
HAL Id: hal-01140485
https://hal.science/hal-01140485

Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient midpoint-radius representation format to
deal with symmetric fuzzy numbers

Manuel Marin, David Defour, Federico Milano

To cite this version:
Manuel Marin, David Defour, Federico Milano. An efficient midpoint-radius representation format to
deal with symmetric fuzzy numbers. [Research Report] DALI - UPVD/LIRMM, UCD. 2015. �hal-
01140485�

https://hal.science/hal-01140485
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON FUZZY SYSTEMS 1

An efficient midpoint-radius representation format

to deal with symmetric fuzzy numbers

Manuel Marin, Student Member, IEEE, David Defour, and Federico Milano, Senior

Member, IEEE

Abstract

This paper proposes a novel representation for symmetric fuzzy numbers that uses the midpoint-radius approach

instead of the conventional lower-upper representation. A theoretical analysis based on the α-cut concept shows

that the proposed format requires half the amount of operations and memory than the traditional one. Also, a

novel technique involving radius increments is introduced, to mitigate floating-point rounding errors when using

the proposed representation. We describe the implementation of all these features into a fuzzy arithmetic library,

specifically tuned to run on Graphic Processing Units (GPU). The results of a series of tests using compute-bound

and memory-bound benchmarks, show that the proposed format provides a performance gain of two to twenty over

the traditional one. Finally, several implementation issues regarding GPU are discussed in light of these results.

Index Terms

Uncertainty, fuzzy systems, floating-point arithmetic, performance analysis, computer architecture.

I. INTRODUCTION

M
ANAGEMENT of uncertainty has appeared as a necessity in the design of expert systems,

where the information in the knowledge base is ambiguous and imprecise. The information

about system quantities is usually presented in the form of ambiguous sentences, such as, “up to 1, but

maybe no greater than 0.7,” or, “between 0.5 and 1.5, but closer to the second,” etc. This particular kind

M. Marin is with Université de Perpignan Via Domitia, DALI and Université Montpellier 2, LIRMM, France, and also

with the School of Electrical, Electronic and Communications Engineering of the University College Dublin, Dublin, Ireland

(e-mail: manuel.marin@univ-perp.fr).

D. Defour is with Université de Perpignan Via Domitia, DALI and Université Montpellier 2, LIRMM, France

(e-mail: david.defour@univ-perp.fr).

F. Milano is with the School of Electrical, Electronic and Communications Engineering of the University College Dublin, Dublin, Ireland

(e-mail: federico.milano@ucd.ie).

IEEE TRANSACTIONS ON FUZZY SYSTEMS 2

of uncertainty is best modelled using fuzzy numbers, as they allow to deal with such type of quantifiers

[1]. The fuzzy approach has been successfully applied in finance [2], health [3], transportation [4], control

[5], supply chain management [6], load flow [7], [8], and others, to configure expert systems in order to

run under uncertainty scenarios. Fuzzy arithmetic is often approached through the α-cut concept, which

turns it into an extension of the well-known interval arithmetic [9]. However, practical implementations

of this approach can be computationally expensive, as each fuzzy operation requires at least two interval

operations to complete. Depending on the number of uncertainty levels in the model, the computational

burden can increase dramatically and so the calculation time.

GPUs have driven substantial acceleration to numerous regular applications thanks to several mechanism.

The first and most powerful one is Thread Level Parallelism (TLP) exploited by the numerous compute unit

available. Instruction Level Parallelism (ILP) has also proven to be very useful to hide instruction latency,

achieving better performance at lower occupancy [10]. Another source of acceleration, but less frequently

used, come from the hardware accelerated compute unit dedicated to the evaluation of interpolation, special

functions or fused operations such as FMA. By going deeper into these subtleties, one can notice that

latest CUDA GPUs allow to statically select rounding attribute for every floating-point operation. This

characteristic simplifies interval arithmetic operations [11], as it suppresses the overhead associated with

the changes of rounding mode.

Applications relying on fuzzy logic have already been successfully ported on GPU [12], [13]. However,

to our knowledge there were no prior work considering fuzzy arithmetic and the underlying representation

of data dedicated to a GPU execution. In this article we investigate how GPU can improve performance of

fuzzy arithmetic. To achieve this goal, we propose to replace the traditional lower-upper encoding, which

requires to manage a different lower and upper bound for each α-cut, by a midpoint-radius encoding,

whenever possible. This modification of data representation greatly reduces the required bandwidth as

well as the number of instructions to perform basic operation. These algorithmic modifications combined

with hardware specificity of Nvidia’s GPU greatly reduce the cost of fuzzy arithmetic, making fuzzy

arithmetic more affordable in term of execution time.

The main contributions brought by this article are as follows:

● Representation format. We propose two new representation formats for fuzzy numbers with sym-

metric membership function, based on midpoint-radius intervals. The first one reduces the number

of operations and memory bandwidth of fuzzy computations compared to the traditional lower-upper

IEEE TRANSACTIONS ON FUZZY SYSTEMS 3

approach. The second one is an extension of the former and is designed to improve accuracy. The

proposed formats are based on original theorems, i.e., Theorems 1, 2 and 4, for which we provide

the proofs.

● Fuzzy arithmetic library. We describe the implementation of a fuzzy arithmetic library which allows

to handle fuzzy numbers in the proposed representation formats as well as in the traditional format.

This library is highly efficient and versatile, as it combines specific features of the CUDA and C++

programming languages, such as rounding attributes and operator overloading.

● Insight on GPU-optimized fuzzy arithmetic. We discuss, both from a theoretical and an empirical

point of view, the benefits brought by GPUs to different types of fuzzy computations. We explain

how TLP, ILP, static rounding mode and memory usage impact performance at a fine granularity of

basic operations on fuzzy formats.

The remainder of the article is divided as follows: in Sections II and III, we expose the theory underlying

our fuzzy arithmetic library. In Section IV, we present the implementation issues and discuss about trade-

off related to ILP, TLP, bandwidth and latency. Then, in Section V, we evaluate the performance of our

library of fuzzy arithmetic. Section VI draws conclusions and outlines future work.

II. OUTLINES ON INTERVAL ARITHMETIC AND FUZZY NUMBERS

The α-cut approach to fuzzy arithmetic is based on representing a fuzzy number as a collection of

intervals, which in turn represent different levels of uncertainty in the model or α-levels. These intervals

are called the α-cuts. Fuzzy arithmetic operations, then, are performed as sets of interval operations, which

ultimately requires to deal with basic interval algebra [9].

In this section, we provide basic concepts of interval arithmetic and fuzzy arithmetic based on the

α-cut concept. The outlines given below are needed to introduce the discussion on different alternatives

to implement fuzzy arithmetic that we present in section III.

A. Interval arithmetic

Interval arithmetic accounts for single level uncertainty of numerical modelling. It deals with intervals

which are defined as convex sets of real numbers. When expressing a variable as an interval, each element

in the range is considered equally possible.

Intervals can be represented in three ways, either by giving the lower and upper bounds, the midpoint

along with the radius of the interval, the lower bound along with the diameter. Most of the existing

IEEE TRANSACTIONS ON FUZZY SYSTEMS 4

implementations of interval arithmetic such as Boost [14], MPFI [15] and GAOL [16], are based on the

lower-upper representation encoding. In this article, we consider both lower-upper and midpoint-radius

representations, as defined below.

Definition 1 (Lower-upper representation). Let l, u ∈ R, l ≤ u. Let I be an interval, defined by:

I = {x ∈ R, l ≤ x ≤ u}. (1)

We note I = [l, u], and call this the lower-upper representation, with l being the lower bound and u the

upper bound.

Definition 2 (Midpoint-radius representation). Let m,ρ ∈ R, ρ ≥ 0. Let ∣ ⋅ ∣ represent the absolute value

operation. Let I be an interval, defined by:

I = {x ∈ R, ∣x −m∣ ≤ ρ}. (2)

We note I = ⟨m,ρ⟩, and call this the midpoint-radius representation, with m being the midpoint and ρ

the radius.

With these basic concepts we can proceed to define interval operations. With this aim, we assume the

basic property of inclusion isotonocity, as follows.

Definition 3 (Inclusion isotonicity). Let ○ ∈ {+,−, ⋅, /}, I1 and I2 be intervals. If

x1 ○ x2 ⊆ I1 ○ I2, ∀x1 ∈ I1, ∀x2 ∈ I2, (3)

then ○ is said to be inclusion isotone.

Inclusion isotonicity is needed to ensure that no possible values are “left behind” when performing

interval operations. In order to respect this property, interval arithmetic implementations require to deal

with floating-point rounding errors.

The IEEE-754 Standard for floating-point computation provides all the necessary elements to such task.

In particular, this standard establishes that the following three rounding attributes must be available: round-

ing upwards (towards infinity), rounding downwards (towards minus infinity), and rounding to nearest [17].

The IEEE-754 Standard also allows to compute the relative rounding error and the smallest representable

(unnormalized) floating point number, the latter being associated with the underflow error [18], [19]. These

IEEE TRANSACTIONS ON FUZZY SYSTEMS 5

elements and the corresponding notation are summarized in Table I.

TABLE I

ROUNDING ATTRIBUTES AND ERROR TERMS IN THE IEEE-754 STANDARD.

Symbol Meaning

△(⋅) Rounding upwards.†

▽(⋅) Rounding downwards.†

◻(⋅) Rounding to nearest.†

ǫ Relative rounding error (machine epsilon).

η Smallest representable (unnormalized) floating-point positive number.

†The rounding attribute applies on all the operations included within the parentheses.

In the lower-upper encoding, isotonicity implies rounding downwards when computing the lower bounds,

and upwards when computing the upper bounds [9]. The interval operations for the lower-upper encoding

are defined below.

Definition 4 (Lower-upper interval operations). Let I1 = [l1, u1] and I2 = [l2, u2]. Let ▽(⋅) and △(⋅) be

respectively the rounding attributes towards minus infinity and plus infinity, applying on all the operations

within the parentheses. Then

I1 + I2 = [▽(l1 + l2),△(u1 + u2)], (4a)

I1 − I2 = [▽(l1 − u2),△(u1 − l2)], (4b)

I1 ⋅ I2 = [▽(min(S)),△(max(S))], (4c)

where S = {l1l2, l1u2, u1l2, u1u2},
1

I2
= [▽(1

u2

) ,△(1
l2
)] , (4d)

where 0 ∉ [l2, u2].
For the midpoint-radius encoding, in addition to appropriate rounding, isotonocity also requires adding

to the radius the error due to midpoint rounding [18]. The interval operations for the midpoint-radius

encoding are defined below.

Definition 5 (Midpoint-radius interval operations). Let I1 = ⟨m1, ρ1⟩ and I2 = ⟨m2, ρ2⟩. Let ◻(⋅) and

△(⋅) be respectively the rounding attributes to nearest and towards plus infinity, applying on all the

operations within the parentheses. Let ǫ be the relative rounding error and η be the smallest representable

IEEE TRANSACTIONS ON FUZZY SYSTEMS 6

(unnormalized) floating point number. Then

I1 ± I2 = ⟨◻(m1 ±m2),△(ǫm + ρ1 + ρ2)⟩, (5a)

where ǫm =
1

2
ǫ∣ ◻ (m1 ±m2)∣,

I1 ⋅ I2 = ⟨◻(m1 ⋅m2),△(ǫm + (∣m1∣ + ρ1)ρ2 + ∣m2∣ρ1)⟩, (5b)

where ǫm = η +
1

2
ǫ∣ ◻ (m1 ⋅m2)∣,

1

I2
= ⟨ ◻ (1

m2

) ,△(∣ǫm∣ + −ρ2∣m2∣(ρ2 − ∣m2∣)) ⟩, (5c)

where ǫm = η +
1

2
ǫ ∣◻(1

m2

)∣ , and ∣m2∣ > ρ2.
Equation (5c) is based on the definition provided by Neumaier in [20] for real intervals. With respect to

the original definition, we introduce appropriate rounding in order to account for the floating-point case.

A similar procedure is presented in [18].

The impact of rounding on performance depends on the computing architecture. For example, for CPUs,

the rounding attribute is implemented as a processor state, which implies flushing the entire pipeline every

time it changes during a program execution.

B. Fuzzy arithmetic

While interval arithmetic accounts for one single level of uncertainty, fuzzy arithmetic enables modelling

several levels of uncertainty as a whole. Fuzzy arithmetic deals with fuzzy numbers, defined in a similar

way as intervals with the addition that each element in the set has associated a degree of membership.

Membership degrees correspond to levels of uncertainty or α-levels. Elements with higher degrees are

considered by a greater number of α-levels, as possible values for the modelled variable to assume.

The degree of membership is implemented as a membership function, which represents a possibility

distribution. Not any real function can be a membership function; it has to satisfy certain assumptions, as

stated in the following definition.

Definition 6 (Membership function). Let µ(⋅) ∶ R → [0,1] be a continuous function. If ∃ l,m,u ∈ R, l ≤

IEEE TRANSACTIONS ON FUZZY SYSTEMS 7

m ≤ u, such that:

µ(m) = 1, (6a)

µ(x) < µ(y), ∀x, y ∈ [l,m], x < y, (6b)

µ(x) > µ(y), ∀x, y ∈ [m,u], x < y, (6c)

µ(x) = 0, ∀x ∉ [l, u] (6d)

then µ(⋅) is called a membership function.

In summary, a membership function has to show strict monotonicity around a central point. The formal

definition of fuzzy number is as follows.

Definition 7 (Fuzzy number). Let µ(⋅) be a membership function, and m ∈ R, µ(m) = 1. Then

A = {(x,µ(x)), x ∈ R} (7)

is called a fuzzy number, with kernel m and membership function µ(⋅).
According to Definition 7, a fuzzy number is a set of ordered pairs, composed of a real number and a

degree associated to it, the latter given by means of a membership function. Figure 1 shows an example

of fuzzy number, with truncated normal possibility distribution.

Now we introduce the α-cut approach to fuzzy arithmetic, which is a direct way of performing a fuzzy

operation through considering only a finite number of α-levels of uncertainty. Let us say this number is N .

To each α-level i ∈ {1, . . . ,N}, we associate a measure of uncertainty, αi ∈ [0,1], such that α1 > . . . > αN .

Then we take the fuzzy operands and split them into sets of intervals for each α-level. These intervals,

called the α-cuts, contain all the values considered as possible above a certain measure. The definition of

α-cut is as follows.

Definition 8 (α-cut). Let A be a fuzzy number, µA(⋅) its membership function. Let N ∈ N, i ∈ {1, . . . ,N},
and αi ∈ [0,1]. Then

Ai = {x ∈ R, µA(x) ≥ αi}, (8)

is called an α-cut (of level i) of the fuzzy number A.

The conditions that the membership function has to satisfy allow the α-cuts to become well-defined

IEEE TRANSACTIONS ON FUZZY SYSTEMS 8

x

µA(x)

mA

α0 = 1

α1 = 0.6

α2 = 0.3

Fig. 1. Fuzzy number, membership function, kernel and α-cuts.

intervals, (see Fig. 1). Once we have the α-cuts for each operand, we may apply the α-cut concept defined

below.

Definition 9 (α-cut concept). Let ○ ∈ {+,−, ⋅, /}, and A,B,C, be fuzzy numbers such that C = A ○ B. Let

Ai,Bi,Ci, be the α-cuts of level i of A,B,C, respectively. Then

Ci = Ai ○ Bi. (9)

The above definition suggests that to compute a fuzzy operation, we shall proceed by computing the

α-cuts of the result at any given level, via the corresponding interval operation between α-cuts of the

operands.

III. PROPOSED REPRESENTATION FOR FUZZY NUMBERS

Fuzzy arithmetic implementations are available in various programming languages [21], [22]. These

implementations are based on the lower-upper interval representation format. In this section, we introduce

two novel approaches to encode fuzzy numbers based on the midpoint-radius representation. Table II

IEEE TRANSACTIONS ON FUZZY SYSTEMS 9

presents the general notation used in the remainder of this paper.

TABLE II

FUZZY NUMBER NOTATION.

Symbol Meaning

A Fuzzy number.

mA Kernel of fuzzy number A.

Ai α-cut of level i of fuzzy number A.

lA,i Lower bound of α-cut Ai.

uA,i Upper bound of α-cut Ai.

mA,i Midpoint of α-cut Ai.

ρA,i Radius of α-cut Ai.

δA,i Radius increment of α-cut Ai.

A. Midpoint-radius encoding for symmetric fuzzy numbers

The shape of the membership function is a decisive aspect in fuzzy modelling. Depending on the

application, this function may be symmetric with respect to a vertical axis [23], [24]. We prove that in

the case of symmetric possibility distribution, all the α-cuts are centered on the kernel leading to relevant

properties which we exploit for the proposed representation format. Symmetric fuzzy numbers are defined

as follows.

Definition 10 (Symmetric fuzzy number). Let A be a fuzzy number, µA(⋅) its membership function and

mA its kernel. If µA(⋅) is symmetric around mA, i.e.,

µA(mA − x) = µA(mA + x), ∀x ∈ R, (10)

then A is called a symmetric fuzzy number.

Although symmetry is immaterial for the lower-upper interval representation, it is certainly relevant for

the midpoint-radius one, as it is stated by the following Theorem.

Theorem 1. Let A be a symmetric fuzzy number and mA ∈ R its kernel. Let N ∈ N, i ∈ {1, . . . ,N}, and

Ai = ⟨mA,i, ρA,i⟩, an α-cut. Then,

A is symmetric ⇐⇒ mA,i =mA, ∀ i ∈ {1, . . . ,N}. (11)

IEEE TRANSACTIONS ON FUZZY SYSTEMS 10

Proof: See Appendix A.

The above result can be graphically seen in Fig. 1, where the fuzzy number happens to be symmetric.

Note how all the α-cuts are centered on the kernel. The property of symmetry is also preserved by fuzzy

basic arithmetic operations, as stated by the following Theorem.

Theorem 2. Let A and B be fuzzy numbers and ○ ∈ {+,−, ⋅, /}. If A and B are symmetric, then C = A○B

is also symmetric.

Proof: See Appendix B.

Now we apply Theorems 1 and 2 to propose an efficient encoding of symmetric fuzzy numbers, which

is an original contribution of this paper. The proposed encoding consists of two components: the kernel

(common midpoint for all α-cuts), and the set of radii (for each α-cut). Fuzzy operations are decomposed

subsequently into two parts: (i) the computation of the kernel, and (ii) the computation of the individual

radius of each α-cut. Algorithm 1 illustrates the above in the case of fuzzy multiplication. As we discuss

in Section V, this encoding and algorithm allows us to save both bandwidth and execution time when

performing fuzzy operations, provided that fuzzy numbers are symmetric.

Algorithm 1 Symmetric fuzzy multiplication in the midpoint-radius encoding. (See Table II for notation

details.)

Input: Symmetric fuzzy operands A and B.

Output: Symmetric fuzzy result C = A ⋅ B.

1: kernel: mC = ◻(mA ⋅mB)
2: for i in 1, . . . ,N do

3: radius: ρC,i = △(η + 1

2
ǫ∣mC ∣ + (∣mA∣ + ρA,i)ρB,i + +∣mB∣ρA,i)

4: end for

B. Midpoint-increment encoding

Another interesting property of fuzzy numbers is that any α-cut is contained on all the α-cuts of a

lower level; this is an immediate consequence of the membership function being monotone around the

kernel.

Proposition 1. Let A be a fuzzy number, N ∈ N, i, j ∈ {1, . . . ,N}, and Ai,Aj , α-cuts. Then

αi > αj Ô⇒ Ai ⊂ Aj . (12)

Proof: See Appendix C.

IEEE TRANSACTIONS ON FUZZY SYSTEMS 11

We apply the above result to propose an alternative encoding for symmetric fuzzy numbers. This

encoding also consists of two elements: the kernel, which is the common midpoint of every α-cut, and a

set of radius increments, which correspond to the difference between the radii of two consecutive α-cuts.

The formal definition and notation is as follows.

Definition 11 (Radius increments). LetA be a fuzzy number, N ∈ N and i ∈ {1, . . . ,N}. Let {α1, . . . , αN} ∈ [0,1],
such that α1 > . . . > αN . Let A1, . . . ,AN , be α-cuts and ρA,1, . . . , ρA,N , their respective radii. We define

radius increments, δA,1, . . . , δA,N , as:

δA,i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρA,i − ρA,i−1 if 2 ≤ i ≤ N,

ρA,1 if i = 1.

(13)

From the above definition, it is transparent that any radius of level i can be computed as a sum of

increments:

ρA,i =
i∑

k=1

δA,k. (14)

The purpose of this alternative encoding is to increase accuracy in fuzzy computations. As the increments

are by definition smaller than the radii, the rounding errors associated with increments computation are

also smaller. We develop this concept in detail in Section III-C. First, let us introduce the algorithms to

perform fuzzy operations in the midpoint-increment encoding.

Algorithms 2, 3 and 4 show how to compute the addition, subtraction, multiplication and inversion. Note

that the number of floating-point operations needed by this representation format is not increased compared

to the midpoint-radius representation. In fact, addition and subtraction require one fewer operation per

α-cut than in the midpoint-radius encoding; multiplication and inversion require the same amount of

operations per α-cut, provided that the α-cuts are treated sequentially (so certain computations associated

to a given α-level can be re-used in the following level).

Algorithm 2 Symmetric fuzzy addition and subtraction in the midpoint-increment encoding. (See Table II

for notation details.)

Input: Symmetric fuzzy operands A and B.

Output: Symmetric fuzzy result C = A±B.

1: kernel: mC = ◻(mA ±mB)
2: first inc.: δC,1 =△(12ǫ∣mC ∣ + δA,1 + δA,1)
3: for i in 2, . . . ,N do

4: inc.: δC,i = △(δA,i + δB,i)
5: end for

IEEE TRANSACTIONS ON FUZZY SYSTEMS 12

Algorithm 3 Symmetric fuzzy multiplication in the midpoint-increment encoding. (See Table II for

notation details.)

Input: Symmetric fuzzy operands A and B.

Output: Symmetric fuzzy result C = A ⋅ B.

1: kernel: mC = ◻(mA ⋅mB)
2: accum. in A: tA,1 = △(∣mA∣ + δA,i)
3: accum. in B: tB,1 =△(∣mB ∣)
4: first inc.: δC,1 =△(η + 1

2
ǫ∣mC ∣ + tA,1δB,1 + tB,1δA,1)

5: for i in 2, . . . ,N do

6: accum. in A: tA,i =△(tA,i−1 + δA,i)
7: accum. in B: tB,i =△(tB,i−1 + δB,i)
8: inc.: δC,i = △(η + 1

2
ǫ∣mC ∣ + tA,iδB,i + tB,iδA,i)

9: end for

Algorithm 4 Symmetric fuzzy inversion in the midpoint-increment encoding. (See Table II for notation

details.)

Input: Symmetric fuzzy operand B.

Output: Symmetric fuzzy result C =
1

B
.

1: kernel: mC = ◻(1

mB
)

2: accum.: tB,1 = ∣mB∣
3: first inc.: δC,1 =△(η + 1

2
ǫ∣mC ∣ + −δB,1

tB,1(δB,1 − tB,1))
4: for i in 2, . . . ,N do

5: accum.: tB,i =△(tB,i−1 − δB,i−1)
6: inc.: δC,i = △(η + 1

2
ǫ∣mC ∣ + −δB,i

tB,i(δB,i − tB,i))
7: end for

In the algorithms above, the kernel’s rounding error is added only to the first increment, so one operation

per α-cut is saved. In the case of the multiplication and inversion, it is required to increase i sequentially.

We introduce accumulators t(⋅). In the multiplication, these accumulators store the maximum (absolute)

value of two α-cuts, one in each operand, one level apart from each other. Only one operation is needed

to update the accumulator at each α-level. Interestingly, these accumulators allow for a quite transparent

calculation of the increment; the same amount of operations are needed as in computing the full radius

in the midpoint-radius representation.

C. Error analysis

In this section we compare the accuracy of the methods to compute the radius of α-cuts in both

proposed representation formats. We can see, from the different algorithms we have presented, that the

main operation involved in this kind of computation is the rounded floating-point addition. The following

IEEE TRANSACTIONS ON FUZZY SYSTEMS 13

result, which concerns the error associated to floating-point summation algorithms, is useful for our further

analysis.

Theorem 3 (Bound for the absolute error in summation algorithms [19]). Let x1, . . . , xn ∈ R and Sn =
n∑
i=1

xi.

Let Ŝn be an approximation to Sn computed by a summation algorithm, which performs exactly n − 1

floating-point additions. Let T̂1, . . . , T̂n−1, be the n − 1 partial sums computed by such algorithm. Then,

En ∶= ∣Sn − Ŝn∣ ≤ ǫ n−1∑
i=1

∣T̂i∣, (15)

where ǫ is the relative rounding error.

Proof: See [19].

Hence, the absolute error introduced by a floating-point summation algorithm is no greater than the

epsilon machine, multiplied by the sum of magnitudes of all the intermediate sums.

Theorem 3 can be used to prove that the midpoint-increment representation improves the accuracy of

basic fuzzy computations, compared to the original midpoint-radius representation. The result that we

present below is a direct consequence of the increments being smaller in magnitude than the radii.

Theorem 4. Let ○ ∈ {+,−, ⋅, /} and A,B,C, be fuzzy numbers such that C = A ○ B. Let Ci be the α-cut of

level i of C. Let ρC,i, be the exact radius of Ci. Let us call Erad(⋅), the absolute error of a calculation

performed using the midpoint-radius representation, and Einc(⋅), the absolute error of a calculation

performed using the midpoint-increment alternative. Then

Einc(ρC,i) ≤ Erad(ρC,i), ∀ i ≥ 2. (16)

Proof: See Appendix D.

Theorem 4 allows concluding that the gain in accuracy is driven ultimately by the fact that the radius

at any α-level is always greater than the previous one. This, in turn, is a consequence of the monotony

of the membership function. In the midpoint-increment encoding, we compute the smallest radius first,

and then the others by simply adding the increments. In other words, we break large values into smaller

ones, prior to perform fuzzy computations. As these computations are composed mainly of floating-point

additions, this reduces rounding error in absolute value.

It can be shown that the result holds for any summation algorithm chosen to compute the increments

and the radii, as long as it is the same for both. However, we omit this proof for sake of brevity. The

IEEE TRANSACTIONS ON FUZZY SYSTEMS 14

accuracy gain can also be quantified. It depends on the combination of several factors, e.g., the summation

algorithm used (i.e., the order of the operations), the ratio of increment to radius at different α-levels, the

“precision” of the intervals (i.e., the ratio of midpoint to radius) and the relative rounding error ǫ.

IV. IMPLEMENTATION ASPECTS

The proposed fuzzy arithmetic library is written in CUDA C and C++, and callable from either CPU

and GPU code, effectively adapting itself to the underlying architecture [25].1

The implementation consists of a series of wrappers. At the user-end, we have the two fuzzy classes,

one for each type of fuzzy encoding. We decided to offer the two representation formats, lower-upper for

the general case, and midpoint-radius for when the user is dealing with symmetric fuzzy numbers. The

lower-upper fuzzy class relies on a lower-upper interval class, which serves the purpose of holding the

α-cuts. The lower-upper interval class, in turn, relies on a rounded arithmetic class for operating between

the α-cuts, according to the rules of interval arithmetic. The midpoint-radius fuzzy class is linked directly

to the rounded-arithmetic class, as the α-cuts are managed as a whole and not individually, to make use of

the result from Theorem 2 in the previous section. Ultimately, the rounded arithmetic class is a wrapper

of C and CUDA compiler intrinsics directly associated to specific machine instructions.

The fuzzy template classes are parametrized by the number of α-cuts N and the data type T . In the

lower-upper encoding, N and T specify the size and type of the array of intervals which corresponds to

the different α-cuts. In the midpoint-radius encoding, N and T are the size and type of the array of radii,

and T is also the type of the scalar midpoint common to all the α-cuts.

The basic arithmetic operators are overloaded to work on both fuzzy classes. The loop that sweeps over

the set of α-cuts (see Algorithms 1, 2, 3 and 4) is a sequential one; we decided not to spread it among

different threads in GPU code, since most applications in real life do not involve in their data model more

than three to four degrees of uncertainty [2]–[8], which is way too low to conveniently exploit thread

level parallelism (TLP) on GPUs. However, TLP may be exploited in vector operations involving fuzzy

numbers, through kernels that assigns each element of a fuzzy array to a different thread.

Performance of basic operations over complex data type such as fuzzy numbers are impacted by

numerous factors. Following subsections discuss and compare the two considered representation formats,

namely lower-upper and midpoint-radius, regarding number of instructions, memory requirements and

instruction level parallelism (ILP).

1The source code is available at https://code.google.com/p/fuzzy-gpu/.

IEEE TRANSACTIONS ON FUZZY SYSTEMS 15

A. Number of instructions

Table III shows the number of instructions, such as basic operations with different rounding, minimum,

maximum and absolute value, required in the addition, multiplication and inversion of different data types,

including fuzzy numbers. In fuzzy data types, N represents the number of α-cuts. Comparing the two

main fuzzy approaches, i.e., lower-upper and midpoint-radius, the following are relevant remarks. The

lower-upper fuzzy requires only 3 operations less than midpoint-radius in the addition, but when it comes

to the multiplication, it requires 2.8 times more operations per α-cut. In the case of a full division, which

corresponds to one inversion plus one multiplication, the lower-upper fuzzy requires 16N operations,

whereas the midpoint-radius requires 11 + 9N , i.e., lower-upper requires 1.77 more operations per α-

cut. Therefore, just by comparing the number of instructions, we can anticipate that the midpoint-radius

representation shall bring a speed-up over lower-upper.

TABLE III

NUMBER OF INSTRUCTIONS PER OPERATION, FOR DIFFERENT DATA TYPES.

Data type
Number of instructions

Addition Multiplication Inversion

Scalar 1 1 1

Lower-upper interval 2 14 2

Midpoint-radius interval 5 11 9

Lower-upper fuzzy 2N 14N 2N

Midpoint-radius fuzzy 3 + 2N 6 + 5N 5 + 5N

Midpoint-increment fuzzy 4 +N 6 + 5N 5 + 5N

N : number of α-cuts.

B. Memory usage

Table IV shows the memory space required to store different numbers in data types. The units have

been normalized to the size of one scalar. In the fuzzy case, once again, N represents the number of α-

cuts. The lower-upper fuzzy requires double the space than the midpoint-radius and midpoint-increment

representation. As the bandwidth requirement of both the latter is half the one of the former, an application

that needs to access memory at a high rate will definitely benefit from that property.

We should mention that the memory footprint of all these representation formats can be further reduced

by lowering the type used to store either one of the bounds, the radius or the increment, in the case where

IEEE TRANSACTIONS ON FUZZY SYSTEMS 16

the α-cuts are not too wide. The impact is solely on the width of the α-cuts which can be considered and

not on the dynamic of numbers. For example, the lower bound can be stored in double precision and the

upper bound in single precision; or, similarly, the midpoint in double precision and the radius in single

precision. This again is an advantage for the proposed formats, as the lower bound is an array of scalars,

whereas the midpoint is only one scalar.

TABLE IV

MEMORY REQUIREMENTS OF DIFFERENT DATA TYPES.

Data type Memory usage

Scalar 1

Lower-upper interval 2

Midpoint-radius interval 2

Lower-upper fuzzy 2N

Midpoint-radius fuzzy 1 +N

Midpoint-increment fuzzy 1 +N

N : number of α-cuts.

C. Instruction level parallelism

Ideal ILP, defined as the ratio of the number of instructions to the number of levels in the dependency

tree [26], is a good measure of how a given sequence of instructions could be handled on today’s but

also future architectures. The higher the ideal ILP is, the higher the amount of instructions that can be

pipelined during the execution of a given application. However, a bigger ideal ILP requires a larger amount

of hardware resources.

Table V shows the ideal ILP in the addition, multiplication and inversion of different data types. The

number of α-cuts in lower-upper and midpoint-radius fuzzy data types does not affect the size of the

dependency tree, as each α-cut is processed independently from all others. The same is valid for the

addition in the midpoint-increment representation. However it does not hold in the multiplication and

inversion, where we face dependencies between computations belonging to different α-cuts. Accordingly,

the size of the dependency tree depends in this case on N , the number of α-levels.

In general, lower-upper fuzzy exhibits more ideal ILP than midpoint-radius and midpoint-increment in

either the addition, the multiplication and the inversion. However, ILP is exploited differently depending

IEEE TRANSACTIONS ON FUZZY SYSTEMS 17

on the GPU generation as well as the precision in use (single or double). For example, GPUs with CUDA

capability 3.0 can schedule up to 2 independent instructions for a given warp scheduler. The impact of

ILP on example applications is also studied in the next section.

TABLE V

ILP PER ARITHMETICAL OPERATION, FOR DIFFERENT DATA TYPES.

Data type
ILP

Addition Multiplication Inversion

Scalar 1 1 1

Lower-upper interval 2
14

3
2

Midpoint-radius interval
5

4

11

5

9

2

Lower-upper fuzzy 2N
11

5
N 2N

Midpoint-radius fuzzy
3

4
+
1

2
N

6

5
+N 1 +

4

5
N

Midpoint-increment fuzzy 1 +
1

4
N

6 + 5N

3 +N

5 + 5N

3 +N

N : number of α-cuts.

V. TESTS AND RESULTS

In this section we evaluate the performance of the proposed fuzzy library on GPU. According to the

CUDA Programming Guide, GPU performance is a matter of balance between computing intensity and

memory usage [27]. With this regard, we consider two types of applications: compute-bound application,

where arithmetic instructions are dominant over memory accesses; and memory-bound application, where

the opposite is true. By measuring the performance of the library in this two extreme cases, we obtain a

general idea of the behaviour to expect for any application in between.

The computing environment used in the proposed case study is defined in Table VI. To generate different

scenarios, we varied some key parameters as shown in Table VII.

A. Compute-bound test: AXPY kernel

Figure 2 shows a kernel that computes the n-th element of the series xk+1 = axk + b, where all the

values are fuzzy numbers. The threads read the value of a from an input array, perform the computation

through an iterative loop, and then write the result to an output array. As we increment the number of

IEEE TRANSACTIONS ON FUZZY SYSTEMS 18

TABLE VI

COMPUTING ENVIRONMENT USED IN THE TESTS.

Hardware
Compute

capability

Number of

cores

Xeon X560 CPU N/A 12 (1 used)

GeForce GTX 480 GPU 2.0 480

GeForce GTX 680 GPU 3.0 1,536

Software Version

GCC 4.8.2

CUDA 6.0

TABLE VII

PARAMETERS AND THEIR VALUES, USED IN GENERATING DIFFERENT TESTS SCENARIOS.

Parameter Values

Number of α-cuts 1 to 24

Fuzzy encoding
Lower-upper

Midpoint-radius

Precision
Single

Double

iterations, n, the number of floating point instructions grows, however, the number of accesses to global

memory remains constant, one for loading the starting value and one for storing the result. In this way,

we can arbitrarily increment the ratio of floating-point instructions to global memory accesses.

We measured the execution time of our kernel, as well as other performance indicators, under a series

#include "fuzzy_lib.h"

template<class T, int N>

__global__ void axpy(int n,

fuzzy<T, N> * input,

fuzzy<T, N> b,

fuzzy<T, N> * output)

{

int thread_id = blockIdx.x * blockDim.x + threadIdx.x;

fuzzy<T, N> a, c = 0;

a = input[thread_id];

for (int i = 0; i < n; i++)

c = a * c + b;

output[thread_id] = c;

}

Fig. 2. AXPY kernel, compute-bound test.

IEEE TRANSACTIONS ON FUZZY SYSTEMS 19

of scenarios generated by varying parameters, according to Table VII. The kernel arguments were tuned

for different runs in order to achieve maximum occupancy of the architecture. The results are plotted in

Fig. 3. Figure 3(a) shows different performances achieved by different configurations on different CPU

and GPU architectures. Performance is represented on a logarithmic scale as the number of iteration

performed per second depending on the number of α-cut. The Xeon CPU is running a single threaded

version of the kernel using (i) our library, and (ii) the java library in [22]; however, note that the latter

does not provide certified interval arithmetic with correct rounding attributes. We observe differences and

performance gains coming from heterogeneous sources. First, there is a pure architectural gain of about

three orders of magnitude on passing from CPU to GPU to execute the code. Second, within the GPU,

there is an algorithmic gain on choosing the midpoint-radius over the lower-upper encoding, although this

remains in the same order of magnitude. Finally, there is a gain of one order of magnitude by considering

single instead of double precision format in fuzzy calculations.

The most interesting of these gains is the one driven by the algorithm, as it puts on relief the differences

between lower-upper and midpoint-radius fuzzy implementations. Figure 3(b) shows the speed-up achieved

by midpoint-radius over lower-upper using different precision on two GPU architectures. The shapes

we observe are the results of differences in the number of operations, memory size and stronger data

dependencies in the case of the midpoint-radius. The difference in the number of operations accounts for

the main trend and the other factors account for the irregularities.

The main trend is observed between 1 and 8 to 9 α-cuts. In this range, the curve follows a growing

pattern which is consistent with the theoretical analysis of the number of operations per different type

of fuzzy operations, presented in section IV. According to Table III, the ratio between the number of

operations per cycle of the AXPY loop required by each fuzzy encoding is:

rc(N) = 16N

7 + 7N
, (17)

where N is the number of α-cuts. Note that equation (17) conveniently describes the shape of the speed-up

curve between 1 and 8 to 9 α-cuts, as can be seen in Fig. 3b. Moreover, such behaviour does not depend

on the architecture neither on the precision. This result validates the theoretical analysis and illustrates

the performance of the library when architecture constraints are not binding. From 9 to 10 α-cuts, the

effect of register spilling and local memory accesses with high latency becomes preponderant. It is worth

noting that CUDA devices of compute capability 2.0 and 3.0 may allocate up to 63 registers of 32-bits

IEEE TRANSACTIONS ON FUZZY SYSTEMS 20

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25

Number of α-cuts

G
it

er
s/

se
c

DOUBLE LU XEON (i)
DOUBLE LU XEON (ii)

DOUBLE LU GTX480

DOUBLE MR GTX480
SINGLE MR GTX480

(a)

 1

 10

 0 5 10 15 20 25

Number of α-cuts

S
p

ee
d

-u
p

DOUBLE GTX480
DOUBLE GTX680

SINGLE GTX480

(b)

 10

 100

 0 5 10 15 20 25

Number of α-cuts

N
u

m
b

er
o

f
re

g
is

te
rs

DOUBLE LU
DOUBLE MR

SINGLE LU
SINGLE MR

(c)

 1

 10

 100

 0 5 10 15 20 25

Number of α-cuts
DOUBLE LU
DOUBLE MR

SINGLE LU
SINGLE MR

In
st

ru
ct

io
n

re
p

la
y

s
(%

)

(d)

Fig. 3. Results of the compute-bound test: (a) Performance comparison of different representation formats and scenarios. (b) Speed-up

achieved by midpoint-radius over lower-upper, algorithmic gain. (c) Registers used by either representation format. (d) Instruction replays

due to local memory accesses, in either representation format.

per thread on a kernel execution. Double precision values are stored in two consecutive registers. When

this limit is binding, the kernel uses local memory to allocate extra data. Figure 3(c) shows the number

of registers used by the AXPY kernel per implementation. Figure 3(d) shows the percentage of replayed

instructions due to local memory accesses.

When using the lower-upper encoding and single precision values, the 63 registers limit is reached

at about 9 α-cuts. Local memory transactions start at 10 α-cuts. Figure 3(b) shows an increase of the

speed-up in single precision for 10 α-cuts, as the midpoint-radius implementation is not suffering from

register spilling yet. The size of the midpoint-radius fuzzy being about the half of the lower-upper, spilling

only starts at double the α-cuts, i.e., 18. For more than 18 α-cuts, the speed-up curve in single precision

moves back to the ideal shape that can be explained purely by the ratio of number of operations.

In double precision, the scenario is slightly more complex. Both lower-upper and midpoint-radius fuzzy

IEEE TRANSACTIONS ON FUZZY SYSTEMS 21

start spilling registers relatively early, between 6 and 8 α-cuts. Figure 3(b) shows that there is a slight

drop in the speed-up in double precision, at about 9 α-cuts. The performance of the midpoint-radius

fuzzy implementation decreases in this zone. We believe this is due to spilling the midpoint of one of

the fuzzy numbers involved in the calculation. Note that midpoint-radius fuzzy arithmetic proceeds by

computing the midpoint first and then uses the result to calculate all the radii. If one midpoint is spilled to

off-chip local memory, there might not be enough independent arithmetic instructions to hide the latency

of accessing that value. This effect cannot be appreciated in single precision as register spilling does not

have a relevant impact despite the high number of α-cuts considered. This proves that performance is

mainly driven by the amount of memory required to store data. Temporal dependency among data has a

limited impact.

As stated in Section IV, real-world applications typically do not involve more than 3 to 4 α-cuts. In this

range, register spilling is not an issue. However, if a larger number of α-cuts is necessary, we may consider

the following. CUDA allows to change the amount of memory allocated to different GPU features, such

as L1 cache and shared memory [27]. Typically, 64 KB of memory are to be distributed among these two

functions. In our experiment, we observe an interesting trade-off. On one hand, increasing L1 memory

cache allows to increase the number of α-cuts for which register spilling is not an issue. On the other

hand, increasing shared memory allows to mitigate the negative effect of register spilling whenever it

appears.

B. Memory-bound test: sort by keys

Figure 4 shows a THRUST [28] program that sorts a vector of fuzzy numbers on the device. This example

shows how easily the fuzzy type is integrated to other GPU libraries, as all the arithmetic operators are

overloaded.

The vector is sorted by keys, which are integers of 32 bits. The sorting algorithm used by THRUST

in this case is radix sort. The THRUST kernels read the fuzzy array from global memory, sort it on the

device, and then write the sorted array back to global memory. The sorting process performs one step per

key bit, i.e., 32 steps in this case. At each step, each element in the fuzzy array is read and copied into

a new position. This is a typical case of memory-bound application.

GPU sorting time is measured when varying different parameters, according to Table VII. Results for

the GTX 480 are plotted in Fig. 5. Figure 5(a) shows performance of different fuzzy encodings and

precisions, in terms of millions of sorted elements per second. Figure 5(b) presents the same information

IEEE TRANSACTIONS ON FUZZY SYSTEMS 22

#include "fuzzy_lib.h"

#include <thrust/sort.h>

int main(){

thrust::device_vector<fuzzy<double, 4> > d_a(M);

thrust::device_vector<unsigned int> k(M);

...

thrust::sort_by_key(k.begin(), k.end(), d_a.begin());

}

Fig. 4. THRUST’s sort by keys, memory-bound test.

in terms of speed-up of midpoint-radius over lower-upper. The time spent in transferring data between

host and device is not considered in the experiment.

 1

 10

 100

 1000

 0 5 10 15 20 25

Number of α-cuts

x
1

M
so

rt
ed

el
em

en
ts

/s
ec

DOUBLE LU
DOUBLE MR

SINGLE LU
SINGLE MR

(a)

 1

 10

 100

 0 5 10 15 20 25

Number of α-cuts

S
p

ee
d

-u
p

DOUBLESINGLE

(b)

Fig. 5. Results of the memory-bound test: (a) Performance comparison of different representation formats and scenarios. (b) Speed-up

achieved by midpoint-radius over lower-upper, algorithmic gain.

Figure 5(a) shows that for the same number of α-cuts, midpoint-radius encoding allows to sort twice

the amount of fuzzy numbers than lower-upper encoding, whether we are in single or double precision.

For this application, the size of the data array being sorted becomes the main factor driving performance.

Midpoint-radius requires half the size of lower-upper representation, thanks to a shared midpoint between

all the α-cuts. The memory ratio of midpoint-radius to lower-upper representation can be obtained from

Table IV:

rm(N) = 2N

1 +N
. (18)

Observe that the speed-up curves in Fig. 5(b) follow approximately (18), except between 8 and 14 α-cuts

in double precision and for more than 15 α-cuts in single precision, where sudden performance drops are

causing the speed-up to fluctuate. THRUST’s sort uses shared memory to speed-up the sorting process.

When the values being treated by threads within one Streaming Multiprocessor (SM) do not longer fit

IEEE TRANSACTIONS ON FUZZY SYSTEMS 23

in shared memory, it starts using global memory with a direct impact over performance. As we stated

above, lower-upper fuzzy needs twice the amount of memory than midpoint-radius fuzzy. As a result of

this, it saturates shared memory at half the number of α-cuts. When both architectures saturate shared

memory, the speed-up curve goes back to the normal behaviour, explained by the ratio of memory sizes.

Note that single precision midpoint-radius does not saturate shared memory in this experiment and keeps

a high performance all along the considered range.

VI. CONCLUSION

Fuzzy arithmetic is an efficient tool to handle uncertainty in numerical modelling. The α-cut concept,

which allows to express fuzzy operations in terms of simpler interval algebra, is currently accepted as

the implementation standard, with the lower-upper interval representation as the native format of choice.

However, this approach suffers from performance, memory and floating-point error issues, especially when

several levels of uncertainty are considered. In this article, we propose a novel approach to represent fuzzy

numbers having a symmetric membership function, that allows to deal with such issues. The proposed

midpoint-radius format addresses the issues of performance and memory usage. The proposed midpoint-

increment format addresses the issue of floating-point rounding errors.

The paper also describes the implementation of fuzzy arithmetic using the proposed formats in CUDA

and C++, and discusses the performance impact of TLP, ILP and memory usage for recent NVIDIA

GPUs. We show through a theoretical study and experimental results considering compute-bound and

memory-bound applications, that a gain of 2 to 20 can be obtained by using the midpoint-radius encoding

instead of the conventional lower-upper format.

Future work will consider the extension of the library in order to include more operations, such as the

square root and the c-mean, the latter associated to fuzzy clustering. Also, an efficient way of handling

asymmetry (e.g., in the case of the square root operation) will be investigated through the use of symmetric

envelopes.

APPENDIX A

PROOF OF THEOREM 1

We prove the reciprocal, i.e.,

A is non-symmetric ⇐⇒ ∃ j ∈ {1, . . . ,N}, mA,j ≠mA. (19)

IEEE TRANSACTIONS ON FUZZY SYSTEMS 24

i) (Ô⇒)
If A is non-symmetric, then there is x0 ∈ R such that:

µA(mA − x0) ≠ µA(mA + x0). (20)

Let j ∈ {1, . . . ,N} and Aj = [lA,j , uA,j] be an α-cut, such that:

lA,j =mA − x0. (21)

Let mA,j be the midpoint of Aj and assume:

mA,j =mA. (22)

Combining equations (21) and (22), we have the following for the upper bound of Aj :

uA,j = 2mA,j − lA,j = 2mA − lA,j =mA + x0. (23)

By definition of α-cut, in equation (8):

µA(lA,j) = µA(uA,j). (24)

And replacing lA,j and uA,j from equations (21) and (23), respectively, in (24):

µA(mA − x0) = µA(mA + x0), (25)

which clearly contradicts equation (20). Hence, the assumption made in (22) cannot hold.

ii) (⇐Ô)
Again, let Aj = [lA,j , uA,j], and also x0 ∈ R such that:

lA,j =mA − x0. (26)

By definition of α-cut, in (8):

µA(lA,j) = µA(uA,j). (27)

Combining the assumption, mA,j ≠mA, and (26), we have, for uA,j:

uA,j = 2mA,j − lA,j ≠ 2mA − lA,j =mA + x0. (28)

IEEE TRANSACTIONS ON FUZZY SYSTEMS 25

But by construction, both numbers uA,j and mA + x0 are greater than mA. Thus, we can apply the

assumption in (6c) regarding monotonocity of the membership function, obtaining:

µA(uA,j) ≠ µA(mA + x0). (29)

And replacing equations (26) and (27) in (29):

µA(mA − x0) ≠ µA(mA + x0). (30)

Hence A is non-symmetric.

APPENDIX B

PROOF OF THEOREM 2

Let i be a level of uncertainty. Let the kernels, α-cuts, midpoints and radii associated to A,B,C, be

noted in accordance with Table II. According to equation (9):

Ci = Ai ○ Bi. (31)

As A and B are symmetric, by equation (11) from Theorem 1:

mA,i =mA, mB,i =mB, ∀ i. (32)

The kernel of C can be trivially obtained as the midpoint of the α-cut of level 1, i.e.:

mC =mC,1. (33)

If ○ ∈ {+,−, ⋅}, then we have from equations (5), (31), (32) and (33):

mC,i = ◻(mA,i ○mB,i)
= ◻(mA,1 ○mB,1)
=mC,1

=mC , ∀ i. (34)

Hence C is symmetric. If ○ is the inversion, the analogous calculation yields the result.

IEEE TRANSACTIONS ON FUZZY SYSTEMS 26

APPENDIX C

PROOF OF PROPOSITION 1

Let us recall the following result which characterizes inclusion of intervals [20]:

⟨m1, ρ1⟩ ⊂ ⟨m2, ρ2⟩ ⇐⇒ ∣m2 −m1∣ < ρ2 − ρ1. (35)

Let Ai = ⟨mA,i, ρA,i⟩ and Aj = ⟨mA,j , ρA,j⟩. Also, let µA(⋅) be A’s membership function and mA its

kernel. By definition of α-cut, in (8):

µA(mA,i − ρA,i) = µA(mA,i + ρA,i) = αi, (36a)

µA(mA,j − ρA,j) = µA(mA,j + ρA,j) = αj , (36b)

Note that the kernel mA can be interpreted as the α-cut of level 1, so we have the following order relations:

mA,i − ρA,i ≤mA ≤mA,i + ρA,i, (37a)

mA,j − ρA,j ≤mA ≤mA,j + ρA,j . (37b)

Now we invoke the assumptions in (6b) and (6c) from Definition 6, regarding strict monotonocity of the

membership function, and also the assumption αi > αj . Then from equations (36) and (37):

mA,i − ρA,i >mA,j − ρA,j , (38a)

mA,i + ρA,i <mA,j + ρA,j . (38b)

Combining both:

−(ρA,j − ρA,i) <mA,j −mA,i < ρA,j − ρA,i. (39)

And more synthetically:

∣mA,j −mA,i∣ < ρA,j − ρA,i. (40)

IEEE TRANSACTIONS ON FUZZY SYSTEMS 27

APPENDIX D

PROOF OF THEOREM 4

We prove the result for the addition and subtraction. The other two cases (multiplication and inversion)

can be deduced using a similar procedure. The notation used below is based on that shown in Table II.

We proceed by induction.

i) (Assume i = 2.)

In the midpoint-increment representation, according to equation (14), ρC,2 can be computed as:

ρC,2 = δC,1 + δC,2. (41)

Thus, the error in computing ρC,2 is the sum of the errors in computing δC,1 and δC,2, i.e,:

Einc(ρC,2) = Einc(δC,1) +Einc(δC,2). (42)

By applying Theorem 3 to bound these two error terms, we have:

δC,1 =△(1
2
ǫ∣mC ∣ + δA,1 + δB,1). (43)

We compute the above with a summation algorithm, that performs the following two steps:

T̂1 =△(1
2
ǫ∣mC ∣ + δA,1),

T̂2 =△(T̂1 + δB,1). (44)

Then, from equation (15):

Einc(δC,1) ≤ ǫ(∣T̂1∣ + ∣T̂2∣)
= ǫ(2δA,1 + δB,1) + ǫ2∣mC ∣. (45)

We do the same for δC,2, in this case obtaining:

Einc(δC,2) ≤ ǫ(δA,2 + δB,2). (46)

Replacing equations (45) and (46) in (42), and using equation (14) again:

Einc(ρC,2) ≤ ǫ(δA,1 + ρA,2 + ρB,2) + ǫ2∣mC ∣. (47)

IEEE TRANSACTIONS ON FUZZY SYSTEMS 28

Following an analogous procedure, we obtain a bound on the error in computing ρC,2 using the

midpoint-radius representation:

Erad(ρC,2) ≤ ǫ(δA,1 + δA,2 + ρA,2 + ρB,2) + ǫ2∣mC ∣. (48)

And as δA,2 > 0, we have our result:

Einc(ρC,2) ≤ Erad(ρC,2). (49)

ii) (Assume Einc(ρC,i) ≤ Erad(ρC,i), ∀ i ≥ 2.)

In the midpoint-increment representation, ρC,i+1 can be computed as:

ρC,i+1 = ρC,i + δC,i+1. (50)

As in the previous part, we decompose the error in two terms:

Einc(ρC,i+1) = Einc(ρC,i) +Einc(δC,i+1). (51)

Now applying the induction assumption:

Einc(ρC,i+1) ≤ Erad(ρC,i) +Einc(δC,i+1). (52)

Using Theorem 3:

Einc(ρC,i+1) ≤ ǫ(ρA,i + ρA,i+1 + ρB,i+1) + ǫ2∣mC ∣. (53)

Similarly:

Erad(ρC,i+1) ≤ ǫ(2ρA,i+1 + ρB,i+1) + ǫ2∣mC ∣. (54)

And, since ρA,i < ρA,i+1:

Einc(ρC,i+1) ≤ Erad(ρC,i+1). (55)

REFERENCES

[1] W. Siler and J. J. Buckley, Fuzzy expert systems and fuzzy reasoning. John Wiley & Sons, 2005.

[2] Y. Yoshida, M. Yasuda, J.-i. Nakagami, and M. Kurano, “A new evaluation of mean value for fuzzy numbers and its application to

american put option under uncertainty,” Fuzzy Sets and Systems, vol. 157, no. 19, pp. 2614–2626, 2006.

IEEE TRANSACTIONS ON FUZZY SYSTEMS 29

[3] J.-C. Buisson and A. Garel, “Balancing meals using fuzzy arithmetic and heuristic search algorithms,” IEEE Transactions on Fuzzy

Systems, vol. 11, no. 1, pp. 68–78, Feb 2003.

[4] S. Bonvicini, P. Leonelli, and G. Spadoni, “Risk analysis of hazardous materials transportation: evaluating uncertainty by means of

fuzzy logic,” Journal of Hazardous Materials, vol. 62, no. 1, pp. 59–74, 1998.

[5] J. Bondia, A. Sala, J. Pico, and M. Sainz, “Controller design under fuzzy pole-placement specifications: An interval arithmetic approach,”

IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 822–836, Dec 2006.

[6] C.-T. Chen, C.-T. Lin, and S.-F. Huang, “A fuzzy approach for supplier evaluation and selection in supply chain management,”

International journal of production economics, vol. 102, no. 2, pp. 289–301, 2006.

[7] V. Miranda and J. Saraiva, “Fuzzy modelling of power system optimal load flow,” in Power Industry Computer Application Conference,

1991. Conference Proceedings. IEEE, 1991, pp. 386–392.

[8] M. Cortes-Carmona, R. Palma-Behnke, and G. Jimenez-Estevez, “Fuzzy arithmetic for the DC load flow,” IEEE Transactions on Power

Systems, vol. 25, no. 1, pp. 206–214, Feb 2010.

[9] D. Dubois and H. Prade, “Operations on fuzzy numbers,” International Journal of systems science, vol. 9, no. 6, pp. 613–626, 1978.

[10] V. Volkov, “Better performance at lower occupancy,” in Proceedings of the GPU Technology Conference, GTC, vol. 10, 2010.

[11] S. Collange, M. Daumas, and D. Defour, “Interval arithmetic in CUDA,” GPU Computing Gems, vol. 2, p. 99, 2012.

[12] D. T. Anderson, R. H. Luke, and J. M. Keller, “Speedup of fuzzy clustering through stream processing on graphics processing units,”

IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 1101–1106, 2008.

[13] M. Martı́nez-Zarzuela, F. J. D. Pernas, J. F. D. Higuera, and M. A. Rodrı́guez, “Fuzzy ART neural network parallel computing on the

GPU,” in Computational and Ambient Intelligence. Springer, 2007, pp. 463–470.

[14] H. Brönnimann, G. Melquiond, and S. Pion, “The design of the Boost interval arithmetic library,” Theoretical Computer Science, vol.

351, no. 1, pp. 111–118, 2006.

[15] N. Revol and F. Rouillier, “The MPFI library,” 2001.

[16] F. Goualard, “Gaol 3.1.1: Not just another interval arithmetic library,” Laboratoire d’Informatique de Nantes-Atlantique, vol. 4, 2006.

[17] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–70, Aug 2008.

[18] S. M. Rump, “Fast and parallel interval arithmetic,” BIT Numerical Mathematics, vol. 39, no. 3, pp. 534–554, 1999.

[19] N. J. Higham, Accuracy and stability of numerical algorithms. Siam, 2002.

[20] A. Neumaier, “A distributive interval arithmetic,” Freiburger Intervall-Berichte, vol. 82, no. 10, pp. 31–38, 1982.

[21] A. Anile, S. Deodato, and G. Privitera, “Implementing fuzzy arithmetic,” Fuzzy Sets and Systems, vol. 72, no. 2, pp. 239–250, 1995.

[22] N. Kolarovi, “Fuzzy numbers and basic fuzzy arithmetics (+, -, *, /, 1/x) implementation written in Java.” 2013.

[23] C.-H. Chang and Y.-C. Wu, “The genetic algorithm based tuning method for symmetric membership functions of fuzzy logic control

systems,” in International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, 1995. IEEE, 1995,

pp. 421–428.

[24] J. Mendel and H. Wu, “Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems,” IEEE Transactions on

Fuzzy Systems, vol. 14, no. 6, pp. 781–792, Dec 2006.

[25] D. Defour and M. Marin, “FuzzyGPU: A Fuzzy Arithmetic Library for GPU,” in 2014 22nd Euromicro International Conference on

Parallel, Distributed and Network-Based Processing (PDP), Feb 2014, pp. 624–631.

[26] B. Goossens and D. Parello, “Limits of instruction-level parallelism capture,” Procedia Computer Science, vol. 18, pp. 1664–1673,

2013.

[27] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, June 2011.

[28] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010, version 1.7.0. [Online]. Available: http://thrust.github.io/

