

Z

~c(v)
(�r� � ) (p � (bRV(p)) v) d~c:

The de�nition of bRV together with the Poincaré inequality and the multiplicative trace inequality imply that

jjq � (bRV(q)) v jjL 2 (~c(v)) + h
1
2
~c(v) jjq � (bRV(q)) v jjL 2 (@~c(v)) . h~c(v) jqjH 1 (~c(v)) ; (3.21)

for all q 2 H 1(
) and all v 2 V. Hence, we infer that

j
��
q; bHV~C

�r� � ; bRe(p)
��

V~Cj . (� � 1
2 jjj qjjj 2;V)(h

1
2 �

1
2 jr� � j] )h

1
2 jpjH 1 (
) :

Turning to the second term in (3.19), a direct calculation using (�1 ), the fact that p is single-valued on

12
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~f (e), and recalling the de�nition of � e shows that

�
��
GRAD(q); bIV eF

� ; bRe(p)
��

E~F =
X

e2 E

[[q]]e
X

v2 V e

1
2

(1 + � �
ve)

Z

~f (e)
� �n ~f (e) (p � (bRV(p)) v) d ~f ; (3.22)

whence we infer using (3.21) and the fact thatj� vej � 1 that

j
��
GRAD(q); bIV eF

� ; bRe(p)
��

E~F j .

0

@
X

e2 E

[[q]]2e

Z

~f (e)
j� �n ~f (e) j d ~f

1

A

1
2

j� j
1
2
] h

1
2 jpjH 1 (
) :

Owing to the triangle inequality, Lemma 3.1, and (�2 ), we infer that

0

@
X

e2 E

[[q]]2e

Z

~f (e)
j� �n ~f (e) j d ~f

1

A

1
2

� c
� 1

2
� jjj qjjj upw;� +

0

@
X

e2 E

[[q]]2e

 Z

~f (e)
j� �n ~f (e) j d ~f � j � ej

! 1

A

1
2

:

Let c 2 Ce; the local dual face ~f c(e) consists of two triangles, say~f f;c (e), each touching one of the two faces

f of c sharing e. Set � f;c (e) :=
R

~f f;c (e) j� �n ~f f;c (e) j d ~f �
R

~f f;c (e) � �n ~f f;c (e) d ~f , so that

0 � � f;c (e) = 2
Z

~f f;c (e)
(� �n ~f f;c (e) )

� d ~f :

If (� �n ~f f;c (e) )
� takes positive values on ~f f;c (e), then 0 � � f;c (e) � 2j� ej; otherwise, � �n f f;c (e) vanishes at

some point in ~f f;c (e). Then, using the fact that � �n ~f f;c (e) is Lipschitz in ~f f;c (e) together with mesh regularity

leads to 0 � � f;c (e) . L � hej ~f f;c (e)j. Since
�
�
�
R

~f (e) (�)
�
�
� �

R
~f (e) (�), summing these bounds overc 2 Ce and the

facesf leads to

0 �
Z

~f (e)
j� �n ~f (e) j d ~f �

�
�
�
�
�

Z

~f (e)
� �n ~f (e) d ~f

�
�
�
�
�

�
X

f;c

� f;c (e) . j� ej + L � hej ~f (e)j:

Using the assumptionL � . � � 1, mesh regularity, and the de�nition of the discrete norm jjj�jjj 2;V leads to

0

@
X

e2 E

[[q]]2e

Z

~f (e)
j� �n ~f (e) j d ~f

1

A

1
2

. jjj qjjj upw;� + � � 1
2 jjj qjjj 2;V :

Finally, a direct calculation shows that

��
q@; bH@

(� �n )+ ; bRe(p)
��

(V ~F )@ =
X

v2 V @

qv

Z

~f @(v)
(� �n )+ (p � (bRV(p)) v) d ~f @;

so that j
��
q@; bH@

(� �n )+ ; bRe(p)
��

(V ~F )@j . jjj qjjj j � �n j j� j
1
2
] h

1
2 jpjH 1 (
) . This completes the proof.

Remark 3.6 (Localization). The error estimate (3.20) can be localized to dual mesh cells.

4 Advection-di�usion

This section addresses the derivation and analysis of vertex-basedCDO schemes for the advection-di�usion

problem (1.1). The di�usion tensor � takes symmetric, uniformly positive de�nite values. For simplicity,

13
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we assume that� is constant in each primal cellc 2 C with minimal and maximal eigenvalues � [;c and � ];c ,

respectively, and local anisotropy ratio � c = � ];c =� [;c � 1. The analysis can be extended to locally Lipschitz

di�usion tensors.

4.1 Preliminaries: boundary penalty for pure di�usion

In this section, we consider the pure-di�usion version of the model problem (1.1) with� � 0:

�r� (� r p) = s a.e. in 
 ; (4.1a)

p = pD a.e. on@
 : (4.1b)

Formally, the weak formulation is as follows: For all q 2 H 1(
) ,

Z



r q�� �r p d
 �

Z

@

q(n �� �r p) d@
 +

Z

@

�qp d@
 =

Z



qs d
 +

Z

@

�qpD d@
 ; (4.2)

with some boundary penalty parameter � . It is also possible to consider a symmetric bilinear form on the

left-hand side. Symmetry is an important property when invoking duality arguments for pure di�usion

problems; it is also a relevant property when inverting the linear system. It is less important in the presence

of advection.

4.1.1 CDO scheme

The vertex-basedCDO scheme with weakly enforced boundary conditions is formulated in terms of a discrete

Hodge operator HE~F
� : E ! eF , which is the discrete counterpart of the map g 7! � �g, and the discrete

boundary operators N@
� : E ! eF @ (normal �ux) and bH@

�=h : V@ ! eF @ (boundary penalty), which weakly

enforce boundary conditions à la Nitsche and which are the discrete counterparts of the mapsg 7! n �� �g

and p 7! (�=h )p at the boundary, respectively. The discrete problem consists in �ndingp 2 V such that

A� (p; q) =
��
q; s

��
V~C +

��
q@; � D

��
(V ~F )@; 8q 2 V ; (4.3)

with bilinear form such that

A� (p; q) :=
��
GRAD(q); HE~F

� GRAD(p)
��

E~F �
��
q@; N@

� GRAD(p)
��

(V ~F )@ + � 0
��
q@; bH@

�=h (p@)
��

(V ~F )@; (4.4)

where � 0 > 0 is a real number to be chosen large enough (see below),s = ReC(s), and � D = � 0
bH@

�=h (RV@(pD )) .

The bilinear form (4.3) extends that of [9] where the Dirichlet boundary condition was strongly enforced.

The discrete Hodge operatorHE~F
� is assembled cell-wise from local operatorsH(E~F )c

� : Ec ! eFc for all

c 2 C, so that
��
g1; HE~F

� (g2)
��

E~F =
X

c2 C

��
g1; H(E~F )c

� (g2)
��

(E~F )c
(4.5)

for all g1; g2 2 E. Similarly, the discrete normal �ux operator N@
� is assembled face-wise from local operators

N
@f
� : Ec ! eF @

f for all f 2 F@, where c = c(f ) is the primal cell containing the primal boundary face f , so

that
��
q@; N@

� (g)
��

(V ~F )@ =
X

f 2 F@

��
q@; N

@f
� (g)

��
(V ~F )@

f
; (4.6)

for all q@ 2 V @ and all g 2 E. Note that this implies that N@
� (g), for all g 2 E, only depends on the

14
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components of g attached to an edge of a cell having a boundary face. The discrete boundary penalty

operator bH@
�=h is such that, still with c = c(f ),

bH@
�=h (q@) ~f @(v)

:= q@
v

X

f 2 F@
v

j ~f @
f (v)j� ];c h� 1

c ; (4.7)

for all q@ 2 V @ and all v 2 V@, where F@
v := f f 2 F@j v 2 f g. Note that bH@

�=h is algebraically represented by

a diagonal matrix.

4.1.2 Example

Let us give a concrete example ofCDO scheme. We consider a reconstruction operatorLEc : Ec ! L 1 (c)

for all c 2 C. The discrete Hodge operator in each cellc 2 C is de�ned such that

��
g1; H(E~F )c

� (g2)
��

(E~F )c
=

Z

c
LEc (g1)�� �LEc (g2) dc; (4.8)

for all g1; g2 2 Ec, while the discrete normal �ux operator in each boundary facef 2 F@ is de�ned as follows

(with c = c(f ) the primal cell containing f ):

N
@f
� (g) ~f @

f (v) :=
Z

~f @
f (v)

n �� �LEc (g) d ~f ; (4.9)

for all v 2 V@
f and all g 2 Ec. The reconstruction operator has to satisfy some properties stated in Lemma 4.1

below. One possibility is to consider the reconstruction proposed by Codecasaet al. [16], see also [9, 8],

whereby LEc (g) is piecewise constant on each diamondd(e) \ c, e 2 Ec (see Figure 2, left panel).

4.1.3 Design conditions

More generally, the design conditions onH(E~F )c
� are as follows: For allc 2 C,

(H1 ) [Stability] H(E~F )c
� is self-adjoint and monotone, and there existscH > 0, uniform with respect to the

mesh and the model parameters, such that, for allg 2 Ec,

cH� [;c jjj gjjj 2
2;Ec

�
��
g; H(E~F )c

� (g)
��

(E~F )c
� c� 1

H � ];c jjj gjjj 2
2;Ec

: (4.10)

(H2 ) [P0-consistency]ReF c
(� �G) = H(E~F )c

� (REc (G)) for any constant �eld G in c.

The design conditions onN
@f
� are as follows: For allf 2 F@, with c = c(f ),

(N1 ) [Boundedness] There existscN, uniform with respect to the mesh and the model parameters, such

that, for all g 2 Ec,

X

v2 V @
f

j ~f @
f (v)j � 1

�
�
N

@f
� (g)

�
~f @
f (v)

� 2

� cN� ];c h� 1
];c

��
g; H(E~F )c

� (g)
��

(E~F )c
: (4.11)

(N2 ) [P0-consistency]ReF @
f

(n �� �G) = N
@f
� (REc (G)) for any constant �eld G in c.

Lemma 4.1 (Design conditions). Let the discrete Hodge and normal �ux operators be de�ned by(4.8)

and (4.9), respectively. Assume that the reconstruction operator is such that:
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(i) [Stability] LEc (g) is a piecewise-polynomial function inc, and there existscL > 0, uniform with respect

to the mesh-size, such thatcLjjj gjjj 2
2;Ec

� jj LEc (g)jj2
L 2 (c) � c� 1

L jjj gjjj 2
2;Ec

for all g 2 Ec.

(ii) [Partition of unity] LEc (REc (G)) = G for any constant �eld G in c.

(iii) [Dual consistency]
R

c LEc (g) dc =
P

e2Ec
(
R

~f c (e) n ~f c (e) d ~f )ge for all g 2 Ec.

Then, (H1 )-( H2 ) and (N1 )-( N2 ) hold.

Proof. For the proof of (H1 )-(H2 ), see [9, 8, 16]. To prove (N1 ), �x f 2 F@ and observe that

X

v2 V @
f

j ~f @
f (v)j � 1

�
�
N

@f
� (g)

�
~f @
f (v)

� 2

=
X

v2 V @
f

j ~f @
f (v)j � 1

 Z

~f @
f (v)

n �� �LEc (g) d ~f

! 2

�
X

v2 V @
f

� ];c jj � 1=2LEc (g)jj2
L 2 ( ~f @

f (v))

� ctr
X

v2 V @
f

� ];c h� 1
];c jj � 1=2LEc (g)jj2

L 2 (c)

= ctr #(V @
f )� ];c h� 1

];c

��
g; H(E~F )c

� (g)
��

(E~F )c
;

where we have used the Cauchy�Schwarz inequality followed by a discrete trace inequality withc = c(f )

(since � is constant and LEc (g) is a piecewise-polynomial) and the de�nition of the discrete Hodge operator.

This proves (N1 ) with cN = ctr #(V @
f ) (observing that the cardinal number #(V @

f ) is uniformly bounded

owing to mesh regularity). Finally, letting G be a constant �eld in c, (N2 ) follows from

N
@f
� (REc (G)) ~f @

f (v) =
Z

~f @
f (v)

n �� �LE(REc (G)) d ~f =
Z

~f @
f (v)

n �� �G d ~f = ( ReF @
f

(n �� �G)) ~f @
f (v) ;

for all v 2 V@
f owing to property (ii) of the reconstruction operator.

4.1.4 Analysis

This section collects the main results concerning the analysis of theCDO scheme with boundary penalty.

To facilitate the reading, the proofs are postponed to Section 7. We de�ne the following norms onE and

V@, respectively:

jjj gjjj 2
� :=

��
g; HE~F

� (g)
��

E~F ; jjj q@jjj 2
�=h =

��
q@; bH@

�=h (q@)
��

(V ~F )@: (4.12)

Observe that these norms can be localized asjjj gjjj 2
� =

P
c2 C jjj gcjjj 2

� ;c with jjj gcjjj 2
� ;c =

��
gc; H(E~F )c

� (gc)
��

(E~F )c
for all

gc 2 Ec, and as jjj q@jjj 2
�=h =

P
f 2 F@jjj q@

f jjj 2
�=h;f with jjj q@

f jjj 2
�=h;f = � ];c h� 1

c
P

v2 V @
f
j ~f @

f (v)j(q@
f;v )2 for all q@

f 2 V @
f .

The stability of the CDO scheme (4.3) is expressed in the following norm:

jjj qjjj 2
d;V := jjj GRAD(q)jjj 2

� + jjj q@jjj 2
�=h ; 8q 2 V : (4.13)

Lemma 4.2 (Coercivity and well-posedness). Assume (H1 ) and (N1 ). Then, provided � 0 � 1 + 1
2c2

N, the

following holds:

%jjj qjjj 2
d;V � A� (q; q); 8q 2 V ; (4.14)

with %= 1
2 . Consequently,(4.3) is well-posed.
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We now address the consistency of the scheme (4.3). We assume that the exact solutionp is in H s(
) ,

s > 3
2 (the regularity assumption can be localized to mesh cells), and we consider the (classical) de Rham

map RV . We de�ne the following two commutators:

bHE~F
� ; Re(r p) := ReF (� �r p) � HE~F

� (GRAD(RV(p))) ; (4.15a)

bN@
� ; Re(r p) := ReF @(n �� �r p) � N@

� (GRAD(RV(p))) : (4.15b)

Lemma 4.3 (Consistency). Let p be the unique solution of(4.1) and let p be the unique solution of(4.3).

Assumep 2 H s(
) , s > 3
2 . Then, under the assumptions of Lemma 4.2, the following holds:

%jjj p � RV(p)jjj d;V � sup
q2V ;jjj qjjj d;V =1

E� (p;q); (4.16)

with consistency error

E� (p;q) :=
��
GRAD(q); bHE~F

� ; Re(r p)
��

E~F �
��
q@; bN@

� ; Re(r p)
��

(V ~F )@: (4.17)

Theorem 4.4 (Convergence rate). Let p be the unique solution of(4.1) and let p be the unique solution of

(4.3). Assume (H1 )-( H2 ) and (N1 )-( N2 ). Assume p 2 H 2(
) . Then, the following holds:

jjj p � RV(p)jjj d;V .

0

@
X

c2 C

� c� ];c h2
c jpj2H 2 (c)

1

A

1
2

: (4.18)

4.2 CDO Scheme for advection-di�usion

Vertex-based CDO schemes for the advection-di�usion problem (1.1) hinge on the discrete bilinear form

A� ;� := A� + A� with A� de�ned by (3.5) and A� by (4.4). The discrete problem consists in �nding p 2 V

such that

A� ;� (p; q) =
��
q; s

��
V~C +

��
q@; � D

��
(V ~F )@; 8q 2 V ; (4.19)

with s = ReC(s) and � D = ReF @(( � �n ) � pD ) + � 0
bH@

�=h (RV@(pD )) . The Tonti diagram of the vertex-based

CDO scheme (4.19) is presented in Figure 4. Variants, such as using the conservative form of the advective

derivative or including a reactive term, can be considered as well; see Remarks 3.2 and 3.3.

p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

HE ÷F
!

#H!
" /h / H!

(" án ) ! IE !C
"

N!
!

RHS

p ! V g ! E

! ! !Fs ! !C

p! ! V!

!F !

GRAD

"DIV

HE ÷F
!

#H!
" /h / H!

(" án ) ! IV !F
"

N!
!

RHS

3

Figure 4: Tonti diagram of the vertex-based CDO scheme for advection-di�usion with weakly enforced
boundary conditions

We de�ne the stability norm on V as jjj qjjj 2
ad;V := jjj qjjj 2

a;V + jjj qjjj 2
d;V with advection-related stability norm

de�ned by (3.14) and di�usion-related stability norm de�ned by (4.13).
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Lemma 4.5 (Coercivity and well-posedness). Assume (� 1), ( I1 )-( I2 ), and (H @) for the advection-related

terms together with (H1 ) and (N1 ) for the di�usion-related terms. Then, provided � 0 � 1 + 1
2c2

N, the

following holds:

%jjj qjjj 2
ad;V � A� ;� (q; q); 8q 2 V ; (4.20)

with %= 1
2 . Consequently,(4.19) is well-posed.

Proof. Combine Lemma 3.2 with Lemma 4.2.

Lemma 4.6 (Error bound) . Let p be the unique solution of(1.1) and let p be the unique solution of(4.19).

Assumep 2 H s(
) , s > 3
2 . Then, under the assumptions of Lemma 4.5, the following holds:

%jjj p � RV(p)jjj ad;V � sup
q2V ;jjj qjjj ad;V =1

E� ;� (p;q); (4.21)

with consistency error E� ;� (p;q) = E� (p;q) + E� (p;q), with E� (p;q) de�ned by (3.19) with RV in lieu of bRV ,

and E� (p;q) de�ned by (4.17).

Proof. Combine Lemma 3.3 with Lemma 4.3 (note thatH 1(
) � V� (
) ).

4.3 Example: CDO scheme with Péclet-based upwinding

For all e 2 E, we de�ne the (algebraic) edge Péclet number asPee = � � 1
e jf (e)j � 1� ehe with � e = max c2 Ce � [;c ,

Ce = f c 2 C j e � @cg, and � e de�ned in Section 3.2. We then use (3.10)-(3.11) to de�ne the discrete

contraction operators IEeC
� and IV eF

� with Péclet-dependent upwinding parameter � ve = �( � ~f (e);~c(v)Pee), where

the function � : R ! R is such that

(�1 ) �( x) + �( � x) = 0 and �( x) � 0 for all x 2 R� 0.

(�2 ) There exists � > 0 such that �( x) � � for all x � 1 (the lower bound on x is arbitrary; changing its

value only changes the constants in the error bounds).

Note that ( �1 ) implies (�1 ) since � e� e = 1
2

� e j ~f (e)j
he

P
v2 V e

� ~f (e);~c(v)Pee�( � ~f (e);~c(v)Pee) � 0. Since (�1 ) holds,

Lemma 3.1 implies that (I1 )-( I2 ) hold; hence, stability and well-posedness hold owing to Lemma 4.5. An

example for the function � is the Sharfetter�Gummel map �( x) = coth
� x

2

�
� 2

x , see Rooset al. [35] for

further insight and examples. The function � is related to the function jAj introduced in [19] in the context

of high-order face-based discretizations by the relationjAj(x) = x�( x).

To write the error estimate, we introduce one last geometric objectd(e), for all e 2 E, which is the

so-called diamond arounde formed by the two pyramids of apex v 2 Ve and (non-planar) basis ~f (e), see

Figure 2 (left panel). Note that [ e2 Ed(e) = 
 .

Theorem 4.7 (Convergence rate). Assume (� 1). Let L � be the Lipschitz constant of� and assume that

L � . � � 1. Let the discrete contraction and surface Hodge operators be given by(3.10)-(3.11)-(3.12). For

the di�usion-related operators, assume (H1 )-( H2 ) and (N1 )-( N2 ). Let p be the unique solution of (1.1)
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and let p be the unique solution of(4.19). Assume p 2 H 2(
) . Then, the following holds:

%jjj p � RV(p)jjj ad;V .

0

@
X

c2 C

� c� ];c h2
c jpj2H 2 (c)

1

A

1
2

+

0

@
X

e2 E

(� jr� � j2L 1 (d(e)) he + j� �n j];e )he min(1; Pee)jpj2H 1+ (d(e))

1

A

1
2

; (4.22)

with j� �n j];e := jj � �n ~f (e) jjL 1 ( ~f (e)) and jpjH 1+ (d(e)) = jpjH 1 (d(e)) + hejpjH 2 (d(e)) .

Proof. The bound on the di�usion-related terms derived in Theorem 4.4 still holds. For the advection-

related terms, there are two adaptations from the proof of Theorem 3.4. The �rst one is that we consider

RV(p) in lieu of bRV(p) since we are now bounding the error(p� RV(p)) . The approximation property (3.21),

which is now applied in the diamonds around edges, is then replaced by

jjq � (RV(q)) v jjL 2 (d(e)) + h
1
2
e jjq � (RV(q)) v jjL 2 ( ~f (e)) . hejqjH 1+ (d(e)) ;

for all q 2 H 2(
) , all e 2 E, and all v 2 Ve. The second adaptation is related to the change in thejjj�jjj upw;�

semi-norm owing to the use of Péclet-based upwinding. We bound again the three terms in the right-hand

side of (3.19) for all q 2 V such that jjj qjjj ad;V = 1 . For the �rst term, we readily infer that

j
��
q; bHV~C

�r� � ; Re(p)
��

V~Cj . (� � 1
2 jjj qjjj 2;V)

0

@
X

e2 E

� jr� � j2L 1 (d(e)) h2
ejpj2H 1+ (d(e))

1

A

1
2

:

Consider now the second term. LetE> 1 := f e 2 E j jPeej > 1g and E� 1 := f e 2 E j jPeej � 1g. The

summation in the right-hand side of (3.22) is split as
P

e2 E> 1
(�) +

P
e2 E� 1

(�). Proceeding as in the proof of

Theorem 3.4, we infer that

X

e2 E> 1

(�) .

0

@
X

e2 E> 1

[[q]]2e

Z

~f (e)
j� �n ~f (e) j d ~f

1

A

1
2

0

@
X

e2 E> 1

j� �n j];ehejpj2H 1+ (d(e))

1

A

1
2

:

For all e 2 E> 1, property ( �2 ) implies that � e� e � � j� ej. Then, still proceeding as in the proof of

Theorem 3.4, we infer that

X

e2 E> 1

(�) .
�
jjj qjjj upw;� + � � 1

2 jjj qjjj 2;V

�
0

@
X

e2 E> 1

j� �n j];ehejpj2H 1+ (d(e))

1

A

1
2

:

Furthermore, we observe that

X

e2 E� 1

(�) .

0

@
X

e2 E� 1

[[q]]2ehe� e

1

A

1
2

0

@
X

e2 E� 1

h� 1
e � � 1

e j� �n j];e j� ejhejpj2H 1+ (d(e))

1

A

1
2

:

Owing to mesh regularity, the de�nition of � e, and (H1 ), we infer that the �rst factor in the right-hand side

is bounded by jjj GRAD(q)jjj � , while the second factor is bounded by
� P

e2 E j� �n j];ehePeejpj2H 1+ (d(e))

� 1
2 since
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� � 1
e j ~f (e)j � 1j� ejhe = jPeej � 1 and j ~f (e)j . h2

e. Collecting the bounds on
P

e2 E> 1
and

P
e2 E� 1

leads to

j
��
GRAD(q); bIV eF

� ; bRe(p)
��

E~F j . jjj qjjj ad;V

0

@
X

e2 E

j� �n j];ehe min(1; Pee)jpj2H 1+ (d(e))

1

A

1
2

:

Finally, the boundary term is bounded as before.

Remark 4.1 (Limit regimes). In the advection-dominant regime with jPeej � 1 for all e 2 E, the error

bound (4.22) behaves ash1=2 (see Theorem 3.4), while, in the di�usion-dominant regime with jPeej � he

for all e 2 E, it behaves ash (see Theorem 4.4). The case wherehe � Pee � 1 corresponds to transition

regimes and intermediate orders of convergence.

Remark 4.2 (Boundary term). It is also possible to modify the discrete boundary Hodge operator so as to

enforce the boundary condition using a Péclet-based upwinding; details are omitted for brevity.

5 Divergence-free advection

In this section, we extend the analysis to the case of a divergence-free velocity �eld� under assumption (� 2);

recall that this assumption provides a real number� > 0 and a function � 2 W 1;1 (
) such that � � 1 a.e.

in 
 . The advection-related stability norm jjj�jjj a;V is still de�ned by (3.14) (where now � results from (� 2)).

The only relevant change in the analysis is that stability (and well-posedness) is now achieved by means of

an inf-sup condition instead of a coercivity argument. Since consistency and boundedness hold in the same

form as before, inf-sup stability su�ces to establish the error upper bounds, so that the convergence rates

derived in Theorem 3.4 for pure advection and in Theorem 4.7 for advection-di�usion still hold. In what

follows, we consider the non-dimensional numbers! � = L 2
� j� j] h� and ! � = L 2

� � ] � , with L � the Lipschitz

constant of � , j� j] := jj � jjL 1 (
) , and � ] := max c2 C � ];c .

5.1 Pure advection

Along with ( I1 )-( I2 ), we introduce a third property for the discrete contraction operators:

(I3 ) [Multiplication by � ] There are c1; c2; c3, uniform with respect to the mesh-size and the functions�

and � , such that the following holds for all q 2 V :

jjj � qjjj 2
upw;� + jjj � qjjj 2

j� �n j � c1� 2
] (jjj qjjj 2

upw;� + jjj qjjj 2
j� �n j) + c2! � � � 1jjj qjjj 2

2;V ; (5.1a)

A� (q; � q) �
1
4

jjj qjjj 2
a;V � c3! � A� (q; q); (5.1b)

with � ] := jj � jjL 1 (
) and � q 2 V such that (� q)v := � (v)qv for all v 2 V.

Lemma 5.1 (Inf-sup stability) . Under hypotheses (� 2), ( I1 )-( I2 )-( I3 ), and (H @), the following holds:

%jjj qjjj a;V � sup
r2V

A� (q; r)
jjj rjjj a;V

; 8q 2 V ; (5.2)

with %= 1
4

�
max(� 2

] + c2! � ; c1� 2
] )

1
2 + c3! �

� � 1
.
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Proof. We take r = � q + c3! � q 2 V . Owing to the triangle inequality, (5.1a), and the obvious bound

jjj � qjjj 2;V � � ] jjj qjjj 2;V , we infer that

jjj rjjj a;V � jjj � qjjj a;V + c3! � jjj qjjj a;V �
�
max(� 2

] + c2! � ; c1� 2
] )

1
2 + c3! �

�
jjj qjjj a;V :

Moreover, owing to (5.1b), we infer that

A� (q; r) = A� (q; � q) + c3! � A� (q; q) �
1
4

jjj qjjj 2
a;V ;

whence we infer (5.2).

Remark 5.1 (Factor ! � ). An upper bound on ! � yields a lower bound on%. A simple upper bound is to

replaceh by a global length scale associated with
 (i.e., h can be replaced by a global length scale in (5.1a)

and (5.1b)). A sharper bound is ! � � L � j� j] � under the mild assumption L � h � 1 (meaning that h resolves

the scale of spatial variations of� ).

We now verify property ( I3 ) in the context of the CDO scheme with upwinding studied in Section 3.2.

Lemma 5.2 (( I3 ) with upwinding) . Assume (� 2) and (�1 ). Let the discrete contraction and surface Hodge

operators be given by(3.10)-(3.11)-(3.12). Then, ( I3 ) holds.

Proof. To prove property (5.1a), we observe that, for all q 2 V , since � e� e � 0 for all e 2 E,

jjj � qjjj 2
upw;� =

X

e2 E

[[� q]]2e� e� e � 2
X

e2 E

�
ff � gg2

e[[q]]2e + ff qgg2
e[[� ]]2e

�
� e� e;

where ff � gge = 1
2

P
v2 V e

� (v), [[� ]]e =
P

v2 V e
� ~f (e);~c(v) � (v), ff qgge = 1

2
P

v2 V e
qv , and [[q]]e is de�ned in

Lemma 3.1. Since2ff � gg2
e � 2� 2

] and [[� ]]2e � (L � he)2, we infer that

jjj � qjjj 2
upw;� � 2� 2

] jjj qjjj 2
upw;� + 2

X

e2 E

L 2
� h2

eff qgg2
e� e� e;

and we conclude using0 � � e� e � j � j] j ~f (e)j, ff qgg2
e � 1

2
P

v2 V e
q2

v , and mesh regularity. Since, owing

to (3.12), jjj � qjjj 2
j� �n j � � 2

] jjj qjjj 2
j� �n j , this completes the proof of (5.1a).

Proof of (5.1b). The idea of the proof consists of writingA� (q; � q) in the form A� � (q; q) plus a perturbation

which can be bounded by the variations of� . A straightforward computation proceeding as in the proof of

Lemma 3.1 shows thatA� (q; � q) = T1 + T2 + T3 with

T1 =
X

v2 V

X

e2 Ev

1
2

q2
v

Z

~f (e)
(� � � )�n ~f (e) d ~f +

X

e2 E

1
2

[[q]]2e� e� e� e +
X

v2 V @

q2
v

Z

~f @(v)
� (� �n ) � d ~f ;

T2 =
X

v2 V

X

e2 Ev

1
2

qvge

Z

~f (e)
(� (v) � � )� �n ~f (e) d ~f +

X

v2 V

X

e2 Ev

1
2

qvge(� e � � (v))� ve� e;

T3 =
X

v2 V @

q2
v

Z

~f @(v)
(� (v) � � )( � �n ) � d ~f ;

with g = GRAD(q) and � e the mean-value of � in e. Since � � 1, still proceeding as in the proof of

Lemma 3.1 and using now (� 2) leads to the bound T1 � 1
2 jjj qjjj 2

a;V . Furthermore, using Cauchy�Schwarz

inequalities, (�2 ), and mesh regularity, we obtain jT2j . ! � jjj qjjj upw;� (� � 1
2 jjj qjjj 2;V). Proceeding similarly leads
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to jT3j . ! � jjj qjjj j � �n j(�
� 1

2 jjj qjjj 2;V). SinceA� (q; q) � 1
2(jjj qjjj 2

upw;� + jjj qjjj 2
j� �n j) owing to (3.16), we infer that

jT2j + jT3j . ! � A� (q; q)
1
2 (� � 1

2 jjj qjjj 2;V);

and the conclusion follows using Young's inequality.

Remark 5.2 (Conservative advection). Using the conservative form of the advective derivative is also possible

under assumption (� 2). The above proofs are adapted by considering the function� 0 = 1 + k� kL 1 (
) � �

which is bounded by k� kL 1 (
) and satis�es � 0 � 1 and r� (� 0� ) � � � 1 a.e. in 
 .

5.2 Advection-di�usion

As in Section 4.3, we consider the Péclet-dependent upwinding parameters� ve = �( � ~f (e);~c(v)Pee) under

assumptions (�1 )-( �2 ). Recall that ( �1 ) implies (�1 ).

Lemma 5.3 (Inf-sup stability) . Assume (� 2). Let the discrete contraction and surface Hodge opera-

tors be given by(3.10)-(3.11)-(3.12) with Péclet-dependent upwinding parameters under assumption (�1 ).

Assume (H1 ) and (N1 ) for the di�usion-related terms. Then, provided � 0 � 1+2 c2
N(� ] + c2

4 )
7(1+ c4 ) with c4 :=

max(c3! � ; 2c5! 2
� ), c5 := (2 c� 1

H NV;E)
1
2 , NV;E being the maximum number of edges touching a mesh vertex,

the following holds:

%jjj qjjj ad;V � sup
r2V

A� ;� (q; r)
jjj rjjj ad;V

; 8q 2 V ; (5.3)

with %= 1
8(max(� 2

] + c2! � + 2c2
5! � ; c1� 2

] ; 2� 2
] )

1
2 + c4) � 1.

Proof. Set r := � q + c4q. Since (�1 ) holds, we infer from Lemma 5.2 that (I3 ) holds. Moreover, since

c4 � c3! � and A� (q; q) � 0, Lemma 5.1 implies that

A� (q; r) � A� (q; � q + c3! � q) �
1
4

jjj qjjj 2
a;V : (5.4)

Moreover, owing to (7.2) and to Lemma 5.4 below, we infer that

A� (q; r) � (1 + c4)jjj gjjj 2
� � cN(� ] + c4)jjj gjjj � jjj qjjj �=h � c5!

1
2
� jjj gjjj � � � 1

2 jjj qjjj 2;V + � 0(1 + c4)jjj qjjj 2
�=h ;

where we have setg = GRAD(q). Using Young's inequality for the third term on the right-hand side yields

A� (q; r) � jjj gjjj 2
� � cN(� ] + c4)jjj gjjj � jjj qjjj �=h + � 0(1 + c4)jjj qjjj 2

�=h �
1
8

� � 1jjj qjjj 2
2;V ;

sincec4 � 2c5! 2
� . Using the same quadratic identity as in Lemma 4.5, this time with 
 = 1

2cN(� ] + c4) and

� = � 0(1 + c4), and observing that the choice� 0 � 1+2 c2
N(� ] + c2

4 )
7(1+ c4 ) implies � � 1

7 + 8
7 
 2 so that � � 
 2

1+ � � 1
8 , we

infer that

A� (q; r) �
1
8

jjj qjjj 2
d;V �

1
8

� � 1jjj qjjj 2
2;V :

Combining this bound with (5.4) yields A� ;� (q; r) � 1
8 jjj qjjj 2

ad;V . We conclude usingjjj rjjj ad;V � jjj � qjjj ad;V +

c4jjj qjjj ad;V and jjj � qjjj ad;V � max(� 2
] + c2! � + 2c2

5! � ; c1� 2
] ; 2� 2

] )
1
2 jjj qjjj ad;V .

Remark 5.3 (� 0). The lower bound for � 0 obtained in Lemma 5.3 slightly di�ers, up to a numerical factor,

from that obtained in Lemma 4.2 for zero advection; the reason is that both proofs have not been optimized

regarding the lower bound in the quadratic identity.
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Lemma 5.4 (Multiplication by � ). Assume that (H1 ) and (N1 ) hold. The following holds for all q 2 V

with g = GRAD(q):

jjj � qjjj 2
d;V � 2� 2

] jjj qjjj 2
d;V + 2c2

5! � � � 1jjj qjjj 2
2;V ; (5.5a)

A� (q; � q) � jjj gjjj 2
� + � 0jjj q@jjj 2

�=h � cN� ] jjj gjjj � jjj q@jjj �=h � c5!
1
2
� jjj gjjj � (� � 1

2 jjj qjjj 2;V): (5.5b)

Proof. Proof of (5.5a). The de�nition of bH@
�=h implies that jjj � q@jjj 2

�=h =
��
� q@; bH@

�=h (� q@)
��

(V ~F )@ � � 2
] jjj q@jjj 2

�=h .

Furthermore, owing to the cell-wise assembly of the discrete Hodge operatorHE~F
� and using the triangle

inequality, we infer that

jjj GRAD(� q)jjj 2
� =

X

c2 C

��
GRADc(� q); H(E~F )c

� �GRADc(� q)
��

(E~F )c

=
X

c2 C

2� 2
c
��
GRADc(q); H(E~F )c

� �GRADc(q)
��

(E~F )c
+

X

c2 C

2� c(q)2

� 2� 2
] jjj GRAD(q)jjj 2

� +
X

c2 C

2� c(q)2;

where � c is the value of � at the barycenter of c and � c(q) := jjj GRADc(w)jjj � ;c and w := ( � � � c)q. The upper

bound in (H1 ), the de�nition of GRADc and that of the jjj�jjj 2;Ec -norm yield

� c(q)2 � c� 1
H � ];c hc

X

e2 Ec

0

@
X

v2 V e

�v;e(� (v) � � c)qv

1

A

2

� 2c� 1
H � ];c L 2

� h3
c

X

e2 Ec

X

v2 V e

q2
v � 2c� 1

H NV;E � ];c L 2
� jjj qjjj 2

2;Vc
:

Combining the above bounds leads to (5.5a).

Proof of (5.5b). Using (N1 ), (7.1), and � � 1, we infer that

A� (q; � q) =
��
GRAD(� q); HE~F

� �GRAD(q)
��

E~F �
��
(� q)@; N@

� �GRAD(q)
��

(V ~F )@ + � 0
��
(� q)@; bH@

�=h (q@)
��

(V ~F )@

�
��
GRAD(� q); HE~F

� �GRAD(q)
��

E~F � cNjjj GRAD(q)jjj � jjj (� q)@jjj �=h + � 0jjj q@jjj 2
�=h

�
��
GRAD(� q); HE~F

� �GRAD(q)
��

E~F � cN� ] jjj GRAD(q)jjj � jjj q@jjj �=h + � 0jjj q@jjj 2
�=h :

Moreover, owing to the cell-wise assembly of the discrete Hodge operatorHE~F
� and proceeding as above, we

infer that

��
GRAD(� q); HE~F

� �GRAD(q)
��

E~F =
X

c2 C

��
GRADc(� q); H(E~F )c

� �GRADc(q)
��

(E~F )c

� jjj GRAD(q)jjj 2
� +

X

c2 C

��
GRADc(w); H(E~F )c

� �GRADc(q)
��

(E~F )c

SinceH(E~F )c
� is self-adjoint and monotone, we infer that

j
��
GRADc(w); H(E~F )c

� �GRADc(q)
��

(E~F )c
j � � c(q)jjj GRADc(q)jjj � ;c;
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so that

��
GRAD(� q); HE~F

� �GRAD(q)
��

E~F � jjj GRAD(q)jjj 2
� �

0

@
X

c2 C

� c(q)2

1

A

1
2

jjj GRAD(q)jjj � :

Using the above bound on� c(q) yields (5.5b).

6 Numerical results

In this section, we investigate numericallyCDO advection-di�usion schemes on four families of successively-

re�ned, polyhedral meshes of the unit cube
 = (0 ; 1)3; see Figure 5 for an example of mesh within each

family. These mesh families have been proposed in the FVCA benchmark [24], see also [7].

Hexahedral (H)

EDF R&D Compatible Discrete Operator Schemes for Stokes Problem: Principles and First Results H-I83-2013-03326-EN

Version 1.0

M #V #E #F #C

H4 125 300 240 64

H8 729 1 944 1 728 512

H16 4 913 13 872 13 056 4 096

H32 35 937 104 544 101 376 32 768

Table 2: Features of Cartesian meshes

(a) H4 Mesh

(b) H8 Mesh

M #V #E #F #C

TU1 27 98 120 48

TU2 125 604 864 384

TU3 729 4 184 6 528 3 072

TU4 4 913 31 024 50 688 24 576

TU5 35 937 238 688 399 360 196 608

Table 3: Features of uniform tetrahedral meshes

(a) TU3 Mesh

(b) TU4 Mesh

M #V #E #F #C

T0 80 364 500 215

T1 488 2 792 4 308 2 003

T2 857 5 206 8 248 3 898

T3 1 601 10 037 16 148 7 711

T4 2 997 19 421 31 691 15 266

T5 5 692 37 998 62 787 30 480

T6 10 994 74 929 124 988 61 052

Table 4: Features of tetrahedral meshes

(c) T2 Mesh

(d) T3 Mesh

AccessibilitŽ : Restreinte Page 29 sur 54 © EDF SA 2013

Skewed-polyhedral (SkP)

EDF R&D Compatible Discrete Operator Schemes for Stokes Problem: Principles and First Results H-I83-2013-03326-EN

Version 1.0

M #V #E #F #C

PrT10 1 331 4 730 5 400 2 000

PrT20 9 261 34 860 41 600 16 000

PrT30 29 791 114 390 138 600 54 000

PrT40 68 921 267 320 326 400 128 000

Table 5: Features of prism meshes

(a) PrT10 Mesh

(b) PrT20 Mesh

M #V #E #F #C

PrG10 3 080 7 200 5 331 1 210

PrG20 20 160 48 600 37 261 8 820

PrG30 63 240 154 200 119 791 28 830

PrG40 144 320 354 000 276 921 67 240

Table 6: Features of prism meshes with polygonal basis

(a) PrG10 Mesh

(b) PrG20 Mesh

M #V #E #F #C

CB2 97 216 156 36

CB4 625 1 536 1 200 288

CB8 4 417 11 520 9 408 2 304

CB16 33 025 89 088 74 496 18 432

CB32 254 977 700 416 592 896 147 456

Table 7: Features of checkerboard meshes

(a) CB4 Mesh

(b) CB8 Mesh

AccessibilitŽ : Restreinte Page 30 sur 54 © EDF SA 2013

Checkerboard (CB) Kershaw (K)

Figure 5: Polyhedral meshes

The error with respect to the exact solution p is measured using the following two quantities:

Err 2;V :=
jjj p � RV(p)jjj 2;V

jjj RV(p)jjj 2;V
; Err ad;V :=

jjj p � RV(p)jjj ad;V

jjj RV(p)jjj ad;V
:

In our numerical tests, the integrals for the source term and the boundary data are computed using a

fourth-order quadrature on elementary sub-simplices of each polyhedral cell.

6.1 Anisotropic di�usion and variable advection velocity

We consider the conservative form of the scheme (4.19), where the bilinear formA� is given by (3.8). The

exact solution is p(x; y; z) = 1 + sin( �x ) sin
�
�

�
y + 1

2

��
sin

�
�

�
z + 1

3

��
, and the di�usive tensor � and the

velocity �eld � are equal to (in the canonical basis ofR3)

� =

0

B
B
@

1 0:5 0

0:5 1 0:5

0 0:5 1

1

C
C
A ; � =

0

B
B
@

y � 1=2

1=2 � x

z

1

C
C
A ;

so that the velocity �eld satis�es hypothesis ( � 1) for the conservative form (see Remark 3.2). We consider

the discrete contraction operator IV eF
� built using full upwinding as in Section 3.2 and Péclet-based upwinding

as in Section 4.3 using the Sharfetter�Gummel map.

Figure 6 presents the numerical results, which re�ect the theoretical analysis with convergence rates

between one and two. The use of Péclet-based upwinding leads to lower errors than full upwinding; the

improvement is more pronounced on the SkP mesh sequence than on the other sequences, and is observed

on the �ner meshes.
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H sequence SkP sequence

CB sequence K sequence

Figure 6: Test case 6.1: Convergence curves for the two error measures on the four mesh families using full
upwinding (dashed lines) or Péclet-based upwinding (solid lines); �rst- and second-order slopes are indicated.

6.2 Exponential boundary layer with constant advection velocity

The second test case investigates the behavior of theCDO scheme in the presence of an exponential boundary

layer resulting from small di�usion. We consider an isotropic di�usive tensor, i.e. � = � Id, and a constant

vector �eld � with components (2; 3; 0), so that assumption (� 2) is satis�ed. The exact solution is p(x; y; z) =

(x � e
2( x � 1)

� )(y2 � e
3( y � 1)

� ) and exhibits a boundary layer nearx = 1 and y = 1 when � tends to 0.

Figure 7 reports numerical results for � = 1 (solid lines) and � = 10 � 4 (dashed lines). Note that in

this second case, the considered meshes do not resolve the boundary layer. The transition between the two

convergence regimes as predicted by Theorem 4.7 is clearly visible. The present test case is also considered

by Da Veiga et al. [5] on the same SkP mesh sequence with a di�erent scheme, where similar convergence

rates are reported but with somewhat larger error values.

7 Analysis of CDO schemes for pure di�usion

7.1 Proof of Lemma 4.2

Property ( N1 ) implies that, for all (q@; g) 2 V @ � E ,

��
q@; N@

� (g)
��

(V ~F )@ =
X

f 2 F@

��
q@

f ; N
@f
� (gc)

��
(V ~F )@

f
=

X

f 2 F@

X

v2 V @
f

q@
f;v

�
N

@f
� (gc)

�
~f @(v)

� cN
X

f 2 F@

jjj q@
f jjj �=h;f jjj gcjjj � ;c � cNjjj q@jjj �=h jjj gjjj � ; (7.1)

where we have used the local assembly ofN@
� on the �rst line (with c = c(f )), the discrete Cauchy�Schwarz

inequalities for the summations
P

v2 V @
f

and
P

f 2 F@, and the fact that
P

f 2 F@jjj gcjjj 2
� ;c � jjj gjjj 2

� on the second
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H sequence SkP sequence

CB sequence K sequence

Figure 7: Test case 6.2: Convergence curves for the two error measures on the four mesh families using
Péclet-based upwinding for� = 1 (solid lines) and � = 10 � 4 (dashed lines); half-, �rst-, and second-order
slopes are indicated.

line. As a result, we infer that

A� (q; q) � jjj GRAD(q)jjj 2
� � cNjjj GRAD(q)jjj � jjj qjjj �=h + � 0jjj qjjj 2

�=h : (7.2)

To conclude, we use the quadratic inequalityx2 � 2
xy + �y 2 � � � 
 2

1+ � (x2 + y2) (valid for any real numbers

x; y; 
; � with � � 0) with 
 = 1
2cN and � = � 0 and observe that the choice� 0 � 1 + 1

2c2
N implies � � 1 + 2
 2

so that � � 
 2

1+ � � 1
2 . Finally, the well-posedness of (4.3) follows from (4.14).

7.2 Proof of Lemma 4.3

Owing to Lemma 4.2, it su�ces to show that A� (p � RV(p); q) = E� (p;q). To prove this, we observe that

��
q; s

��
V~C = �

��
q; ReC(r� (� r p))

��
V~C = �

��
q; gDIV(ReF (� r p))

��
V~C �

��
q@; ReF @(n �� �r p)

��
(V ~F )@;

owing to (2.2b), and we use (4.3) and (4.4) to conclude, as well asRV@(pD ) = ( RV(p)) @.

7.3 Proof of Theorem 4.4

Let T1; T2 be the two terms in the right-hand side of (4.17). Recall that GRAD(RV(p)) = RE(r p). The

term T1 has already been bounded in [9]; we present here a somewhat simpler proof avoiding the algebraic

identity on the inverse of the discrete Hodge operator. LetGc denote the mean-value ofr p in c. Owing to
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the local assembly (4.5) and to (H2 ), we infer that

T1 =
X

c2 C

��
GRADc(q); ReF c

(� �r p) � H(E~F )c
� (REc (r p)

��
(E~F )c

=
X

c2 C

��
GRADc(q); ReF c

(� �(r p � Gc))
��

(E~F )c
�

X

c2 C

��
GRADc(q); H(E~F )c

� (REc (r p � Gc))
��

(E~F )c
;

and we denote byT1;1; T1;2 the two terms in the right-hand side. The Cauchy�Schwarz inequality, mesh

regularity, and the lower bound in (H1 ) imply that

jT1;1j . jjj GRAD(q)jjj �

0

@
X

c2 C

X

e2 Ec

� c� ];c h� 1
c jjr p � Gcjj2

L 1 ( ~f c (e))

1

A

1
2

. jjj GRAD(q)jjj �

0

@
X

c2 C

� c� ];c h2
c jpj2H 2 (c)

1

A

1
2

:

Similarly, the Cauchy�Schwarz inequality for H(E~F )c
� (i.e.,

��
g1; H(E~F )c

� (g2)
��

(E~F )c
� jjj g1jjj � ;cjjj g2jjj � ;c for all g1; g2 2

Ec) and the upper bound in (H1 ) imply that

jT1;2j . jjj GRAD(q)jjj �

0

@
X

c2 C

X

e2 Ec

� ];c hcjjr p � Gcjj2
L 1 (e)

1

A

1
2

. jjj GRAD(q)jjj �

0

@
X

c2 C

� ];c h2
c jpj2H 2 (c)

1

A

1
2

:

Turning to T2, we use the local assembly (4.6) and (N2 ) to infer that, with c = c(f ),

T2 =
X

f 2 F@

��
q@

f ; ReF @
f

(n �� �r p) � N
@f
� (REc (r p))

��
(V ~F )@

f

=
X

f 2 F@

��
q@

f ; ReF @
f

(n �� �(r p � Gc))
��

(V ~F )@
f

�
X

f 2 F@

��
q@

f ; N
@f
� (REc (r p � Gc))

��
(V ~F )@

f
;

and we denote byT2;1 and T2;2 the two terms in the right-hand side. The Cauchy�Schwarz inequality implies

that

jT2;1j � jjj q@jjj �=h

0

B
@

X

f 2 F@

X

v2 V @
f

� ];c h� 1
c jjr p � Gcjj2

L 1 ( ~f @
f (v))

1

C
A

1
2

. jjj q@jjj �=h

0

@
X

f 2 F@

� ];c h2
c jpj2H 2 (c)

1

A

1
2

;

while using (N1 ) and proceeding as above, we infer a similar bound onT2;2. The proof is complete since

� c � 1 by de�nition.
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