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We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and
magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen
to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating
impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons
between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different
configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained
magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the
case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán
flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic
field.
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I. INTRODUCTION

Since the development of hot-wire measurements in hy-
drodynamic turbulence in the laboratory, several reports of
long-term memory in velocity time series (i.e., nonnegligible
correlations in time scales much larger than the time scale
associated with the energy-containing eddies in the flow) can
be found in the literature (see, e.g., [1,2] for recent reports).
The origin of such long-term correlations is unclear, as current
knowledge of turbulence indicates that three-dimensional
flows should transfer energy from the energy-containing scale
towards smaller scales (where the characteristic time scales
are shorter). Therefore, no correlations at time scales longer
than the energy-containing scale are to be expected.

Evidence of long-term memory (or “long-range depen-
dence”) is often observed in the frequency spectrum of time
series as a range of frequencies corresponding to 1/f noise.
By 1/f noise (also often called “flicker” noise), it is usually
meant that the power spectrum of the signal is of the form
E(f ) ∼ f −α , where f is the frequency, and with α loosely
between 0.5 and 1.5. The case with α = 1, which strictly
speaking corresponds to 1/f noise, is the case with equal
energy per octave independent of the frequency. The range
of frequencies in which this phenomenon often develops
corresponds not only to frequencies smaller than the frequency
associated with the energy-containing eddies, but often also
to frequencies that (if the Taylor hypothesis is used) are
associated with length scales much larger than the physical
extension of the fluid. Therefore, such correlations cannot be
associated with convective motions in the turbulent flow, and
must be associated with long-term modulations in the system.

Observations of 1/f fluctuations are not exclusive of
hydrodynamic or magnetohydrodynamic (MHD) turbulence,
and are widely found in natural and nonlinear systems [3].
As a result, they are often considered as a signature of

scale-invariant features of an underlying dynamical process.
Time signals displaying 1/f noise in their spectral density have
been reported in electronics, tree growth, and human activities
such as music and the stock market [4]. In conducting fluids
and plasmas, 1/f fluctuations have also been reported (see,
e.g., [5,6]). In the interplanetary magnetic field, its presence
has been known for some time through analysis of time signals
measured in situ near Earth’s orbit [7–9]. Long-term behavior
has also been found in time series of the geomagnetic field
[10–12] and in dynamo laboratory experiments [13].

This ubiquity has motivated several works that attempted to
identify general sources of 1/f noise and long-term memory.
Recent studies focused in the particular cases of hydrodynamic
and MHD flows [6,14] obtained 1/f in MHD with and
without a background magnetic field, but did not observe it in
isotropic hydrodynamic flows. The modes giving the dominant
contribution to the long-term correlations were identified to be
modes with the largest available wavelength in the domain.
Random isotropic forcing, with a short-time memory to give
a single (unit) correlation time, was used to stir the flows
in [6], while random initial conditions in ideal systems were
considered in [14]. It was concluded that long-term memory
is more easily seen in systems that develop inverse cascades,
or that have nonlocal interactions [15].

In this work, we consider time series stemming from ex-
periments and direct numerical simulations of hydrodynamic
and MHD turbulence. Simulations are done in periodic boxes,
but with a volumetric forcing chosen to mimic the geometry
of the flow in the experiments. Parameters in the simulations
are also chosen to (within computational limitations) allow
comparisons between the experiments and the numerical re-
sults. Two different configurations are explored: the case with
an externally imposed magnetic field (but with the magnetic
field weak enough that can be considered a passive vector
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tracer and used to characterize the flow), and the case with
self-sustained magnetic fields. The former case (corresponding
to “induction,” as the magnetic field fluctuations observed are
induced by motions of the conducting flow) can be relevant for
many liquid metal laboratory experiments and for industrial
flows. The latter, corresponding to a magnetohydrodynamic
dynamo, has implications for magnetic field generation in
geophysics and astrophysics.

II. EXPERIMENTS AND SIMULATIONS

A. Experiments

Experimental data discussed in this article have been
obtained in the VKG and VKS experimental setups (see Fig. 1).
The VKG experiment is a von Kármán swirling flow of liquid
gallium, while VKS is a von Kármán flow of liquid sodium. In
both cases the von Kármán flow is generated in the gap between
two counterrotating impellers in a cylindrical vessel. This
geometry has been extensively investigated in the past decade
in the context of magnetic field self-generation by dynamo
effect. Its interest in MHD studies has been motivated by
the large-scale topology of the generated flow which exhibits
strong differential rotation and helicity.

The VKG experiment is mostly designed to investigate
MHD mechanisms as induction processes (transport and
deformation of magnetic field lines by the flow) and flow
modification by an imposed magnetic field (via the Lorentz
force acting on the moving conducting fluid). The reachable
magnetic Reynolds number Rm = UL/η (which compares
the magnetic induction effects to magnetic dissipation effects,
with U the typical velocity of the flow, L its typical dimension,
and η the magnetic diffusivity) accessible in VKG is of order
unity so that no dynamo effect is expected to be observed in
this experiment. On the other hand, the VKS facility has been
designed and optimized for dynamo generation. It is twice as
large as VKG, with an available mechanical power 15 times
larger, and it uses liquid sodium which is less resistive than
gallium. As a consequence, the accessible magnetic Reynolds
number in VKS is of the order of 50. In 2006 the first dynamo
generation was observed in VKS when soft iron-impellers
were used to drive the flow. Details of the VKG and VKS
experiments can be found in [13,16,17].

As for all liquid metals, the magnetic Prandtl number
(defined as the ratio of the kinematic viscosity ν of the fluid to
its magnetic diffusivity η, Pm = ν/η) of gallium and sodium
is very small (PmGa = 1.4 × 10−6, PmNa = 6.2 × 10−6). As
a consequence, flows with magnetic Reynolds number Rm
of order unity or larger have a kinematic Reynolds number
Re = UL/ν = Rm/Pm exceeding 105, hence operating in
highly turbulent conditions. Magnetic processes in VKG and
VKS experiments are therefore submitted to highly fluctuating
turbulent flows. To this respect, von Kármán flows are
particularly interesting as they are known to present a wide
hierarchy of scales of fluctuations. At intermediate and small
scales, the flow behaves as traditional turbulence (although
anisotropic), with for instance a classical k−5/3 Kolmogorov
spatial spectra. At larger scales the flow undergoes in many
cases long-term dynamics, which in the absence of strong or

FIG. 1. (Color online) Sketch of the experimental setups.
(a) VKS experiment drives a von Kármán swirling flow of liquid
sodium in a cylindrical vessel. Data from the experiments reported
here were obtained in a configuration with an inner copper shell
and an annulus in the midplane. (b) VKG experiment drives a von
Kármán flow of liquid gallium in a cylindrical vessel. A pair of
lateral Helmholtz coils allows us to apply a transverse magnetic field.
Positions of the measurement probes are indicated with the stars.

self-generated magnetic fields are mostly driven by hydrody-
namic instabilities of the midplane shear layer [2,18].

As already mentioned, the VKG experiment is meant to
investigate magnetohydrodynamic induction processes with
magnetic Reynolds number Rm < 1. To this purpose a pair of
transverse coils is placed laterally to the experiment and allows
us to apply a transverse magnetic field B0x . When the applied
magnetic field is sufficiently weak so that the interaction
parameter N = μ0LB2

0x/ηρU remains low and of the order
of 10−3, the imposed magnetic field can be considered as a
passive vector, advected by the flow. Recent experiments [19]
have shown that this approximation stops being valid as soon
as N ≥ N∗ ≈ 0.02, in which case the flow itself is modified
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by the applied magnetic field. Only the situation in which the
magnetic field is weak and acts as a passive vector will be
considered here. In this case, the magnetic field can just be
used as a way to measure and characterize the hydrodynamic
flow.

The VKS experiment has several possible configurations.
We will focus here on the geometry sketched in Fig. 1 (top),
which has been extensively investigated and for which the main
results have been reported in Ref. [13]. The flow is driven with
iron impellers, such that a self-sustained dynamo magnetic
field is observed above a magnetic Reynolds number threshold
of the order of Rmc ≈ 30.

Accessible measurements in VKS and VKG are mainly
magnetic, as well-resolved velocimetry is extremely difficult
in liquid metals, though some kinematic measurements have
been recently made accessible thanks to a local miniature Vivès
probe [20]. The induced or self-sustained magnetic field is
measured inside the flow by means of Hall probes. In the
VKG experiments, measurements were accessible on a line
along the vertical Oy axis in the midplane (see the numbered
stars in the bottom panel of Fig. 1); few measurements along
the Ox axis in the midplane are also available. In the VKS
experiments, measurements were accessible at the locations
indicated by stars in Fig. 1 (top).

B. Numerical simulations

The numerical simulations solve the equations for an
incompressible flow in a three-dimensional periodic domain
of side 2π . In the most general case (a conducting fluid with
an externally imposed magnetic field of strength B0), the
equations in dimensionless Alfvénic units read

∂u
∂t

+ u · ∇u = −∇P + j × (b + B0) + ν∇2u + F, (1)

∂b
∂t

+ u · ∇b = (b + B0) · ∇b + η∇2b. (2)

In the incompressible case ∇ · u = 0, and ∇ · b = 0. Here, u
is the velocity, b is the magnetic field, and j = ∇ × b is the
current density. The pressure (normalized by the density) is P ,
ν = 4.7 × 10−3 is the dimensionless kinematic viscosity, and
η the magnetic diffusivity, with η = ν/Pm. In the absence of
an externally imposed magnetic field (B0 = 0) these equations
are the incompressible MHD equations often used to study the
dynamo effect. When B0 = b = 0 (or when the interaction
parameter N is small enough), Eq. (1) reduces to the Navier-
Stokes equation for an incompressible hydrodynamic flow.

To mimic the geometry of the flow in the experiment, a
Taylor-Green (TG) vortex is used as mechanical forcing

F = A0

⎡
⎢⎣

sin(k0x) cos(k0y) cos(k0z)

−cos(k0x) sin(k0y) cos(k0z)

0

⎤
⎥⎦ , (3)

where A0 = 0.41 is the forcing amplitude, and k0 = 2 is
the forcing wave number. This forcing was shown before
to give good agreement with von Kármán dynamo results
[21,22], while allowing simulations to be done in periodic
boundaries and thus lowering computational costs. A sketch
of the resulting flow in one TG cell can be seen in Fig. 2.

FIG. 2. Sketch of the numerical Taylor-Green cell, and position
of the points where magnetic and velocity measurements are made
(indicated with stars). The two large circular arrows represent the two
counterrotating Taylor-Green vortices.

The forcing is applied at k0 = 2 as in the dynamo case
the magnetic field grows at a scale larger than the flow
energy containing scale. Forcing at k0 = 1 would result in a
suppression of that dynamo eigenmode, resulting in a different
eigenmode of the kinematic dynamo being artificially excited
and in differences in the spatial structure of the magnetic field
when compared with experiments (see [22]). Note however
that applying the force at k0 = 1 or 2 does not introduce
differences in the slow dynamics of the hydrodynamic flow, as
the slow dynamics takes place at time scales much longer than
the turnover time of the energy-containing eddies.

Equations (1) and (2) are solved pseudospectrally using
a parallelized code [23–25] dealiased with the 2/3 rule.
Second-order Runge-Kutta is used to evolve the equations in
time. Since long integrations are needed (in many cases sim-
ulations were continued for over 6000 turnover times), linear
spatial resolution is Nres = 128 in all cases. To compare with
experiments, time series of the three Cartesian components of
the velocity and the magnetic fields at the three points indicated
in Fig. 2 are recorded with high cadence. Also, time series of
the amplitude and phase of each Fourier mode in spectral space
are stored, to be able to identify the modes responsible for long-
term behavior. Note that with the spatial resolution considered
here, magnetic Reynolds numbers similar to the ones in the
experiments are easily reproduced. However, the mechanical
Reynolds numbers in the experiments are out of reach for
even the largest resolutions we could attain in simulations, and
those resolutions would preclude the long-time integrations
considered in this study. These choices result in frequency
spectra that are well resolved, although spatial resolution in
the simulations is only moderate. For a detailed study of wave
number spectra at higher spatial resolution under Taylor-Green
forcing, see [22].

The strategy used in the simulations is as follows. The
mechanical force is turned on at t = 0 from the flow at rest,
and the Navier-Stokes equations (with the b and B0 fields set
to zero) are advanced for over 6000 turnover times (a turbulent
steady state is reached shortly after 10 turnover times). Time
series of the velocity are then used for the analysis of 1/f noise
in hydrodynamic flows (as well as to compare with the equally
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long simulations with a weak imposed magnetic field). Later,
the last state of the hydrodynamic flow is used to start two
different sets of simulations: one in which a uniform magnetic
field B0 = B0ŷ is imposed, and one in which B0 = 0 and an
initially small magnetic seed is amplified until an MHD steady
regime is reached. The former is intended to mimic induction
experiments with a transverse magnetic field in VKG, while
the latter is intended to mimic dynamo experiments in VKS.
In both cases the systems are integrated for over 6000 turnover
times. The magnetic Prandtl number in induction simulations
is Pm = 0.05 and the interaction parameter is adjusted by
setting B0 such that N ≈ 10−4. In dynamo simulations Pm =
0.5 as a larger magnetic Reynolds number is needed to sustain
magnetic fields [21,22]. The mechanical Reynolds number is
fixed in all simulations, and is Re = urmsL/ν ≈ 670 (with
urms the root mean square velocity in the simulations, and L

the integral scale of the flow).

III. HYDRODYNAMIC TURBULENCE
AND LOW-N INDUCTION

When the imposed magnetic field is weak enough that it
can be considered a passive vector, time series of the velocity
field measured in the experiments and simulations at any of the
points indicated in Figs. 1 and 2 do not show clear long-term
behavior or 1/f noise, as can be seen for instance from the
dashed lines in Figs. 3 (top) and 4, which represent the kinetic
spectra for the simulation and the experiment, respectively. A
relatively clear inertial range of time scales, consistent with
a classical f −5/3 Kolmogorov spectrum, is present, but no
significant long-term dynamics is observed at low frequencies,
and the spectra flatten rapidly below the forcing frequency F0

(in the experiment F0 is taken as �, the rotation rate of the
impellers, while in the simulation F0 is determined as urms/L,
where L = 2π/k0 = π is the forcing scale and urms is the root
mean square of the turbulent velocity fluctuations).

The absence of long-term dynamics is in agreement with
previous results indicating that isotropic and homogeneous
hydrodynamic turbulence does not display 1/f noise [6].
However, and unlike the results in Ref. [6], when in the
numerical simulations the time series of the amplitude of
individual Fourier modes are considered, we find that modes
in the k = 1 shell do have 1/f spectra (the observed spectrum
is actually steeper than 1/f ; see the bottom panel of Fig. 3).

In the spectra in Fig. 3, note that frequencies with f/F0 �
1 satisfy the Taylor hypothesis: these frequencies can be
converted to wave numbers using the characteristic mean
flow velocity. However, for the frequencies with f/F0 � 1
the Taylor hypothesis does not hold. As an example, for
urms ≈ 1 in the simulations, and a length of 2π (the size of the
largest eddies that can be excited in the numerical domain),
fluctuations with frequencies smaller than f/F0 = 0.5 cannot
be associated with any spatial fluctuation, as they correspond
to scales larger than the box size. These slow fluctuations are
associated with modulations and a long-term memory in the
dynamics of the largest eddies.

Interestingly, it can be noted that the modes in the k =
1 Fourier shell break down the symmetries of the TG flow
and, as an example, are responsible for large-scale fluctuations
in the z position of the shear layer between the two Taylor-

FIG. 3. Numerical simulations of Taylor-Green MHD induction.
Top: Power spectrum of the temporal fluctuations of the axial velocity
uz at point 1 (light gray dashed line) and of the axial induced
magnetic field (dark gray solid line) in the numerical simulations
at low magnetic Prandtl number (Pm = 0.05) and low interaction
parameter N = 4 × 10−5. Frequency axis has been normalized by the
forcing frequency F0 = urms/π . The global energy level of the spectra
has been arbitrarily set to make them coincide for f = F0. Bottom:
Power spectrum of the amplitude of Fourier mode k = (10,10,10)
of uz (light gray dashed line) and of Fourier mode k = (1,0,0) of uz

(dark gray solid line). Note that incompressibility condition imposes
the mode k = (0,0,1) of uz to vanish, while symmetries of the TG flow
impose the mode k = (0,1,0) to be identical to the mode k = (1,0,0)
shown in the figure. In both panels, several slopes reported before in
the VKS and VKG experiments are shown as references, although
we are mostly interested in the behavior for f < F0.

Green vortices. Indeed, 1/f spectra are only observed in modes
that break down this symmetry. The spectrum of the temporal
fluctuations of small-scale modes (large wave numbers) does
not exhibit any long-term dynamics, as can be seen in Fig. 3
(bottom). However, at least at the Reynolds number considered
in the simulation, the modes that break down the symmetry
do not have enough energy to give rise to a clear long-term
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FIG. 4. Experiments of MHD induction in VKG flow. Power
spectrum of the axial velocity (light gray dashed line) and of the
induced axial magnetic field in VKG experiment with a weak imposed
transverse magnetic field (light gray solid line). Frequency axis has
been normalized by the forcing frequency F0 taken as the rotation
rate of the impellers � (10 Hz for the shown experiment). The total
energy level of each spectrum has been normalized by its value at
f/F0 = 1. Several slopes are shown as references.

behavior when all Fourier modes are integrated to obtain the
velocity at one of the measurement points (as shown in the top
panel of Fig. 3).

As already mentioned, when modes with 1/f behavior are
not the most energetic, 1/f behavior is not observed in global
quantities. However, as soon as a physical effect makes these
modes dominant, 1/f noise arises. This can be observed for
instance by considering the evolution of the small imposed
magnetic field with low magnetic Prandtl number and low
interaction parameter (N � 1). Condition N � 1 ensures that
the magnetic field passively traces the carrier velocity field,
while condition Pm � 1 imposes a large scale separation
between magnetic and velocity field, so that only large scales of
the velocity field are traced by the magnetic field. Figure 3 (top)
also shows the spectrum of the axial induced magnetic field,
in the presence of a small applied transverse field, from the
numerical simulation (with Pm = 0.05 and N = 4 × 10−5). A
short but still visible 1/f regime appears for frequencies below
the forcing frequency F0. As previously noted, this regime is
not visible for the velocity spectrum. For the comparison, the
global energy level of the kinetic and magnetic spectra has
been set so as to make them coincide at f = F0.

Similarly, Fig. 4 shows the spectrum of the velocity
measured in VKG experiment with a Vivès probe compared to
the spectrum of the induced axial magnetic field (measured at
point 1) when a weak passive transverse magnetic excitation
B0x is imposed (note that the high-frequency resolution of
the Vivès probe is limited by magnetic diffusion at the probe
size, which is responsible for the cutoff observed here for
frequencies f � 200 Hz [20]). For comparison, the global
energy level of the kinetic and magnetic spectra has been
set so as to make them coincide at f = F0. Contrary to
the kinetic spectrum, the magnetic one shows an important
long-term dynamics below F0 that, in light of the previous
numerical observations, shall be attributed to the large-scale

10
−2

10
0

10
−5

10
0

f /F0

P
S
D

0

−1

−11/3

FIG. 5. Experiments vs simulations (induction case): comparison
of the spectra of the induced magnetic field in Figs. 3 (simulation,
black dashed line) and 4 (experiment, light gray solid line). The total
energy level of each spectrum has been normalized by its value at
f/F0 = 1. Slopes are shown as references. Measurements from the
simulation and the experiment agree remarkably well except for very
low frequencies.

modes of the kinetic field naturally traced by the magnetic
field in such a low magnetic Prandtl number regime. In other
words, the passive magnetic field at very low Pm acts as a
low-pass filter that only senses the velocity field at very large
scales.

To push further the comparison between the experiment
and the simulation, Fig. 5 shows the magnetic spectra from
the simulation and the experiment in Figs. 3 and 4 (axial

component of the induced magnetic field measured at point 1
in the simulation and at point 1 in VKG, which corresponds
to the closest available geometries between experiments and
simulations). The total energies have been rescaled so that
the spectra in the numerics and in the experiment are equal for
f = F0. We recall that the frequency axis has been normalized
by the corresponding forcing frequency F0: F0 = urms/π for
the simulation, and F0 = � the rotation rate of the disks for the
experiment. Interestingly, this scaling was found to give the
best collapse between numerics and experiment. As can be
seen in the figure, the agreement is indeed remarkable, except
for the very low frequencies which are enhanced in the
experiment. The slow 1/f dynamics for frequencies f � F0

is in particular observed in both studies. It is also interesting
to note that this agreement for the dynamical features of the
induction processes is observed even if the dominant induction
mechanisms are different in the numerics and the experiment.
It has indeed been shown in the experiment that the mean axial
component induced at the location of the measurement point 1
when a transverse field B0x is applied results from a boundary
condition effect due to conductivity difference between the
wall of the experiment and the fluid, combined with the
presence of local flow vorticity in the vicinity of the boundary
[26] (BC mechanism). Such a mechanism cannot be present
in the numerics where the entire medium has a homogenous
conductivity. This may explain the difference between the
simulation and the experiment at very low frequencies, which
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in the experiment are dominated by these very specific average
induction processes.

However, in both cases the fluctuations of induction
processes do trace back the fluctuations of the flow. The
long-term effects at f � F0 for intermediate frequencies must
therefore be associated with fluctuations in the velocity field
that are present in both the experiments and simulations.
In other words, the remarkable collapse of numerical and
experimental spectra for moderate and high frequencies in-
dicates that the magnetic field fluctuations at these frequencies
are tracing fluctuations of the velocity field with a common
origin.

The numerical observation that 1/f is essentially related
to large-scale hydrodynamic modes breaking the symmetries
of the TG flow and the experimental observation of a 1/f

regime in a configuration where one of the sources of induction
is related to radial vorticity in the midplane both point
toward an important role (for intermediate frequencies) of
the fluctuations of the strong shear layer in the midplane
of the von Kármán flow. This shear layer is indeed known
to undergo strong large-scale and long-term fluctuations in
experimental von Kármán flows [2,18,27]. These fluctuations
are also observed in the simulation, and are shown in Fig. 6,
which represents the time series of the position of the shear
layer as a function of time, and its power spectrum in the
numerics. To identify the position of the shear layer in the
simulations, a low-pass filtered and averaged (in x and y)
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FIG. 6. Numerical simulations. Top: position of the shear layer
as a function of time (in simulation units). Bottom: power spectrum
of the signal in the top figure. A slope of −1 is indicated as a
reference.

velocity field was computed in the TG cells from the Fourier
coefficients of the velocity, leaving mean profiles for the
azimuthal and z component of the velocity field that depend
only on z (see Fig. 2).

In the VKG experiments, a proxy of the evolution of the
shear layer can be obtained from measurements of magnetic
induction. A particularly clear tracing of the shear layer is
obtained when measuring the induced axial magnetic field Bi

x

at a location on the horizontal Ox axis (point 3′ in Fig. 1) for
an applied transverse magnetic field B0x . Simple symmetry
considerations impose indeed that the induced axial magnetic
field measured at any point of the Ox axis for an applied
transverse field B0x be zero on average [28]. Figure 7 (top)
shows the corresponding time series which clearly shows that
the measured signal does fluctuate around zero, but that it
explores induction regimes with symmetric polarities which
can be attributed to slow symmetry breaking fluctuations of
the shear layer respective to its equilibrium position in the
midplane [28]. Figure 7 (bottom) shows the corresponding
spectrum which does exhibit a clear long-term 1/f regime.
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FIG. 7. VKG experiment. Top: proxy of the evolution of the shear
layer as a function of time, as indicated by the evolution of the axial
induced magnetic field measured at point 3′. ByRπ symmetry around
the Ox axis, this component of induced field must be zero. However,
it is visible from the measurements that it fluctuates between a high
level state (of order 4 gauss) and a low level state (of order −4 gauss).
We interpret these fluctuations as a signature of the instantaneous
breaking of the Rπ symmetry due to the motion of the shear layer.
Bottom: power spectrum of the signal in the top figure. A slope of
−1 is indicated as a reference.
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FIG. 8. Experiments vs simulations in the dynamo case. Top: power spectra of the self-sustained magnetic field in the VKS experiment
(black) and in the simulation (gray). A slope of −1 is indicated as a reference. Bottom left: semilog plot of top figure. Bottom right: semilog
plot of magnetic spectra measured at point 3 in VKS (from Ref. [13]). The different curves correspond to different magnetic Reynolds numbers
as indicated in the legend, with increasing Rm from light gray to black curves.

IV. MAGNETOHYDRODYNAMIC DYNAMO

We now turn to the case of the MHD dynamo and compare
dynamical fluctuations observed in the VKS experiment and
numerical results from the present TG simulations. Though
parameters are not really comparable (in particular the Prandtl
number differs by orders of magnitude as it is of the order
of 6 × 10−6 in VKS while it is 0.5 in the simulation),
experimental and numerical spectra of magnetic fluctuations
show a remarkably good agreement, with in particular a wide
1/f range as shown in Fig. 8 (top), where we have plotted the
magnetic spectra measured in the bulk at point 1 in VKS
and in the simulation. As in the hydrodynamic case, this
long-term memory is associated with the evolution of the
large-scale modes. However, the magnetic field now appears
to develop a 1/f regime over a much wider range of scales
(almost 2 decades) than in the passively advected case. This
indicates that the dynamo field develops its own long-term
dynamics, which increases the correlation time scale as the
magnetic field produced by the dynamo is spatially correlated
at the largest available scale in the box. As a result, the

range of time scales for which long-term memory is observed
is substantially increased in the case of the self-sustained
dynamo. This can be clearly seen in Fig. 9 which shows the
temporal evolution of the axial position of the shear layer
[Fig. 9(a)] and the corresponding spectrum [Fig. 9(b)]. From
the temporal evolution we see that the transitions of the shear
layer from one side of the box to the other occur over time
scales much longer than what was previously observed in Fig. 6
for the purely hydrodynamic case. It can also be observed that
intermittent periods of rapid fluctuations may appear during
the long stable periods. This results in very a wide range of
time scales involved in the overall dynamics, as revealed by the
spectrum in Fig. 9(b), where it can be particularly noted that the
1/f regime extends towards much lower frequencies (longer
time scales) than in the hydrodynamic case without even
reaching a low-frequency plateau with the available length
of the present simulations. Interestingly, we also note that the
remarkable collapse of the experimental and numerical spectra
in Fig. 8 (top) is obtained when the frequency in the simulation
is normalized by F0 = urms/2L, with L = π the forcing scale
of the TG simulation and not by F0 = urms/L as was the case
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FIG. 9. Position of the shear layer as a function of time in the
numerical simulations of dynamo action, and power spectrum of the
signal. A slope of −1 is indicated as a reference.

for the passively advected magnetic field previously discussed.
This is related to the large-scale correlation of the dynamo
field, which is now correlated over the entire simulation box
which is twice the forcing scale.

The existence of 1/f slow dynamics of magnetic fluctua-
tions, related to the large-scale nature of magnetic field, seems
to be a robust behavior of MHD large-scale dynamos. It is
consistently observed in VKS experiment and TG simulations,
which have similar flow geometries, but different boundary
conditions, MHD parameters (mostly in terms of Prandtl
numbers), and which have very likely different dynamo-
generating mechanisms (VKS generates an axial dipole and
is very sensitive to electromagnetic boundary conditions,
while TG generates an equatorial dipole and operates in a
homogeneous medium). A slow-dynamics 1/f regime has also
been reported in the Karlsruhe dynamo experiment, which has
a different geometry, different fluctuation levels, and different
dynamo mechanism. In Ref. [14] it is argued from the results of
a large number of numerical simulations that in systems that
develop inverse cascades (as, e.g., helical MHD turbulence)
the development of 1/f noise and long-term memory is more
robust, in the sense that it is independent of details of the
flow geometry and forcing. The present results are in good
agreement with these arguments, and confirms in experiments
the previous numerical results.

An interesting observation can also be done regarding the
dissipative regime of the high-frequency magnetic spectra.
As observed in Fig. 8 (top), this regime is not resolved
in the experimental data, due to limitations in dynamical

resolution of the magnetic measurements when performed
in the bulk of the flow. However, the dissipation behavior
can be better resolved from measurements in the outer layer
of sodium, in the vicinity of the copper shell (for instance
at point 3 in the VKS sketch in Fig. 1), where no flow
is present and magnetic dynamics results essentially from
diffusion processes of the turbulent magnetic fluctuations in
the bulk. Such measurements show that the far dissipation
spectrum of magnetic dynamo field decreases exponentially
with the frequency f (as an example, the bottom right panel of
Fig. 8 reproduces results from Fig. 16(c) in [13]). Though
we do not have an explanation for such an exponential
spectral regime, we interestingly find that the same exponential
behavior is captured by the simulation as shown in Fig. 8
(bottom left panel). TG simulations therefore are able to
reproduce a large number of temporal spectral properties
of turbulent magnetic fluctuations as measured in the VKS
experiment.

V. CONCLUSIONS

We presented a comparison of time series of pointwise
measurements of the velocity and of the magnetic field,
both from direct numerical simulations and from experiments
of turbulence in conducting flows. Two configurations were
considered: (1) a case with a weak externally imposed
magnetic field, in which induction generated by fluid motions
can be used as a tracer of the velocity field (and mostly of
the large-scale modes of the velocity field, as the magnetic
Prandtl number considered in that case is small), and (2) a case
with self-sustained magnetic fields. The flow in the experiment
corresponds to a von Kármán swirling flow between two
counterrotating impellers in a cylindrical vessel, while in the
simulations the flow is generated in a square box using periodic
Taylor-Green forcing.

While experiments excel at providing time statistics of
field fluctuations with limited spatial information of the flow
geometry, numerical simulations tend to be performed at
high resolution for short times, thus providing substantial
amounts of spatial information with little time statistics. In
the present study a different approach was used, considering
low-resolution simulations but extended for very long times,
so comparisons between experimental and numerical data can
be done on the same grounds.

Good general agreement was found between spectral
properties in simulations and experiments, both in the hydro-
dynamic (weak imposed magnetic field) and dynamo cases.
Intermediate and high frequency spectra from the experiments
were found to be well reproduced by the simulations. In
particular, evidence of long-term memory and 1/f noise at
intermediate frequencies was found in both experiments and
simulations. In the hydrodynamic case, low-frequency mag-
netic spectra were found to deviate between the experiment and
the simulation. This can be attributed to different induction
processes operating in the bounded experiment and in the
periodic simulations.

In the hydrodynamic regime, 1/f noise in the kinetic
spectrum is a signature of the slow fluctuations of the largest
structures of the flow, and particularly of the midplane shear
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layer. As a consequence, this is only observed in the simulation
when small wave numbers are selected. This selection is
naturally operated when considering magnetic fluctuations of
a passively advected magnetic field in low Prandtl number
situations, which are indeed found to exhibit 1/f behavior.

In the dynamo case, 1/f noise of magnetic field fluctuations
is enhanced over a wider range of scales, which is attributable
to the intrinsic large-scale nature of the generated field.
The remarkable collapse of simulations (at Pm = 0.5) and
experiments (at Pm ≈ 10−5) indicates that this may be a
fundamental and robust property of large-scale MHD dynamos
where slow fluctuations (both kinematic and magnetic) appear
when the magnetic and velocity field become intimately
coupled. This last conclusion may be particular useful to
extrapolate dynamical behaviors from simulations at Pm ≈ 1
(a condition computationally favorable) to more realistic
dynamos (natural or experimental) at small Prandtl regimes
(which are computationally expensive to simulate). A par-
ticular example where this may be relevant is the case of
dynamo reversals, which take place on very long time scales
and which cannot be studied in simulations at low magnetic
Prandtl number.

The reasons why the 1/f scaling ends at a given (very
low) frequency are not clear. In the hydrodynamic case,
it has been observed in experiments [2,18] that this cutoff
can be associated with the existence of a characteristic time
scale for the slow instability of the midplane shear layer. In
the experiments and simulations of magnetic induction, as
mentioned above, the boundary conditions affect the extension
of the 1/f spectrum in the magnetic field. Finally, in the
dynamo regime that has a much longer memory, the finite
length of the simulations introduces an artificial cutoff at low
frequencies, as no clear plateau can be observed for the lowest
frequencies resolved.
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