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Abstract

We devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-di usion equa-
tions that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators
(CDO), namely primal and dual discrete di erential operators, a discrete contraction operator for advec-
tion, and a discrete Hodge operator for di usion. Moreover, discrete boundary operators are devised to
weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs'
operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-
sup conditions is presented to incorporate divergence-free velocity elds under some assumptions. Error
bounds and convergence rates for smooth solutions are derived, and numerical results are presented on
three-dimensional polyhedral meshes.

Keywords. Polyhedral meshes, compatible discretization, advection, di usion, Peclet robustness, divergence-
free velocity

AMS Subject Classi cation. 65N15, 656N12, 76Rxx

1 Introduction

The goal of this work is to approximate the scalar-valued functionp: ! R solving the following advection-
di usion problem:

r (rp+ rp=s ae.in ; (1.1a)
p=pp a.e. on@ ; (1.1b)

where is a bounded polyhedral connected subset oR® with boundary @ and outward unit normal

n, a bounded, symmetric, uniformly positive-de nite tensor-valued eld in , a vector-valued eld
inW?Y (), ,s2L%),andpp 2 H'(@) , t > 1. We use boldface fonts for vector- and tensor-valued
quantities. In addition to the classical assumption on the sign ofr , we also include in our analysis an
extension to the case of divergence-free advection; see below. This extension is by no means straightforward
and is rarely addressed in the literature. We also brie y discuss the (simpler) variants where the advection
term is written in divergence form and where there is a zero-order reactive term. Of particular interest is the
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robustness of the approximation with respect to the local Péclet number measuring the relative magnitude
of advection and di usion scaled by the local mesh size. Hence, we also study the pure advection problem
with  vanishing uniformly in (1.1a) and boundary condition (1.1b) modi ed so as to prescribe the Dirichlet
condition only on the in ow part of @ .

The goal of the present work is to devise and analyze a lowest-order, vertex-based scheme for the
advection-di usion problem (1.1) that is robust with respect to the Péclet number and that supports poly-
hedral meshes. The present scheme can be viewed as a polyhedral extension of Finite Element/Finite Volume
(FE/FV) schemes which combine a nite element treatment of the di usive term and an upwind nite vol-
ume treatment of the advection term. Such schemes were devised by Baba and Tabata [3] for triangular
meshes using dual cells around vertices as control volumes and by Ohmori and Ushijima [33] using diamond
cells around edges. Schemes of these type have been considered more recently by Arejadl. [1], Bochev
et al. [6], Hilhorst and Vohralik [27], see also references therein.

A salient feature of the present work is that we investigate a possible way of relaxing the usual assumption
on the advection velocity which in the present setting states that

( 1) There exists a real number > 0 such that r Lae.in

This assumption, which is classically used to achieve ?-stability by means of a coercivity argument, does not
allow one to consider divergence-free advection velocities (a simple example could be a constant advection
velocity). In the present work, we extend the analysis so as to cover the following situation:

(2)r = 0, and there exist a real number > 0 and a function 2 W%t () , such that 1 and
ro( ) lTae.in

Assumption ( 2) has been considered in Devinatzt al. [18] and more recently in Ayuso and Marini [2] for
discontinuous Galerkin (dG) schemes and in Deuringet al. [17] for FE/FV schemes. Su cient conditions
on the existence of the function can be found in [2]; loosely speaking, assumption (2) is reasonable when
the velocity eld  has no closed curves and no stationary point in . We also notice that the lower bound

1is not restrictive since the condition r () Lis invariant by adding a constant to . Moreover,
the function is non-dimensional, and the real number in both ( 1) and ( 2) represents a reference time.
The analysis with assumption ( 2) is more complex than with assumption ( 1) since stability now hinges
on an inf-sup condition, and the handling of di usive terms is delicate.

We formulate our schemes using the Compatible Discrete Operator (CDO) framework studied in [9] for
di usion problems and in [10] for the Stokes equations; see also Hiptmair for discrete Hodge operators [28, 29],
Tarhasaari et al. [36] and Bossavit [11, 12]. The motivation for using theCDO formalism is twofold: we can
hinge on previous work concerning di usion, and the present schemes can serve as a starting point f&DO
schemes discretizing the convective term in the Navier Stokes equations. The algebraic viewpoint d€DO
schemes also sheds new light on the theory of Friedrichs' operators [21, 22, 23] in the context of (discrete)
contraction operators.

Our work contains two new contributions concerning CDO schemes. The rst one is to devise a CDO
scheme for pure advection. Here, the key idea is to build a discrete contraction (or interior product)
operator that is the discrete counterpart of the mapg 7! g. This way, the advective derivative r p
can be discretized by two distinct operators: a (well-known) topological discrete gradient operator mapping
degrees of freedom (DoFs) attached to vertices to DoFs attached to edges and the above discrete contraction
operator. Our second new contribution is to devise a CDO scheme for di usion with weakly enforced
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boundary conditions. Indeed, as for stabilized nite element and dG methods, weak enforcement of Dirichlet
conditions yields better results for under-resolved out ow layers. To this purpose, we extend Nitsche's
boundary penalty method [32] to the CDO setting.

Let us put our work in perspective with existing schemes. For pure advection, we emphasize that
the CDO scheme is essentially an upwind nite volume scheme on a dual mesh with vertex-based con-
trol volumes. Thus, the analysis uses similar techniques to those used for dG methods; see Johnson and
Pitkaranta [30], Brezzi et al. [14], and [20]. We also mention the following recent approaches to discretize
pure advection equations in the setting of di erential geometry. Using the notion of extrusion de ned by
Bossavit in [13], Heumann and Hiptmair [25] and Mullenet al. [31] proposed a discretization of interior prod-
ucts respectively on triangular and Cartesian meshes. Stabilized Galerkin methods for di erential forms are
considered by Heumann and Hiptmair [26]. Palhaet al. [34] proposed another approach using the wedge
product as the adjoint operator of the interior product. Furthermore, for advection-di usion, the present
CDO scheme is, to our knowledge, the rst polyhedral discretization that is only vertex-based and that is
robust for dominant advection up to the limit of zero di usion. Another framework for vertex-based poly-
hedral schemes for elliptic PDEs is that of Virtual Element Methods (VEM), see Beirdo da Veigaet al. [4].
The di erence is that we use explicit reconstruction functions (typically piecewise constant on subcells) and
we treat dominant advection, but our schemes are only of lowest-order. A rst alternative to vertex-based
schemes are face-based schemes: an arbitrary-order, Péclet-robust, face-based scheme for advection-di usion
has been recently analyzed by Di Pietroet al. [19] (see also Beirdo da Veig&t al. [5] for the lowest-order
and di usion-dominated case). Another alternative is to use a cell-based dG method, but the treatment
of di usion requires introducing interior penalty parameters and using order k 1 in cells leading to an
increase of DoFs.

The material is organized as follows. In Section 2, we introduce the main notation for the discrete
setting. In Section 3, we devise and analyz&CDO schemes for pure advection. In Section 4, we treat
advection-di usion. Both sections 3 and 4 focus on assumption (1) for the velocity eld for simplicity. In
Section 5, we revisit the analysis in the case of a divergence-free velocity eld under assumption 2). In
Section 6, we present numerical results on three-dimensional polyhedral meshes. Finally, in Section 7, we
collect some proofs of technical results.

2 Discrete setting

In this section, we introduce the main ingredients underlying the discrete setting: mesh entities, degrees of
freedom, and discrete di erential operators. For brevity, we focus on the ideas needed in what follows; a
broader presentation can be found in Bossavit [11, 12], Tonti [37] and, more recently, in Bonelle [7].

2.1 Mesh entities

The primal mesh of the three-dimensional domain is denoted M := fV;E;F;Cg, where V collects the
mesh vertices generically denoteds (0-cells), E collects edges denotea (1-cells), F collects faces denoted
f (2-cells), and C collects cells denotedc (3-cells). The meshM has the structure of a cellular complex in
the sense that the boundary of ak-cell in M, 1k 3, can be decomposed intgqk 1)-cells in M, see
Christiansen [15]. All the primal mesh entities are oriented; in what follows, we only need to assign a xed
orientation to any edge e 2 E by means of a unit tangent vectorte.
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CDO schemes are formulated by considering a dual medd ;= 19 E: E: €g such that there is a one-to-
one pairing between primal vertices and dual cells, primal edges and dual faces, and so on (see Figure 1).
In particular, f{e) denotes the dual face associated with the primal edge 2 E, and ¢(v) the dual cell
associated with the primal vertex v 2 V. Dual mesh entities are oriented by the associated primal entity;
for instance, N e is the unit normal vector to f{e) oriented by t.. There are many possibilities to build a
dual mesh. In this work, we assume that primal faces are planar and star-shaped w.r.t. their barycenter and
that primal cells are star-shaped w.r.t. their barycenter, and we consider the fully barycentric dual mesh
built using barycenters of all the primal mesh entities.

\ |
; ¥ I
! 1
I
I
|
1 AT
e |
T
I
I
I
o, o
I
| Mte) | ;
I
! L
A | LT el
te ///—-;)’ 777777777777777 <
/\// \\\\\

Figure 1: lllustration of primal and dual mesh entities

In what follows, we assume that the meshed/ and M satisfy a regularity requirement stating that there
exists a common simplicial sub-complex oM and M (i.e., any k-simplex, 1 k3, in this sub-complex
belongs to only onek-cell of M and of M) such that all the k-simplices are shape-regular in the usual sense of
Ciarlet and any k-cell of M or M contains a uniformly bounded number ofk-simplices. This mesh regularity
assumption is only needed to analyze the schemes, but not for implementation. For any primal or dual mesh
entity x, hy denotes the diameter ofx; moreover, when deriving convergence rates for smooth solutions,
we useh to denote the largest primal cell diameter. To alleviate the notation, we abbreviate A . B the
inequality A cB with positive constant ¢ whose value can change at each occurrence as long as it is
uniform with respect to the mesh-size and the model parameters.

Since boundary conditions are enforced weakly in this work, we consider mesh entities at the boundary.
The trace of the primal meshM at the boundary @ de nes a cellular complexM@ ;= V@ E® F®, where
V@ collects all the primal vertices lying at the boundary, and so on. Instead, the dual mesh has no entities
lying at the boundary, so that we introduce an additional set of dual facesfF® = ff©v)jv 2 V& with
f@(v) ;= @v)\ @ ; observe the one-to-one pairing betweeiV® and FC.

2.2 Degrees of freedom

The degrees of freedom (DoFs) of discrete elds are attached to mesh entities according to their physical
nature. For instance, the degrees of freedom of a discrete potential eld (0-cochain) are attached to vertices,
either primal or dual ones. In this work, we focus on vertex-basedCDO schemes where these DoFs are
attached to primal vertices. For a discrete potential g, we use the notationq2V  R*M) | whereV is the
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vector space composed of DoFs attached to primal vertices an#(V) denotes the cardinality of the setV.

We write gy for the value of q attached to the vertex v 2 V. We also consider discrete circulation elds (1-

cochains) inE (attached to primal edges), discrete ux elds (2-cochains) in P (attached to dual faces), and

discrete density elds (3-cochains) in € (attached to dual cells). Owing to the one-to-one pairing between

primal and dual mesh entities, the vector spaced/ and € are isomor%hic, as well as the vector spacds and

. This Ieags us to de ne the algebraic duality products o;s .=,y QvSyy) for all (g;s) 2V € and
9 = el rgforal(g )2E P

To weakly enforce boundary conditions, we consider discrete elds at the boundary, and with obvious
notation, we introduce the isomorphic vector spacesv® and @, along with the algebraic duality product

qe @ T h P vaveQg? %(v). Furthermore, for all g 2 V, we use the notationg® 2 V@ with g9 = qy for
all v2 Ve i.e., q®collects the DoFs ofg attached to boundary vertices.

To measure the approximation error resulting from CDO schemes and to discretize the source terms
and boundary conditions, we de ne DoFs for continuous elds. One possibility is to consider the classical de
Rham maps (we also consider other choices below) for smooth enough elds. In what follows, we consider
the mapsRy :Sy() 'V ,Re:Se() 'E ,Re:Sg() ! FandRg:Sg() ! €such that

z

p(v) forall v2 V; (Re(9))e= tegde forall e2 E;
zZ VAl

ne df~ forall {72 F; (Re(S))e = sde for all e2 €:
- €

(Rv(P)v

(Re( D=

Possible choices for the domains of the de Rham maps a®,() = HS() with s> % SE() = HS3()
with s> 1or Sg()= fg2LP() ;r g2L'() gwith p>2andt> 3, andSg()= H?3() with s> 3
orSg()= f 2LP();r 2L3) gwith p>2and Sg= L'() . Atthe boundary, we use the maps
Rye:Sye(@ !V ©and Rgg: See(@ ! FF@such that
Z
(Rye(p))v = p(v) forall v2 Ve (Real )o= o df~ forall f®2 E®

with Sye(@ = HY@ ,t> 1, and Seo(@ = LY@ .

2.3 Discrete di erential operators

Forall v2 V and all e 2 E, we set e = 1 if v is the extremity of e toward which te points, ye = 1
if v is the other extremity of e, and e =0 if v is noItDan extremity of e. The discrete gradient operator
GRAD : V | E is dened such that (GRAD(Q))e = oy veOv for all g 2 V; note that the algebraic
representation of GRAD is a rectangular matrix with entries in f0; 1g. We also de ne a discrete dual
divergence operatorBIV : ! € such that (BIV( ))ey) = Hez® Meey) o) for all 2 P®, with
Henev) =  vier Observe that ..y =1 (resp., -1) if f{€) is a face of the dual celle(v) such that n,
points outward (resp., inward) &v), and e):e(v) = 0 if f{e) is not a face ofe(v).
The following discrete adjunction property holds:
GRAD(0); = qBIv()

EF

8(q; )2V FE: (2.1)

ve!
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Other important properties are the two following commuting properties with the de Rham maps:

GRADRv(p)) = Re(r p); 8p2 Sv() ; (2.2a)
GRe(r ) o= GBIV(Rg( ) o+ 9%Reeln ) v 8 2Sg();8q2V: (2.2b)

Remark 2.1 (Boundary term). We have chosen the above de nition ofBIV since it is naturally associated
with the dual mesh where dual cells attached to boundary vertices are, by de nition, not closed by dual
faces. An alternative choice is to modify the de nition of BIV to include dual boundary faces attached to
primal boundary vertices; by doing so, the boundary term appears in (2.1) and no longer in (2.2b).

2.4 Restriction to primal cells and boundary faces

It is convenient to localize discrete objects to a primal cell or to a boundary face. Letc 2 C. We de ne
the local subsetsV¢ := fv 2 V jv 2 @g (collecting the vertices of the cellc) and E. .= fe2 Eje @g
(collecting the edges of the celk). For all e 2 E¢, we de ne f¢(e) ;= f{e)\ c as the portion of the dual face
fe) inside c (see Figure 2, left panel), and we se€. := ffi(e); e 2 Ecg. The vector spacek. is composed
of the DoFs of discrete circulation elds g 2 E attached to E¢; similarly for V. and for F.. The de Rham
maps Rg, and R;ec are such that (Rg,(9))e = (te g)defor all e 2 E, and (Rpec( D= Hnq )dfforall
f~2 E.. The local discrete gradient operatorGRAD: : V. ! E . is de ned similarly to GRAD. We also de ne

the following local norms: ¥
3

X
jdisy, =hd o  idisg =hc &5 (2.3)
v2V¢ e2E.

1|‘Dor all g2 V¢ and all g 2 E.. The global counterparts of these norms are assembled cell-wise ggj g;v =
cwclligy, andjgide =  ocldide forall g2V andallg2E.

Let now f 2 F@be a primal boundary face. We de ne the local subseV¢ = fv 2 V@jv 2 @1, collecting
boundary vertices attached tof. For all v 2 V2, we de ne f2(v) := f®v)\ f as the portion of the dual
face f®(v) inside f (see Figure 2, right panel), and we setf® := ff{¥(v); v 2 VPg. The vector spaceVy
is composed of the DoFs of discrete boundary potential eldsq® attached to V&; similarly for 2. The de
Rham map R;ef@ is such that (Rref@( Nre= e df@forall @2 e

Figure 2: lllustration of local mesh entities for a cell (left) and a boundary face (right)



CDO schemes for advection-di usion P.Cantin and A.Ern

3 Pure advection

This section is concerned with the derivation and analysis of vertex-basedCDO schemes for the pure
advection problem

rp=s ae.in ; (3.1a)

p=pp ae. on@ ; (3.1b)

where satises assumption ( 1), and @ = fx2 @ | n(x) > 0g correspond to the inow (@ )
and outow (@ *) parts of the boundary ( can be tangential to some part of the boundary). In what
follows, we consider the positive and negative parts of n dened as( n) = 3(j nj n) 0. We

introduce the graph spaceV ()= fq2 L?(); r q2 L?() g; functions in the graph space have a trace
in L2(j nj;@ provided @ and @ * are well separated (see [21]). In this context, a well-posed weak
formulation of problem (3.1) (see [21, 20]) is as follows: Fin 2 V () such that

Z Z
a(p;g= gsd+ @qod@; (3.2)

forall g2 V () , with boundary ux p=( n) pp, and with bilinear form

Y4 Y4
aPa= q rpd+ @OI( n) pd@: (3.3)

Note that the boundary integrals vanish outside @

3.1 CDO scheme

Vertex-basedCDO schemes for pure advection are built using two discrete operators: a discrete contraction
operator I¥€: E | €, which is the discrete counterpart of the mapg 7! g, and a discrete boundary Hodge
operator H® : V@ ! @ (indexed by a surface function 2 L' (@) ) which is the discrete counterpart of
the map p 7! p at the boundary. Using these operators, the following discrete problem can be formulated:
Find p 2 V such that

APd= as .+ d% b me  802V; (3.4)

with bilinear form such that

A (pg):= g IF(GRADP) .+ d%HE o) (P9 (ne (3.5)

and where we have ses:= Rg(s) and p = Rgg( p). A synthetic presentation of the scheme (3.4) is the
so-called Tonti diagram shown in Figure 3.

In the spirit of Friedrichs operators [21, 23], we assume that there is a second discrete contraction operator
IV*®, which is the discrete counterpart of the mapp 7! p, and such that the following two properties hold:

(11) [Discrete Leibniz rule] The bilinear map onV V such that

pH (@) o= PIFGRADQ) . PiBIV(IYY(Q) o PEHO(0) (e (36)

is symmetric and satises p;H{® (g) ,. (essinf r )jqjg;v for all g 2 V, so that HY® s
monotone under assumption ( 1); see Remark 3.1 below for the boundary term in (3.6).

7
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! RHS |s! tjfbw!!r-f

Figure 3: Tonti diagram of the vertex-based CDO scheme for pure advection

(12) [Discrete integration by parts] The bilinear map on V V such that
hp; iy, = PIFSGRADQ) |+ o BIV(IVS(P) o (3.7)
de nes a semi-inner product.

Concerning the discrete boundary Hodge operator, we assume the following:

(H9 Forall 2 L' (@) ,He@is self-adjoint, and it depends linearly and monotonically on (i.e., Oa.e.
in @ implies that H®  H% in the sense of quadratic forms), so that whenever 0, @ H®(p® vRe
de nes a semi-inner product onV®@ V @,

Remark 3.1 (Discrete contraction operator). Recalling from Remark 2.1 that the discrete dual divergence
operator BIV does notRinvoIve faces on_the boundary@ , property (11) is the discrete counterpart of
the Leibniz formula p(r )gd = p( raod pr ( gd , where the two rightmost terms
in (3.6) form together the discretRe counterpart of  pr ( g)d . Furthermore, property (12) is the discrete
counterpart of  p( r q)d + g ( p)d @ 9 n)pd@=0 . At the discrete level, this quantity
can be non-zero owing to the use of stabilization. We also notice that the symmetry of the majp; qiupw;
results from hp; di . h G Piypy. = P HY () o aHE (p) ,.=0 where we have used the self-
adjointness of H® , and of HY® . Finally, we observe that I¥¢ does not, in general, depend linearly on its
argument owing to the use of stabilization.

Remark 3.2 (Conservative advection) A possible variant of (3.1) is to consider the conservative form of the

advective derivative. The PDE becomesr ( p) = sin , and a Dirichlet boundary condition can still be

enforced at the in ow boundary. Assumption (1) is then modi ed as follows: There exists a real number
> 0 such that r La.e.in . The discrete bilinear form then becomes

A= gBIVIP) o+ d%5HE by (P9 (ne (3.8)

The design of the discrete contraction and boundary Hodge operators still hinges onX)-(12) and (H©).

Remark 3.3 (Reaction). Another possible variant is to include a zero-order reaction term in the PDE which
becomes r p+ p = sin with Lipschitz reaction coe cient (the conservative form of the advective
derivative can also be considered). Then, the reaction-related bilinear forrA (p;q) = P v2v  vPvQy is added
to the discrete problem, where , denotes (for instance) the mean-value of in &(v).
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3.2 Example: CDO scheme with upwinding

Let us give a concrete example for theCDO scheme (3.4). We introduce the notation
Z

e = (Rel Vg = N dff 862 E: (3.9)

e
We also setE, .= fe2 Ejv2 egforall v2 V,and Ve := fv 2 Vjv 2 eg for all e 2 E, and we use the
notation N q.q) = r(ey:e(v) Mg fOr the unit normal to fYe) pointing outward &(v). For all e2 E and all
vV 2 Ve, we X a real number ¢ 2 [ 1;1] (the algebraic upwinding parameter) such that the following
holds: For all e2 E,

P _ . _ 1P
(1) vv, ve=0,andsetting ¢:= 35 5y, Me):e(v) Ver e e 0 holds.
(2) There existsc > 0, uniform with respect to the mesh and the model parameters, such that ¢ ¢

Cj e
The reason to distinguish the properties ¢ ¢ 0in (1) and ¢ ¢ C | ¢ in (2) is that the former
is satis ed by the so-called centered scheme corresponding toye = 0 for all v 2 Ve, and the latter by an
upwind scheme. Classical upwinding corresponds to the choiceve = Sign( ¢¢).¢y) ) (With sign function
sign(t) = 1if t 2 R<g, sign(0) = 0, and sign(t) =1 if t 2 R>g), so that (2) holds with ¢ = 1. With
this choice, the solution delivered by theCDO scheme coincides with that of the upwind FV scheme on the
dual mesh.

The discrete contraction operator I¥€: E | €is de ned such that, for all g 2 E,

X 1
(I*%(9)) ov) geé(l ve) e 8v2V; (3.10)
e2Ey

while the companion operator!V® : V| P is de ned such that, for all q2 V,

|ve = }1+ : 8e2 E: 3.11
( (q))f‘(e) L qv 2( ve) e e . ( . )
v2Ve

Moreover, the discrete boundary Hodge operatoH® : V@! E@with 2 L! (@) is de ned such that, for
all g2 Vve, z

He@ =@ dfr 8v2 Ve 3.12
(H@ D = O (3.12)

Observe that H@ is algebraically represented by a diagonal matrix.

Remark 3.4 (Upwinding design). There are several possible variations in the geometric quantities considered
for upwinding. Instead of considering the full dual facefT{e) as in (3.9), one possibility is to consider the
average of the normal advection velocity on the dual sub-face;(e), and to design the upwinding parameters
based on the sign of these quantities. In general, the smaller the underlying geometric objects, the larger
the dissipation introduced by upwinding. The advantage of considering the dual sub-face$:(e) is that
upwinding is then compatible with the assembly of the scheme on primal cells.

Lemma 3.1 (Stability, ( 11)-(12)). Let the discrete contraction and surface Hodge operators be given I§$.10)-
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(3.11)-(3.12). Assume (1 ). Then, (11)-(12) hold with bilinear maps
Z

X
pHYT (@) o= POy " de; (3.13a)
ho; Qiypw: = [Pleldle e e (3.13b)
e2E

. . . . P .
so that HY® is algebraically represented by a diagonal matrix, and wherfgle = = ,v, e):e(v) v 1S the
jump of q across the dual facefTe) for all q2 V.

Remark 3.5 (First-order di usion) . Since[[gle = (GRADQ))e, the right-hand side of (3.13b) corresponds
to the jump penalty term considered in dG methods; fork = 0, it can be interpreted as adding a rst-order
viscosity term.

Proof. Proof of (3.13a). Letv2 V and let p;q2 V. Using (3.10)-(3.11), we infer that

X X X 1
p; I"®(GRAD(0)) ve PvQvo vo;eé(l ve) e
v2V e2Ey v®2Ve
e X X X 1
P, BIV(IYS(a) .= PvQvo f(e);e(v)i(l"- Vi) e

v2V e2E, vV,
USINg vie =  (g):eqv): the denition of ¢, and (1) leads to

E€, s vie X X z ~
p; F(GRADQ) . P BIV(I"®(a)) ve PvQv N e):e(v) df”
v2V e2Ey f(e)
. o P R __R R
To conclude, we observe that ifv 2 V nV®  wp g Neew) S = @y New) d@ = 1 de
owing to the divergence theorem, while for the boundary vertices, we use the de nition (3.12) of the discrete
boundary Hodge operator to infer that
* x df X ’ d @ He (g9
Pv Qv Nie): = PvQv r e p q @
ave e, MO fe);e(v) oye &v) n Ve
Proof of (3.13b). Using (3.10)-(3.11), the de nition of [ Je, and the adjunction property between GRAD and
BIV, we infer that

. |E€ - X X } .
p; F(GRAD()) .= pvldle5( ve 1) e
v2V e2Ey 2

X X 1
A, BIVIVE(p) = [alepy 51+ ve) e
€2EVv2Ve

Exchanging the summations in the rst line leads to

F€&(GRA + qBIvV(IVe = X X :
p; 17( Xa) o+ GBIVI™(P) [dlepv ve e
e2EVv2Ve

P
Since 5y, Pv ve =[ple e Owingto (1) , we infer (3.13Db). O

10
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3.3 Analysis: coercivity, consistency, and error bound

We de ne the following stability norm for all q2 V:
iqjazl;v = liCIi%;v + iqjﬁpw; + iquZ nj; (3-14)

where > 0 results from assumption ( 1), jj 2.v is de ned in Section 2.4, and we can de nejqiﬁpw; =
ho; di ypw; from assumption (12), and jqjj2 nj = Qe Hj@ nj(q@) Y from assumption (H ©).

Lemma 3.2 (Coercivity and well-posedness) Under hypotheses (1), (11)-(12), and (H9), the following
holds:

ABaisv A (@Gd; 892V, (3.15)
with %= % Consequently,(3.4) is well-posed.
Proof. Let q2 V. Since (1)-(12) imply that
. |E€ — 1 . ygvT 1 - Al 1 @. 1@ .
G I"(GRANQ) o= 5 GHT (a) o+ S diypy, + 5 A5H (0D (na
we infer that the quantity A (q;g) can be rewritten as
A@D= 5 GHE (@) ot 21 Qiupw; + 2 EH (@) et OEHE 4 () e
2 ve ' 2 pw; 2 ve (n Ve
Owing to (H9), the last two terms on the right-hand side can be recombined to yield
A@A= 5 GHE (@) ot 3 Gy, *+ 0G0 (3.16)
Since (1) and ( 1) imply o;HY® (0) . 'jgi2.. (3.15) holds and (3.4) is well-posed. O

We now turn to the consistency of the CDO scheme (3.4) using commutators in the spirit of Bossavit [12],
Hiptmair [28], and [9]. To write the consistency error, we consider the reduction mapRy : L() !V such
that (Rv(p))\, equals the mean-value op in the dual cell &v), and the following three commutators:

bl®; Re(q) == Re( @) 1"®(Ry(q)); (3.17a)
bHY® ; Re(d) := Re((r  )a)  HY® (Ry(q)); (3.17b)
BHE 1) Re(0) = Real( N)*0)  HE ) (RU(@)); (3.17¢)

forall g2 HS() ,s> % so that ¢ is in the domain of the mapsRg and Rge-

Lemma 3.3 (Error bound). Let p2 V () be the unique solution of(3.1) and let p be the unique solution
of (3.4). Assumep2 HS() , s> % Then, under the assumptions of Lemma 3.2, the following holds:

%p Ry(Piav sup  E (p;q); (3.18)
g2Vijgjav=1

with consistency error de ned as follows:

E (p;g) = g;bHY™ ;Re(p) . GRADQ):b'S Re(p) + q%bHE ). Re(p) (e (3.19)

11
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Proof. Owing to Lemma 3.2, it su ces to show that A (p Rv(p);q) = E (p;q). In the context of Friedrichs'
systems, the derivation of the error bound hinges on integration by parts. In the CDO framework, we use
the continuous and discrete Leibniz formulas, as well as the properties of the discrete di erential operators.
We observe that

APd= GRe( 1P o+ d%Reel( N) P (ya
GRe(r ( P) ot GRe( (1 )P ot d%Reel( N) P) (o
GBIV(Re( P) ot GRe( (1 )P o+ d%Real( M'P) (ya

GRAD();Re( P) o+ GRe( (1 )P ot d%Reel( N)'P) (no

where we have used the continuous Leibniz formula (recall thatp is in the graph space), the discrete
commuting property (2.2b), the factthat n =( n)* ( n) ,and the discrete adjunction property (2.1).
Moreover, setting p = Rv(p), we observe that

A (pa)= o I*%GRADD) .+ d%HE oy (P9 (ne
g BIV(IE(R) o+ GHT (B) o+ d%HE ) (B9 (e

GRAD(Q); I"®(P) -+ aHY™ (B) o+ A%HE ) (F) (e

where we have used the discrete Leibniz formula, assumptiorH®) (linearity) together with n=( n)*
( n) , and the discrete adjunction property (2.1). The conclusion is straightforward. O

Theorem 3.4 (Convergence rate) Assume ( 1). Let L be the Lipschitz constant of and assume that
L . 1. Let the discrete contraction and surface Hodge operators be given §$.10)-(3.11)-(3.12). Assume
(1)-(2). Let p be the unique solution of (3.1) and let p be the unique solution of(3.4). Assume that
p2 H() . Then, the following holds:

0 R . _— 11, N ,
Ap Rv(Piav . ( 0f +h2 2jr jp)h2jpjya ; (3.20)
with stability constant %de ned in Lemma 3.2, j jj:=] jor ¢ ,andjr  jpi=jr jrig) .

Proof. We need to bound the three terms in the right-hand side of (3.19) for allg 2 V such that jgjav = 1.
A direct calculation shows that
X Z
. Ve . h — h .
og;bHY S Re(p) .= o  (r )P (Rv(p)y)de

V2V &(v)

The de nition of Ry together with the Poincaré inequality and the multiplicative trace inequality imply that

; - - - .
ia  (Ry(@)viLz(ey + hwid (Rv(@)viLz(@qvy - Neyitinziey: (3.21)

forall g2 H() andall v2 V. Hence, we infer that

it Nz

1
2

N

i gbH® s Re(p) . ( Zidizv)(h

Turning to the second term in (3.19), a direct calculation using (1 ), the fact that p is single-valued on

12
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f{e), and recalling the de nition of ¢ shows that
Z

GRAD(Q); bI"™™; Re(p) .= [ale 51+ ) NP (Ry(p)v) df] (3.22)
2 e)
Q2E  v2Ve f(e)
whence we infer using (3.21) and the fact thatj ,¢j 1 that
0 2 1 L

X
j GRAD(Q); D" Re(p) __j. @ [qJ2

14
J Nyl oA j jEh2jpjyy -
r He e 1 HL()

Owing to the triangle inequality, Lemma 3.1, and ( 2 ), we infer that
0 12 0 1 1

X z 2 N X z
@ |[Q]|é )j nf“(e)j df A C *JQJupw; * @ I[Q]Ig f‘(e)j nr(e)j daf~ j o A

e2F fe e2F

N

Let c 2 Cg; the local dual facefz(e) consists of two tri%ngles, sayft.c (e), each touching one of the two faces
f of c sharinge. Set (€)= fr (e)j Ng (e)j df~ e (0 N (0 df~, so that

z
0 fc(e)=2 n df”
f,c( ) - (e)( e (e))

ff;c

If ( Ng (e)) takes positive values onf%.c (e), then O tc(€) 2 ¢; otherwise, ng (e Vanishes at
some point inft.c (€). Then, using the fact that Ne is Lipschitz in f%.c (e) together with mesh regularity

leads t00  ¢c(€) . L hejftc(€)j. Since ﬁe)() ﬁ(e)( ), summing these bounds overc 2 C. and the
facesf leads to
z z X
0 | Negnj df” n df~ c(€) . j e+ L hejfTe)j:
! M) g MO . fc(€ . ¢ elf(€)]
Using the assumptionL . !, mesh regularity, and the de nition of the discrete norm j j ».v leads to
0 X z 14 )
@ EQ]Ig j nf‘(e)j dfA . 1Auwpw; +  2Jdi2v:
e2E fe)
Finally, a direct calculation shows that
X z
a%bHE e Re(D) (o= v (M) (P (Ry(p)y) dF
€ e va2ve 0(v)
1
so that j g% bH(@ ny* Re(p) (ij@j - Al njl j]zh%jij 1() - This completes the proof. O

Remark 3.6 (Localization). The error estimate (3.20) can be localized to dual mesh cells.

4  Advection-di usion

This section addresses the derivation and analysis of vertex-basgdDO schemes for the advection-di usion
problem (1.1). The diusion tensor takes symmetric, uniformly positive de nite values. For simplicity,

13
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we assume that is constant in each primal cellc 2 C with minimal and maximal eigenvalues . and .,
respectively, and local anisotropy ratio ¢ = .= ¢ 1. The analysis can be extended to locally Lipschitz
di usion tensors.

4.1 Preliminaries: boundary penalty for pure di usion

In this section, we consider the pure-di usion version of the model problem (1.1) with 0:

r (rp=s ae.in ; (4.1a)
P=pp ae on@: (4.1b)

Formally, the weak formulation is as follows: For allq2 HY() ,
z z Z Z Z
rq rpd o qin r pda@+ o gpd@=  gsd+ o PO d@; (4.2)

with some boundary penalty parameter . It is also possible to consider a symmetric bilinear form on the
left-hand side. Symmetry is an important property when invoking duality arguments for pure di usion
problems; it is also a relevant property when inverting the linear system. It is less important in the presence
of advection.

41.1 CDO scheme

The vertex-basedCDO scheme with weakly enforced boundary conditions is formulated in terms of a discrete
Hodge operator H=" : E ! P, which is the discrete counterpart of the mapg 7! ¢, and the discrete
boundary operatorsN® : E ! @ (normal ux) and h@;h : V@l [B@ (boundary penalty), which weakly
enforce boundary conditions a la Nitsche and which are the discrete counterparts of the mapg 7! n g
and p 7! (=h)p at the boundary, respectively. The discrete problem consists in ndingp 2 V such that

AEd= as .+ 9% b gy 892V; (4.3)

with bilinear form such that
A (p;0):= GRADQ);H*"GRAD(p) .  d%N9GRADD) (et o A%RZ (09 (e (44)

where o > Ois a real number to be chosen large enough (see belovg)= Rg(s), and p = gh@;h (Rye(pp))-
The bilinear form (4.3) extends that of [9] where the Dirichlet boundary condition was strongly enforced.

The discrete Hodge operatorH®" is assembled cell-wise from local operatorH(EP)C B! PE for all
c2 C, so that

X
91 HT (@) - = 3 01 HE7*(00) (e, (4.5)
C

for all g;; g2 2 E. Similarly, the discrete normal ux operator N@ is assembled face-wise from local operators
NY E.! P@forall f 2 F@ wherec = c(f) is the primal cell containing the primal boundary face f, so
that

X
. — _ s .
9% N9 (me = aENT(9) (me (4.6)
f2F@

for all q® 2 V@ and all g 2 E. Note that this implies that N@(g), for all g 2 E, only depends on the

14
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components ofg attached to an edge of a cell having a boundary face. The discrete boundary penalty
operator F’I@ih is such that, still with ¢ = c(f),

A2, (09 = e JrEw) yohe 4.7
=h (g re(y) Qv J f(V)J Iietle (4.7)
f2F@

forall @2 V®@and all v2 V@ whereF¢:= ff 2 F@v 2 f g. Note that H@:h is algebraically represented by
a diagonal matrix.

4.1.2 Example

Let us give a concrete example oCDO scheme. We consider a reconstruction operatokg, : E;! L1 (c)
for all c2 C. The discrete Hodge operator in each celt 2 C is de ned such that
z
01 H@) o, = Le(9) Le(g)de (4.8)

for all gi1; 9, 2 Ec, while the discrete normal ux operator in each boundary facef 2 F@is de ned as follows
(with ¢ = ¢(f ) the primal cell containing f):
a Z
N = n L dfy 4.9
Orpy = g, " L= (4.9)

forall v2 V@ and all g 2 E.. The reconstruction operator has to satisfy some properties stated in Lemma 4.1

below. One possibility is to consider the reconstruction proposed by Codecaset al. [16], see also [9, 8],

whereby Lg (g) is piecewise constant on each diamond(e)\ c, e 2 E; (see Figure 2, left panel).

4.1.3 Design conditions

More generally, the design conditions orH®7¢ are as follows: For allc 2 C,

(H1) [Stability] HEDe js self-adjoint and monotone, and there existscy > 0, uniform with respect to the
mesh and the model parameters, such that, for alg 2 Eg,

opeitize,  GHE(Q) o, ot peidide (4.10)

(H2) [Po-consistency]RreC( G)= H(E")“(REC(G)) for any constant eld G in c.
The design conditions onN? are as follows: For allf 2 F@, with c= c(f),

(N1) [Boundedness] There existscy, uniform with respect to the mesh and the model parameters, such
that, for all g2 E,

2
. . @ . c .
ZV@)Jf-}@(V)J 1N (g) 8(v) Cn ];ch];c1 g HEP (9) €Fe (4.11)
VeV

(N2) [Po—consistency]Rref@(n G)= N (Re.(G)) for any constant eld G in c.

Lemma 4.1 (Design conditions). Let the discrete Hodge and normal ux operators be de ned by(4.8)
and (4.9), respectively. Assume that the reconstruction operator is such that:

15
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(i) [Stability] Lg.(g) is a piecewise-polynomial function inc, and there existsc. > 0, uniform with respect
to the mesh-size, such that jgj5e, | LEC(g)jEZ(C) ¢ 'joiZe, forall g2 Ec.

(i) [Partition of unity] Lg (Re.(G))= G for any constant eld G in c.
R P R
(iii) [Dual consistency] (Le(9)dc= " ep ( ;e Nr(e) A9 for all g2 Ec.
Then, (H1)-(H2) and (N1)-(N2) hold.

Proof. For the proof of (H1)-(H2), see [9, 8, 16]. To prove N1), x f 2 F@and observe that

I'a

Z .
iffvi * N (g) 2= * irev)j n  Le(9)df”
) 9 rew) Wit E(9

v2v@ v2v@ f

Iic) 1_2LEc(g)]EZ(f~f@(v))
v2v@
X 1; 1=2 :2
Cir Lehyél Le(Dit2(g
v2v@

GV P) jehyd GHE() (0

where we have used the Cauchy Schwarz inequality followed by a discrete trace inequality wittc = ¢(f)
(since is constant andLg, (g) is a piecewise-polynomial) and the de nition of the discrete Hodge operator.
This proves (N1) with cy = cy#(V £) (observing that the cardinal number #(V £) is uniformly bounded
owing to mesh regularity). Finally, letting G be a constant eld in ¢, (N2) follows from
Z Z
NG (Ra(G))fp(v) = ) n  Le(Rg (G))dfF = o n Gdf~=( Rref@(n G))ff@(v);

f (V)

for all v 2 V£ owing to property (i) of the reconstruction operator. O]

4.1.4 Analysis

This section collects the main results concerning the analysis of th€DO scheme with boundary penalty.
To facilitate the reading, the proofs are postponed to Section 7. We de ne the following norms orkE and
V@, respectively:

ig? = gHT(9 o 1993 = 0% (@9 e (4.12)

Observe that these norms (;,Dan be localized apgj? = ¢l gcjz;C with |gc|2;C = O H(EF%(gc) €Pe for all
O 2 Ec, and asjq9 2:h = t2ral OF] 2:h;f with jgfj 2:h;f = jchet Vzvgjf}@(v)j(Q%)z for all gf 2 V&
The stability of the CDO scheme (4.3) is expressed in the following norm:

jdiZy = IGRADQ)j? + jq9j2,; 8q2V: (4.13)

Lemma 4.2 (Coercivity and well-posedness) Assume (H1) and (N1). Then, provided o 1+ %c,z\, the
following holds:

Bdifv A (%0); 892V; (4.14)

with %= 1. Consequently,(4.3) is well-posed.
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We now address the consistency of the scheme (4.3). We assume that the exact solutipris in HS()
s> % (the regularity assumption can be localized to mesh cells), and we consider the (classical) de Rham
map Ry. We de ne the following two commutators:

bHET; Re(r p) :
bN®; Re(r p) :

Re( rp) HT(GRADXRV(P)); (4.15a)
Ree(N 1 P NGRADRv(P): (4.15b)

Lemma 4.3 (Consistency). Let p be the unique solution of(4.1) and let p be the unique solution of(4.3).
Assumep 2 H3() , s> % Then, under the assumptions of Lemma 4.2, the following holds:

%P Rv(Pidgv y Sup lE (p;9); (4.16)
92V jdiayv =
with consistency error
E (p;a) ;= GRADQ);bH™; Re(r p) . q%bN® Re(r p) vRe (4.17)

Theorem 4.4 (Convergence rate) Let p be the unique solution of(4.1) and let p be the unique solution of
(4.3). Assume (H1)-(H2) and (N1)-(N2). Assumep 2 H?() . Then, the following holds:

0 1 %
X
Ip Rv(Payv - @ c ];chgjpjﬁz(c)A : (4.18)

c2C

4.2 CDO Scheme for advection-di usion

Vertex-based CDO schemes for the advection-di usion problem (1.1) hinge on the discrete bilinear form
A. =A +A with A dened by (3.5) and A by (4.4). The discrete problem consists in ndingp 2V
such that

AL (Ea)= gs .+ 0% b gne 842V (4.19)

with s = Rg(s) and p = Rge(( N) po) + oh@;h (Rye(pp)). The Tonti diagram of the vertex-based
CDO scheme (4.19) is presented in Figure 4. Variants, such as using the conservative form of the advective
derivative or including a reactive term, can be considered as well; see Remarks 3.2 and 3.3.

p!V |«<—p! V—GRAD—|g! E

AL, /H: T

()

Y VS Y
E' | RHS |sI d:} Biv LR

Figure 4: Tonti diagram of the vertex-based CDO scheme for advection-di usion with weakly enforced
boundary conditions

We de ne the stability norm on V asjaj3y, = jdiZy, + jdi3, with advection-related stability norm
de ned by (3.14) and di usion-related stability norm de ned by (4.13).

17
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Lemma 4.5 (Coercivity and well-posedness) Assume ( 1), (11)-(12), and (H®) for the advection-related
terms together with (H1) and (N1) for the diusion-related terms. Then, provided o, 1+ %cﬁ the
following holds:

Bdidey A (G9);  8q2V; (4.20)
with %= % Consequently,(4.19) is well-posed.

Proof. Combine Lemma 3.2 with Lemma 4.2. O

Lemma 4.6 (Error bound). Let p be the unique solution of(1.1) and let p be the unique solution of(4.19).
Assumep 2 HS() , s> % Then, under the assumptions of Lemma 4.5, the following holds:

%P Rv(Piadv sup  E; (p;q); (4.21)
92V ;jqjagv=1

with consistency errorE . (p;q) = E (p;q)+ E (p;q), with E (p;q) de ned by (3.19) with Ry in lieu of Ry,
and E (p;q) de ned by (4.17).

Proof. Combine Lemma 3.3 with Lemma 4.3 (note thatH () vV ()). O

4.3 Example: CDO scheme with Péclet-based upwinding

For all e 2 E, we de ne the (algebraic) edge Péclet number aPe, = ,jf (6)j 1 ehe With ¢=maxcac, [ic

Ce = fc2 Cje @g, and ¢ dened in Section 3.2. We then use (3.10)-(3.11) to de ne the discrete
contraction operators I5€ and 1V® with Péclet-dependent upwinding parameter e = ( e):e(v) Pe.), where
the function : R! R is such that

(1) (x)+( x)=0and ( x) Oforal x2R .

(2 ) There exists > 0 such that ( x) for all x 1 (the lower bound on x is arbitrary; changing its
value only changes the constants in the error bounds).

o . ire)j P .
Note that ( 1 ) implies (1) since ¢ ¢ = %% V2Ve f~(e);e(v)Pee( ) e(v) Pe;) 0. Since (1) holds,

Lemma 3.1 implies that (I11)-(12) hold; hence, stability and well-posedness hold owing to Lemma 4.5. An
example for the function is the Sharfetter Gummel map ( x) = coth 3 % see Rooset al. [35] for
further insight and examples. The function s related to the function jAj introduced in [19] in the context
of high-order face-based discretizations by the relatioffAj(x) = x ( X).

To write the error estimate, we introduce one last geometric objectd(e), for all e 2 E, which is the
so-called diamond arounde formed by the two pyramids of apexv 2 Ve and (non-planar) basisf{e), see

Figure 2 (left panel). Note that [ coed(€) =

Theorem 4.7 (Convergence rate) Assume ( 1). Let L be the Lipschitz constant of and assume that
L . 1. Let the discrete contraction and surface Hodge operators be given h§.10)-(3.11)-(3.12). For
the di usion-related operators, assume H1)-(H2) and (N1)-(N2). Let p be the unigue solution of(1.1)
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and let p be the unique solution of(4.19). Assumep 2 H?2() . Then, the following holds:

0 1 :
%p R(D)i @ hZipi2 oot A
AP Rv(Piady - ¢ 1cheiPifz(g
c2C
0 1.
x 2
+@ (jr j @eyhet ] Nipe)he min(1; Pe)jpif e (d(e))A ; (4.22)

e2E

With | Njje == 7 Nl (e @Nd iPine+ (de) = IPIHL(de) + NelPiHz(d(e) -

Proof. The bound on the di usion-related terms derived in Theorem 4.4 still holds. For the advection-
related terms, there are two adaptations from the proof of Theorem 3.4. The rst one is that we consider
Rv(p) in lieu of Rv(p) since we are now bounding the erro(p Ry(p)). The approximation property (3.21),
which is now applied in the diamonds around edges, is then replaced by

L . ..
19 (Rv(Dvicz@ey + héia  (Rv(@)vip2(re) - Neldin+ (de);

forall 2 H?() ,all e2 E, and all v 2 V.. The second adaptation is related to the change in thq j upw;
semi-norm owing to the use of Péclet-based upwinding. We bound again the three terms in the right-hand
side of (3.19) for allg 2 V such that jgjag,v = 1. For the rst term, we readily infer that

0

1
X
. . 1_ . . ..
j gbHYE S Re(p) - ( 2Bz @ i P (e NEPIE T ey
e2E

N|=

Consider now the second term. LetEs1 := fe 2 EjjPej > lgand E ; ;= fe 2 EjjPej 1g. The
summation in the right-hand side of (3.22) is splitas g, ,()+ e ,(). Proceeding as in the proof of
Theorem 3.4, we infer that

0 7 1%0

1
(). @ [q]? ol M) dfA @ njrehelpif e (g™
82E>1 62E>1 62E>1

N

For all e 2 E.1, property ( 2 ) implies that ¢ ¢ j el- Then, still proceeding as in the proof of
Theorem 3.4, we infer that

0

N|=

X

1
- - 1_ X . . . .2 A
(). Jdiuw + Z2idi2zv @ I nipehelPif e+ (ge)
€2E> 1 €2E>1

Furthermore, we observe that
0 110
2

1
X 2 X 1 1. . . . . .2
(). @ [alche A @ he™ &7 Nitel elhelpifa- (d(e))A
e2E 1 e2E 1 e2E 1

N[

Owing to mesh regularity, the de nition of ¢, and (H1), we infer that the rst factor in the right-hand side
1

P ES
is bounded by j GRAIXq)j , while the second factor is bounded by g Njje hePeejpja1+ (d(e) ? since
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P P
Lif(e)j Y ejhe = jPesj 1andjf{e)j. h3. Collecting the bounds on 2B, and g , leads to
0

1

. Vle . - - X . . . . 2 A

j GRAD(Q);bI"®; Re(p) _j. §iaav @ | njpehemin(l; Pe)ipid - 4o
e2E

N

Finally, the boundary term is bounded as before. O

Remark 4.1 (Limit regimes). In the advection-dominant regime with jPeyj 1 for all e 2 E, the error
bound (4.22) behaves a$h'™ (see Theorem 3.4), while, in the di usion-dominant regime with jPes;j  he
for all e 2 E, it behaves ash (see Theorem 4.4). The case wherbe Pe. 1 corresponds to transition
regimes and intermediate orders of convergence.

Remark 4.2 (Boundary term). It is also possible to modify the discrete boundary Hodge operator so as to
enforce the boundary condition using a Péclet-based upwinding; details are omitted for brevity.

5 Divergence-free advection

In this section, we extend the analysis to the case of a divergence-free velocity eld under assumption ( 2);
recall that this assumption provides a real number > 0 and a function 2 W1 () such that lae.

in . The advection-related stability norm jj 4v is still de ned by (3.14) (where now results from ( 2)).
The only relevant change in the analysis is that stability (and well-posedness) is now achieved by means of
an inf-sup condition instead of a coercivity argument. Since consistency and boundedness hold in the same
form as before, inf-sup stability su ces to establish the error upper bounds, so that the convergence rates
derived in Theorem 3.4 for pure advection and in Theorem 4.7 for advection-di usion still hold. In what
follows, we consider the non-dimensional numbers = L?j jh and! = L2 ] » with L the Lipschitz
constantof ,j jj:=j jut(),and j:=maXcc jc-

5.1 Pure advection

Along with (11)-(12), we introduce a third property for the discrete contraction operators:

(13) [Multiplication by ] There are cz; ¢y; ¢z, uniform with respect to the mesh-size and the functions
and , such that the following holds for all g2 V:

| qjﬁpw; + Qijz nj C1 ]2(iQi3pw; + jqijz nj)+ ca! 1jQi%;V; (5.1a)
1. .
A(g o Zidizv o A (G0 (5.1b)
with y:=j ju1 () and g2V suchthat( q),:= (v)q forallv2V.

Lemma 5.1 (Inf-sup stability) . Under hypotheses (2), (11)-(12)-(13), and (H @), the following holds:

%aiay supalFD. ggov: (5.2)
r2v lr]a;v

with %= 7 max( £+ ¢! ;¢ ]2)% + cg!
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Proof. We taker = q+ ¢3! g 2 V. Owing to the triangle inequality, (5.1a), and the obvious bound
j dizv  jidi2v, we infer that

- A _— 2 N PR
ITav 1 dlavt c! Jdlav max( {+ ¢! ;ca{)z+ el jgav:

Moreover, owing to (5.1b), we infer that

1. .
A(@n=A (g d+cl A(Ga Zidis;
whence we infer (5.2). O

Remark 5.1 (Factor ! ). An upper bound on! vyields a lower bound on% A simple upper bound is to

replaceh by a global length scale associated with (i.e., h can be replaced by a global length scale in (5.1a)
and (5.1b)). A sharper bound is! L j jj under the mild assumptionL h 1 (meaning that h resolves
the scale of spatial variations of ).

We now verify property (13) in the context of the CDO scheme with upwinding studied in Section 3.2.

Lemma 5.2 ((I3) with upwinding) . Assume ( 2) and (1 ). Let the discrete contraction and surface Hodge
operators be given by(3.10)-(3.11)-(3.12). Then, (13) holds.

Proof. To prove property (5.1a), we observe that, for allq2 V, since ¢ ¢ Oforall e2 E,

X X
i qjﬁpw; = [ q]]é ee 2 f @[Cﬂ]g*' f q@él[ ]Ié e e

e2E e2E

P P P _ .
where f @ = 3 v, M) [1e = vove ree s F08 = 3 oy, G, and [dle is dened in

Lemma 3.1. Sincef @& 2 {fand[ ]2 (L he)? we infer that

| qjﬁpw; 2 ]qujﬁpw; +2 § Lzhgf Q¢ e e
e2E
and we conclude using0 ee | Difte)], f qu? %P V2Ve @2, and mesh regularity. Since, owing
to (3.12),j aif ,; {idi} ,; this completes the proof of (5.1a).
Proof of (5.1b). The idea of the proof consists of writingA (g; q) in the form A (q;g) plus a perturbation
which can be bounded by the variations of . A straightforward computation proceeding as in the proof of
Lemma 3.1 shows thatA (g; q) = T1+ T+ T3 with

A Z
X X 1 _ X 1 X _
Ti= Eq\Z/ () Npgdf+ é[‘ﬂlé eeet % ( n) df]
V2V e2Ey fe) e2E vve e
X x 1 < X X 1
T2 = 50v0e ((v) ) N df+ SOl e (V) ve e
2 ) 2
V2V e2E, f(e) V2V e2E,
X
Ts= o _ () ) n) df
v2ve v)
with g = GRAD(gq) and . the mean-value of in e. Since 1, still proceeding as in the proof of

Lemma 3.1 and using now ( 2) leads to the bound Ty %jqjg;v. Furthermore, using Cauchy Schwarz
inequalities, (2 ), and mesh regularity, we obtainjToj . ! Jajupw; ( %jqiz;v). Proceeding similarly leads
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to jTai. ! jdij nj 2jdi2v). SinceA (q;q) sl + jqjj2 nj) OWing to (3.16), we infer that
. . 1 1_ .
jToj + jTsj . 1 A (@9)2( ZJdizv);
and the conclusion follows using Young's inequality. O

Remark 5.2 (Conservative advection) Using the conservative form of the advective derivative is also possible
under assumption ( 2). The above proofs are adapted by considering the function 9= 1+ k k1 0
which is bounded byk k.1 ( and satises © Zlandr (°) LTae.in

5.2 Advection-di usion

As in Section 4.3, we consider the Péclet-dependent upwinding parametersye = ( ﬁe);e(v)Pee) under
assumptions (1 )-( 2 ). Recall that ( 1 ) implies (1).

Lemma 5.3 (Inf-sup stability) . Assume ( 2). Let the discrete contraction and surface Hodge opera-
tors be given by(3.10)-(3.11)-(3.12) with Péclet-dependent upwinding parameters under assumption1( ).

2 2
Assume (H1) and (N1) for the diusion-related terms. Then, provided o % with ¢4 =
max(cs! ;2cs! ), cs 1= (2 cHlNV;E)%, Nv.g being the maximum number of edges touching a mesh vertex,

the following holds:

- A . (qr
B adv supﬁ; 8gq2V, (5.3)
r2v J1adyv
with %= g(max( {+ co! +2c3! ;c1 ;2 ]2)% +cq) L
Proof. Setr := q+ c4q. Since (1) holds, we infer from Lemma 5.2 that (13) holds. Moreover, since
cs ¢3! andA (g;q) 0, Lemma 5.1 implies that
: . 1. .5 .
Aan A(g at+c! 9 jdiay: (5.4)

Moreover, owing to (7.2) and to Lemma 5.4 below, we infer that

1 1. . ..
A(gn A+ c)igi® on(1+ caidi §di=n ! Zigl Zidizv+ o(l+ caidiZy

where we have seg = GRAD(q). Using Young's inequality for the third term on the right-hand side yields

Agn §di? on(y+cidi fai=n + oL+ cidiZ, g lididy;
sincecs 2cs! 2. Using the same quadratic identity as in Lemma 4.5, this time with = %CN( ]+ C4) and
2 2
= o(1+ cs), and observing that the choice o~ 715 implies 1+ 8 Zsothat o~ %, we

infer that 1 1

A (g;1) éicﬂg;v 3 Yaigy:
Combining this bound with (5.4) yields A . (q;r) %jqjgd;v. We conclude usingjrjagy § Qladv +
Cajdagv and J dfagy  max( ]2 +c! +2c3! ]2;2 ]2)%jQiad;V- O

Remark 5.3 ( o). The lower bound for ¢ obtained in Lemma 5.3 slightly di ers, up to a numerical factor,
from that obtained in Lemma 4.2 for zero advection; the reason is that both proofs have not been optimized
regarding the lower bound in the quadratic identity.
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Lemma 5.4 (Multiplication by ). Assume that H1) and (N1) hold. The following holds for allq 2 V
with g = GRAD(Q):

iddv 2fldgy+2a! sy (5.52)
. , S i 1.
A(g o) jgi*+ oid%%,  onidl Jd% o os! figl ( Zfdizy): (5.5b)
Proof. Proof of (5.5a). The de nition of P2, implies that j q%2, = q%R2, ( 9 vme {1992,

Furthermore, owing to the cell-wise assembly of the discrete Hodge operatad®™ and using the triangle
inequality, we infer that

iGRAD 0)j?=  GRADR( 6);H7* GRADY( @) .
= 22 GRADY(A);H** GRAD(Q) (. + 2 o(0)?
c2C c2C
2: o X 2.
2IGRADQI”+  2c(9)7
c2C

where . is the value of at the barycenter of cand ¢(q) := JGRAD:(W)j -c and w = ( ¢)0. The upper
bound in (H1), the de nition of GRAL: and that of the jj ».g.-norm yield

0 1,
, X X A
c(a) Cq Jiche @ vie( (V) c)Ov
e2Ec. Vv2Ve
2CH1 ];cl—zhg q\% ZCHlNV;E ];cl—zlq]%;vc:
e2Ec v2Ve

Combining the above bounds leads to (5.5a).
Proof of (5.5b). Using (N1), (7.1), and 1, we infer that

A (g 6= GRADX o);H" GRADQ) .. ( 9)%N®GRANQ) (ye* o ( DGR (09 (4o
GRAD( 0);H"™ GRAD(Q) .. cniGRADQ)j §( 0% =n + 0iq%Z,
GRAD( q);H"™ GRAD(Q) .. oy jIGRADQ)] j0% -h + 0l %y :

Moreover, owing to the cell-wise assembly of the discrete Hodge operaté¢i™ and proceeding as above, we
infer that

X
GRAD( 0);H" GRAD() .=  GRARY( 0);H*7* GRAD(Q) (.
c2C

X €
j GRAD(Q)j? + GRADQy(W); H™7 GRADR(0) (.
c2C

Since HET® s self-adjoint and monotone, we infer that

j GRAD(W); H*7° GRAD(0) (]  c(QiGRAD(Q)]
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so that 0 1 :

X
GRAD( 0);H*"" GRAD(G) .. j GRADQ)j*> @  ((g)*A jGRADQ)] :
c2C

Using the above bound on ¢(q) yields (5.5b).

6 Numerical results

In this section, we investigate numerically CDO advection-di usion schemes on four families of successively-
re ned, polyhedral meshes of the unit cube = (0 ;1)3; see Figure 5 for an example of mesh within each
family. These mesh families have been proposed in the FVCA benchmark [24], see also [7].

Hexahedral (H) Skewed-polyhedral (SkP)  Checkerboard (CB) Kershaw (K)

Figure 5: Polyhedral meshes

The error with respect to the exact solution p is measured using the following two quantities:

ip Rv(Pizv ip Rv(P)iadyv
Erroy i= ————F———; Err gy = — _ —
2V TR 2v VT T R(P adyv

In our numerical tests, the integrals for the source term and the boundary data are computed using a
fourth-order quadrature on elementary sub-simplices of each polyhedral cell.

6.1 Anisotropic di usion and variable advection velocity

We consider the conservative form of the scheme (4.19), where the bilinear forA is given by (3.8). The
exact solution is p(x;y;z) =1 +sin( x )sin y+ % sin zZ+ % , and the di usive tensor and the
velocity eld  are equal to (in the canonical basis oR?)

0 1 0 1
1 065 O y 1=2
= %0:5 1 Q5§ ; = %1:2 x§ ;
0O 05 1 z

so that the velocity eld satis es hypothesis (1) for the conservative form (see Remark 3.2). We consider
the discrete contraction operator IV built using full upwinding as in Section 3.2 and Péclet-based upwinding

as in Section 4.3 using the Sharfetter Gummel map.
Figure 6 presents the numerical results, which re ect the theoretical analysis with convergence rates

between one and two. The use of Péclet-based upwinding leads to lower errors than full upwinding; the
improvement is more pronounced on the SkP mesh sequence than on the other sequences, and is observed

on the ner meshes.
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H sequence SKkP sequence

CB sequence K sequence

Figure 6: Test case 6.1: Convergence curves for the two error measures on the four mesh families using full
upwinding (dashed lines) or Péclet-based upwinding (solid lines); rst- and second-order slopes are indicated.

6.2 Exponential boundary layer with constant advection velocity

The second test case investigates the behavior of theDO scheme in the presence of an exponential boundary
layer resulting from small di usion. We consider an isotropic di usive tensor, i.e. = Id, and a constant
vector eld  with components (2; 3; 0), so that assumption ( 2) is satis ed. The exact solution is p(x;y; z) =
(x eu)(y2 ea(y l)) and exhibits a boundary layer nearx =1 andy =1 when tends to 0.

Figure 7 reports numerical results for = 1 (solid lines) and = 10 * (dashed lines). Note that in
this second case, the considered meshes do not resolve the boundary layer. The transition between the two
convergence regimes as predicted by Theorem 4.7 is clearly visible. The present test case is also considered
by Da Veiga et al. [5] on the same SkP mesh sequence with a di erent scheme, where similar convergence

rates are reported but with somewhat larger error values.

7 Analysis of CDO schemes for pure di usion

7.1 Proof of Lemma 4.2

Property (N1) implies that, for all (9% g)2V® E ,

q% N%(g) - a?; N¥ (ge) - a?, N7 (go)
’ vee t < vme fv <) o)

f2F@ sz@vzvf@
X 3 (@5 H H Hre HPer

N JOFT =ht 19c) ¢ oNIOT =n 000 (7.1)
f2F@

where we have used the local agsembly ®f° on the rst line (with ¢ = c(f)), the discrete Cauchy Schwarz
inequalities for the summations v2ve and ;,pe, and the fact that  ;,cel gcjz;C j gj? on the second

25



CDO schemes for advection-di usion P.Cantin and A.Ern

H sequence SKkP sequence

CB sequence K sequence

Figure 7. Test case 6.2: Convergence curves for the two error measures on the four mesh families using
Péclet-based upwinding for =1 (solid lines) and =10 # (dashed lines); half-, rst-, and second-order
slopes are indicated.

line. As a result, we infer that

A (q;q) j GRADQ)j* cniGRADQ)j jdi=h + oidiZ: (7.2)

To conclude, we use the quadratic inequalityx? 2xy + y? 2(x2 + y?) (valid for any real numbers

X;y; ; with O)with = lcyand = o and observe that the choice ¢ 1+ 3cZ implies 1+2 2
so that TZ % Finally, the well-posedness of (4.3) follows from (4.14).

7.2 Proof of Lemma 4.3

Owing to Lemma 4.2, it su ces to show that A (p Rv(p);q) = E (p;q). To prove this, we observe that

s o= GRe(r (rp) o= GBV(Re( rp) o d%Ree(n 1P (o

owing to (2.2b), and we use (4.3) and (4.4) to conclude, as well aB,e(pp) = ( Rv(p)) &

7.3 Proof of Theorem 4.4

Let T1;T> be the two terms in the right-hand side of (4.17). Recall that GRAD(Ry(p)) = Re(r p). The
term T1 has already been bounded in [9]; we present here a somewhat simpler proof avoiding the algebraic
identity on the inverse of the discrete Hodge operator. LetG. denote the mean-value ofr p in c. Owing to
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the local assembly (4.5) and to H2), we infer that

X
Ti= GRAR(Q;Re( rp H(Re(rp) oy

c2C

X X

= GRAR(Q;Re( (rp Go) p, GRADY(A); H**(Re,(r p Go)) (py.
c2C c2C

and we denote byTi.1; T1:2 the two terms in the right-hand side. The Cauchy Schwarz inequality, mesh
regularity, and the lower bound in (H1) imply that

0 11
. . - H x X 1; i2 2
iTi1j . iGRADQ)] @ ¢ Jele I P Goelfsry )
c2Ce2Ec
0 1.
X 2
. JGRADQ)j @ c ];chgjpjaZ(c)A
c2C

Similarly, the Cauchy Schwarz inequality for HE?° (i.e., gi: HEV¢(gy) er. 1 0l cforallgige2
Ec) and the upper bound in (H1) imply that

0 0

1 1
T s NPT ; i2 : @t 2: 152
iTi2j . iGRADQ)] @ chadr P Geifie® - JIGRADQ] @  1chgjpifiz”
c2Ce2E. c2C

N
NI

Turning to T», we use the local assembly (4.6) andN2) to infer that, with ¢ = c(f),

Tz_

[
2
Py
o
e,
B

rp NTRe( P) (oo

X
@. @ NG .
- dr R;e,@(” (rp Gyg) vee ore afsN" (Re(r p Go)) vR@

and we denote byT,.; and T».» the two terms in the right-hand side. The Cauchy Schwarz inequality implies
that

0 l%
X X
iT2a § 9% = @ 1ehe it P GeiZ, pa &
=)
f2F@y2v@
0 1.
X 2
390 @ gehdipifeg”
f2F@

while using (N1) and proceeding as above, we infer a similar bound off,.2. The proof is complete since
¢ 1 by de nition.
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