=. M_i, /cumulative recovery rate 09 N_I = 1Run through the time-steps: 12 FOR t = 0,1, Update mus if t-t à >=epsilon à mu_avg: References 1. Barrat A, Barthélemy M, Vespignani A. Dynamical Processes on Complex Networks, 2008.

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. Ramasco et al., Multiscale mobility networks and the spatial spreading of infectious diseases, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.21484-21489, 2009.
DOI : 10.1073/pnas.0906910106

R. Pastor-satorras, C. Castellano, P. Van-mieghem, and A. Vespignani, Epidemic processes in complex networks . Rev Mod Phys, pp.925-935, 2015.

S. Ferreira, C. Castellano, and R. Pastor-satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, Physical Review E, vol.86, issue.4, p.041125041125, 2012.
DOI : 10.1103/PhysRevE.86.041125

M. Tizzoni, P. Bajardi, C. Poletto, J. Ramasco, D. Balcan et al., Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC Medicine, vol.7, issue.1, p.23237460, 2012.
DOI : 10.1023/B:HCMS.0000020652.38181.da

URL : https://hal.archives-ouvertes.fr/inserm-00796005

J. Doob, Topics in the theory of Markoff chains, Transactions of the American Mathematical Society, vol.52, issue.1, pp.37-64, 1942.
DOI : 10.1090/S0002-9947-1942-0006633-7

D. Kendall, An Artificial Realization of a Simple Birth-and-Death " Process, J R Stat Soc Ser B Stat Methodol, vol.12, issue.1, pp.116-119, 1950.

M. Bartlett, Stochastic Processes or the Statistics of Change, Applied Statistics, vol.2, issue.1, pp.44-64, 1953.
DOI : 10.2307/2985327

D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.4, pp.403-434, 1976.
DOI : 10.1016/0021-9991(76)90041-3

D. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.
DOI : 10.1021/j100540a008

R. Huerta and L. Tsimring, Contact tracing and epidemics control in social networks, Physical Review E, vol.66, issue.5, 2002.
DOI : 10.1103/PhysRevE.66.056115

C. Dangerfield, J. Ross, and M. Keeling, Integrating stochasticity and network structure into an epidemic model, Journal of The Royal Society Interface, vol.164, issue.2, pp.761-774, 2009.
DOI : 10.1086/422341

T. Hladish, E. Melamud, L. Barrera, A. Galvani, and L. Meyers, EpiFire: An open source C++ library and application for contact network epidemiology, BMC Bioinformatics, vol.13, issue.1, pp.76-86, 2012.
DOI : 10.1007/s00285-007-0116-4

P. Holme, Model versions and fast algorithms for network epidemiology

G. Zschaler and T. Gross, Largenet2: an object-oriented programming library for simulating large adaptive networks, Bioinformatics, vol.29, issue.2
DOI : 10.1093/bioinformatics/bts663

M. Boguña, L. Lafuerza, R. Toral, and M. Serrano, Simulating non-Markovian stochastic processes, Phys Rev E, vol.90, issue.4, 2014.

J. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer et al., Structure and tie strengths in mobile communication networks, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7332-7336, 2007.
DOI : 10.1073/pnas.0610245104

D. Rybski, S. Buldyrev, S. Havlin, F. Liljeros, and H. Makse, Scaling laws of human interaction activity, Proceedings of the National Academy of Sciences, vol.106, issue.31, pp.12640-12645, 2009.
DOI : 10.1073/pnas.0902667106

C. Cattuto, W. Van-den-broeck, A. Barrat, V. Colizza, J. Pinton et al., Dynamics of person-toperson interactions from distributed RFID sensor networks, PLoS One, vol.5, issue.7, p.20657651, 2010.

A. Vázquez, B. Rácz, A. Lukács, and A. Barabási, Impact of Non-Poissonian Activity Patterns on Spreading Processes, Physical Review Letters, vol.98, issue.15, p.17501392, 2007.
DOI : 10.1103/PhysRevLett.98.158702

G. Miritello, E. Moro, and R. Lara, Dynamical strength of social ties in information spreading, Physical Review E, vol.83, issue.4, 2011.
DOI : 10.1103/PhysRevE.83.045102

M. Karsai, M. Kivelä, R. Pan, K. Kaski, J. Kertész et al., Small but slow world: How network topology and burstiness slow down spreading, Physical Review E, vol.83, issue.2, 2011.
DOI : 10.1103/PhysRevE.83.025102

A. Panisson, A. Barrat, C. Cattuto, W. Van-den-broeck, G. Ruffo et al., On the dynamics of human proximity for data diffusion in ad-hoc networks. Ad Hoc Networks, pp.1532-1543, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00609256

L. Gauvin, A. Panisson, C. Cattuto, and A. Barrat, Activity clocks: spreading dynamics on temporal networks of human contact, Scientific Reports, vol.22, issue.5, pp.3099-3109, 2013.
DOI : 10.1038/srep03099

URL : https://hal.archives-ouvertes.fr/hal-00836266

P. Holme and F. Liljeros, Birth and death of links control disease spreading in empirical contact networks, Scientific Reports, vol.60, p.24851942, 2014.
DOI : 10.1038/srep04999

M. Karsai, N. Perra, and A. Vespignani, Time varying networks and the weakness of strong ties, Scientific Reports, vol.86, p.24510159, 2014.
DOI : 10.1038/srep04001

URL : https://hal.archives-ouvertes.fr/hal-00960361

P. Holme and J. Saramäki, Temporal networks, Phys Rep, pp.1-28, 2012.

C. Cai, Z. Wu, and J. Guan, Behavior of susceptible-vaccinated???infected???recovered epidemics with diversity in the infection rate of individuals, Physical Review E, vol.88, issue.6, 2013.
DOI : 10.1103/PhysRevE.88.062805

N. Ferguson, D. Cummings, C. Fraser, J. Cajka, P. Cooley et al., Strategies for mitigating an influenza pandemic, Nature, vol.304, issue.7101, pp.448-452, 2006.
DOI : 10.1038/nature04795

A. Lloyd, Realistic Distributions of Infectious Periods in Epidemic Models: Changing Patterns of Persistence and Dynamics, Theoretical Population Biology, vol.60, issue.1, pp.59-71, 2001.
DOI : 10.1006/tpbi.2001.1525

G. Martelloni, A. Santarlasci, F. Bagnoli, and G. Santini, Modeling ant battles by means of a diffusion-limited Gillespie algorithm

M. Gibson and J. Bruck, Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels, The Journal of Physical Chemistry A, vol.104, issue.9, pp.1876-1889, 2000.
DOI : 10.1021/jp993732q

T. Lu, D. Volfson, L. Tsimring, and H. J. , Cellular growth and division in the Gillespie algorithm, Systems Biology, vol.1, issue.1, pp.121-128, 20045016-06.
DOI : 10.1049/sb:20045016

D. Anderson, A modified next reaction method for simulating chemical systems with time dependent propensities and delays, The Journal of Chemical Physics, vol.127, issue.21, p.18067349, 2007.
DOI : 10.1063/1.2799998

T. Carletti and A. Filisetti, The Stochastic Evolution of a Protocell: The Gillespie Algorithm in a Dynamically Varying Volume, Computational and Mathematical Methods in Medicine, vol.18, issue.3, p.22536297
DOI : 10.1103/PhysRevE.81.056110

G. Caravagna, G. Mauri, and A. Onofrio, The Interplay of Intrinsic and Extrinsic Bounded Noises in Biomolecular Networks, PLoS ONE, vol.118, issue.10, p.23437034, 2013.
DOI : 10.1371/journal.pone.0051174.t006

C. Zechner and H. Koeppl, Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments, PLoS Computational Biology, vol.124, issue.12, p.25473849, 2014.
DOI : 10.1371/journal.pcbi.1003942.s003

N. Perra, B. Gonçalves, R. Pastor-satorras, and A. Vespignani, Activity driven modeling of time varying networks . Sci Rep, p.469, 2012.

D. P. Maki and M. Thompson, Mathematical Models and Applications Prentice-Hall, NJ, 1973.

M. Génois, C. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin et al., Abstract, Network Science, vol.2006, issue.03, pp.326-347, 2015.
DOI : 10.1017/S0950268812000842

P. Vanhems, A. Barrat, C. Cattuto, J. Pinton, N. Khanafer et al., Estimating potential infection transmission routes in hospital wards using wearable proximity sensors, PLoS One, vol.8, issue.9, p.24040129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862591

J. Fournet and A. Barrat, Contact Patterns among High School Students, PLoS ONE, vol.59, issue.9, p.25226026, 2014.
DOI : 10.1371/journal.pone.0107878.s001

URL : https://hal.archives-ouvertes.fr/hal-01065922

J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza et al., Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees, BMC Medicine, vol.6, issue.Suppl 5, p.21771290
DOI : 10.1371/journal.pone.0017144