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Abstract

In relation to the industrial need and to the pesgrof technology, LNE would like to
improve the measurement of its primary pressutteersgal and flick standards. The spherical
and flick standards are respectively used to cabthe spindle motion error and the probe
which equips commercial conventional cylindricityeasuring machines. The primary
pressure standards are obtained using pressurecbalaquipped with rotary pistons with an
uncertainty of 5 nm for a piston diameter of 10 n@onventional machines are not able to
reach such an uncertainty level. That is why theeligpment of a new machine is necessary.
To ensure such a level of uncertainty, both stgbéind performance of the machine are not
sufficient and the data processing should also dweedwith an accuracy less than the

nanometre.

In this paper, the new method based on the Smapl&tement Screw (SDS) model is
proposed. A first validation of this method is pospd on a theoretical dataset published by
the European Community Bureau of Reference (BCRgmort n°3327. Then, an experiment
is prepared in order to validate the new methodreal datasets. Specific environment
conditions are taken into account and many pregasitare considered. The new method is
applied to analyze the least squares circle, mimnzone circle, maximum inscribed circle
and minimum circumscribed circle. The results ampared to those done by the reference
Chebyshev best-fit method and reveal a perfecteageat. The sensibility of SDS and
Chebyshev methodologies are investigated, andrévisaled that results remain unchanged

when the value of the diameter exceeds 700 tinefotim error.



1. Introduction and literature review

This work is part of a project whose objective @ develop a new ultra-high
precision cylindrical measurement machine [1-2]e Hguipment is mainly dedicated to
measure standards, such as flick standards andesphéhich are used for the calibration
of industrial form measuring machines, and pistginder [3] with an uncertainty of
nanometers level.

However, the performance and stability of the newigment alone cannot satisfy such
requirements. There is therefore an absolute needduelop analysis methods of the form
of the datasets, which may ensure a similar nanarevel of accuracy.

The International Organization for Standardizatidascribed the most common
methods used to determine form errors, especialyndness errors [4]: Least Squares
circle/cylinder method (LSC), Minimum Zone tolerancircle/cylinder method (MZC),
Maximum Inscribed circle/cylinder method (MIC) andMinimum Circumscribed
circle/cylinder method (MCC).

The LSC method is the most common approach to atalapproximated roundness
[5], and is mainly used in dimensional metrologytfte simplicity of its application and to the
uniqueness of its solution. In practice, the leagtares method is appropriate where random
measurement errors predominate. For cylindricafacts, the LSC method denotes the circle
fitting the roundness profile. Usually the centretloat circle is used to fit the smallest
circumscribed and the largest inscribed circlexydinders to the roundness or cylindricity
profiles. The radial separation between the ciraribed and inscribed circles represents the
roundness error.

The LSC method is based on the mathematical ptexihat minimize the sum of the
squared deviations of the measured points froniittieel feature [6]. This robust method does
not guarantee the minimum zone solution specifiethé standards. The deviation values and
geometric tolerances are generally larger tharatheal ones and lead to an over-estimation of
the form error of the target. A modified least sgumethod is developed in [7], which takes
the best geometrical estimation of orthogonal dista by measuring the deviational errors in
sampled data. The normal least squares fit is dpedl in [8], and requires to solve the
equations of normal least-squares fit.

The MIC, MCC and MZC circle methods are presentedatail in [9]. For the MIC
and the MCC methods, the radial distance represtgtsmaximum inscribed, minimum

circumscribed, respectively. The MZC method coroesjs to the two concentric circles with



minimum radial separation that contain the roundr@sefile. The radial separation between
the inner and outer reference circles is the roasserror. The MZC method is appropriate in
most cases where random measurement errors arecemmgdared to form errors. Basically,

the MZC method generates an optimal solution amefeut-of-tolerance parts compared to
the LSC, MIC and MCC methods, due to the minimuthalaseparation distance between the
reference circles [4]. These methods require twesal non-linear problem which needs an
implementation applying optimization techniques.rivias techniques for optimization and

mathematical calculations were developed in presviorks in order to evaluate roundness
errors [10-15].

This paper details the mathematical descriptiothefnew method based on the small
displacement screw (SDS) model for LSC, MIC, MCQ aiZC analysis methods for
roundness evaluation. An experiment is carriedusiiig a conventional machine to measure
roundness, and the developed SDS method will r@s@valuating form errors. Results will

be compared with those obtained using the refer€hedyshev best-fit algorithm.
2. General context: design of the new geometric mearing machine

Currently, LNE is developing a new ultra-high psten machine dedicated to the
measurement of roundness, straightness and cyitydriThe aim is to achieve form
metrology with an uncertainty of less than 10 nmloth roundness and straightness and less
than 20 nm for cylindricity.

The concept of the machine applies the dissociatettological structure principle
which consists in dissociating the metrology frafnem the supporting structure. The
architecture of the machine is based on the cosmarmf two surfaces: a reference cylinder
and a cylindrical artifact. This approach getsaicrrors due to the motion of the mechanical
guiding elements (spindle and linear guiding sysfeniihe test cylinder is located inside the
hollow reference cylinder. Eight or more capaciwarsensors ([16]) are focused on the
reference cylinder and up to four probes are fatuse the artifact. The concept of the
machine is completely symmetric and perfectly respéhe Abbe principle. The metrology
loop goes only through reference and probing elésnéys a consequence, measurements are
never influenced by the quality of motion of medkah guiding elements and are only
affected by both the performance of probing elesamid the stability of reference elements.
The calibration of all probes of the machine isoaudtic and carried out in-situ over a 60 um
travel range using the nanometric piezoelectricators. It is based on the use of a modified

multi-step form error separation technique allowsegaration between the form errors of both



the reference cylinder and the cylindrical artifaktore details concerning the operation,
architecture and design of the new geometric m@agurachine can be found in [1-2].

To ensure measurement with nanometer level of acguthe machine should be stable at the
nanometer level, but also the program should ersuakiation at the same order of accuracy,

and this is the aim of this paper.
3. General geometric surface identification method

Form error measurement on a mechanical target leadietermining both the
position and parameter values of the surface matieth fits best the measured dataset.
Such an operation absolutely requires achieving staps. The first one consists in
acquiring data and the second one consists inidgfime geometric surface model. The

resolution of this problem is known as “solvingianerse problem”.

3.1. Principle of the SDS method

Usually, an ideal geometric surface is defined Isgtaof datax, v, z, a, b, G), such
that €, ¥, z) correspond to the Cartesian coordinates of ther#tical point-se,j and

(&, by, g) correspond to the cosine parameters of the norawbrsi, at each point [17].
a
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Fig. 1. Schema of the general geometric identifaxatethod of surface.

Consider the manufactured surface represented by nteasured datasé¥ly.
Independently from the geometric model attributedhe sought surface, the method is
based on matchinl measured point¥q with N theoretical pointdMi) of the ideal

geometrical surface. The calculation of the vasiain measurement parameteyss to be



completed for each couple of seltdyf) ; Mu)) with the normal vectori . The variation in

measurement parametefscorresponds to the distanel;Mu between both sensed and
theoretical datasets (Fig.1). The manufacturedasearfs identified by an ideal geometric

surface defined by the theoretical poiMg with a normal vector, and a variation in

measurement parametefs sensed along the normal vector

3.2. Description of the model

The method presented below is based on the SDSIntibde consider the formula of
the small displacement screw model applied at pajrthe corresponding equation may be

presented as follows (Eq.1):

5 ax U
[TA]={6}= B w Eq.1

— —

Vi Wz

where Ris the small rotation vecto(‘ﬁ( <5° ) and D is the small displacement vector. The

surface of the artefact never corresponds perféattiie theoretical surface. To minimize the

distance between poinMy and My, it is important to apply a small displacemeQMth(i)

that bringsMimg andMgyg to be as close as possible (Eq.2).

& =& ~( Badi +(AMug) 07 |R) =4 - (RIn[a) Eq.2
If we consider both the small displacement screvvjeh(BTA] and the Plicker coordinates

[R]A screw theory, we obtain a formula that contginknear equations depending é@n

unknown parameter@®, S, y; u, v and w) These parameters represent the components of the

small displacement screw model as defined in Eq.3.

[PI]A:{AMthrE:)Dﬁi} Eq.3

If the number of datasel$ representing the manufactured surface is equal tiois leads to a

system of 6 independent linear equations. Then, dbkition is easily obtained as:

9j=1..6 =0 . However, in dimensional metrology{, number of measured points is greater

thanp number of independent unknown parameters. Thisigunattion requires to determine
the optimal value of the small displacement scresdeh following the criterion of distance

minimization between the theoretical model andnieasured points.



Two methods solve the linear system of equation:
« The least-squares method which gives a statisfisafibution of variationd. around

the theoretical geometric surface.
* The method based on linear programming allowingiteimize and/or maximize the

function.

A/ Least-squares method

If we consider the functiow in Eq.4, its minimization leads to solve the peshlas

presented in Eq.5. The Plucker coordinaII%JA are shown in Eq.6

p
w=3"(e - (RIA A Eq.4
i=1
ow
a(a',,B, YUV, W) =0 , with 0 representing the partial derive. Eq.5
aX (vig-zb)X] [ax LiX
[Rla={by (zaxc)y; =16y M;y Eq.6

Gz (xibi-yiai )2 ciz N;z
The optimization of the functiow can be done by solving Eq.7. Hence, we obtain the
values of thés unknown parameterg, £, y; u, vandw) which characterize the position of the

measured surface with respect to the theoretictdal
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B/ Linear programming method

The linear programming method allows finding thenimium of a general problem
using as example the routine of linear programnoimd/atLab software.
The manufactured surface is defined by the measpoguts My(i). This method aims at

covering all datasetdlq between two surface®S and Al ,as shown in Fig.2. This operation



can be completed by applying both the SDS anditieanl programming methods described

below, as shown in the following equations, Eq.8 Bn.9.
minimize: Z =AS-Al Eq.8

as-(& -([H]A-[TA]))Z(()’ Eq.9

subject to: A _(gi _([pl]A_[TA]))g

Optimized
Manufactured
surface

s
Manufactured »

/7
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/
/

Fig. 2: General specification of the linear programmg of the form error problem

Since the proposed SDS method is based on a lmegramming method, the accuracy and

stability of the solution depend on the number othbundulation and measured points. To

reduce the effect of any of these parameters orrdbelts, the processing of a dataset is

programmed to be completed 10 times after whichrébalts are compared.

However, when using any high-precision machinecfdindricity measurement, the number

of data points is usually more than 3,600, whiclpriowes the quality of processing. In

addition, for dimensional metrology applicationse tcylindrical artefact presents an ultra-

high quality of surface finish, and typically doast contain any geometry defect. These

characteristics allow to find very small variatioothe artefact’s topology, which reduces

considerably the risk to have bad results.

4. Application of the small displacement screw metid to evaluate 2D-roundness
Regarding the 2D-roundness evaluation (theoreticele with radiusR), the normal

vector ﬁi , the variation in measurement parametérsthe spatial coordinates of the point

Mu(i), the Plicker coordinates scre[ﬁ]A and the small displacement schWA] are

respectively presented in Eq.10 to Eq.13.



_ T
cod6 )= X2+'y2
| |
ni =|sin(g )= —2— Eq.10
())(i +V¥i” |, with 6 : angular position step
&=yx2+y%?-R Eq.11
cos(ei )f( 0
[Rla=1sin(&)y o Eq.12
0 0
0 w
TA=10 W Eq.13
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4.1. Least-squares circle (LSC)
To obtain the LSC circle passing through the maximmumber of datasets, we have

to solve the problem minimizing the variatiétic presented in Eq.14.
S =& —(ucodd ) +vsin(@ ) +4r) | Ar being the radius variation Eq.14

00; -
Optimising function dic = I%(U,V,AI‘)_O allows to determine the threenknown

parametergu, vand Ar ) and to solve the system of independent equatiessritbed by the

matrix formula in Eq.15.

Z Cos(ei )2 Z cos(@i )sin(é?i ) Z COS(Hi ) u Z 4 cos(ei )
Z cos(é?i )sin(é?i ) Z sin(é?i )2 Z sin(é?i ) X| v |= Z 4 sin(é?i ) Eq.15
Z cod6;) Z sin(g, ) P a $i

4.2. Minimum circumscribed and maximum inscribed circle

To obtain both MCC and MIC in 2-D including or exding all the datasetdy, the

linear programming method (simplex method) can pelied. The expression of variation
Oic is similar to the formula presented in Eq.M.represents the increase in the minimum

radius of the theoretical circl(z,ﬁr SO) in the case of MIC, and inversely in the case &®/

The functionZ to be optimised isZ =Ar .



Y axis

4.3. Minimum zonecircle
The 2D-MZC covers all the datasétg. Using this method requires the application of

the linear programming method. The expression ofatian dic is similar to the formula

presented in Eq.14. For all datasets, we need lt@ $be system of independent equations
(EQ.16) and minimize Eq.17:

AS - (u COS(H )+vs|n( ) ) &
{AI (ucodg ) +vsin(g)+Ar)=¢ Eq.16
Z=AS-Al Eq.17

5. Theoretical evaluation of the SDS method

The above methodology was implemented and appbiedgderfect theoretical dataset
(without noise) published by the Commission of tBaropean Community Bureau of
Reference (BCR) in report n°3327 [18]. The perfegular 20 data coordinates are illustrated
in Table 1 and present a known solution. The de¢aamalyzed using the SDS method in
order to evaluate the LSC, MIC, MCC and MZC. Resute presented in Fig.3 and
corresponding roundness values are presented ie Zalll the results obtained here reveal
a perfect similarity with the published resultsdgrovide evidence of the high performance

and accuracy of the developed methodology.

Roundness (LSC) Roundness (MIC) Roundness (MCC) Roundness (MZ¢
T T T T T T T T ‘ ‘

Y axis

(€) (d)
Fig. 3: LSC, MIC, MCC and MZC analyses of the nuoardatasets published in the BCR

report n°3327 [19], using the SDS methed ( th&oat datasets; SDS analysis). The

analysed datasets are presented in the Table 1e{ajution of the least squares circle, (b):

evolution of the maximum, (c): evolution of theimium circumscribed circle, (d): evolution

of the minimum zone circle.



No. X Y

1 0.6283 1.00
2 1.2566 1.00
3 1.885 1.00
4 2.5133 1.00
5 3.1416 1.00
6 -2.5133 1.00
7 -1.885 1.00
8 -1.2566 1.00
9 -0.6283 1.00
10 0 1.00
11 0.6283 2.00
12 1.2566 2.00
13 1.885 2.00
14 2.5133 2.00
15 3.1416 2.00
16 -2.5133 2.00
17 -1.885 2.00
18 -1.2566 2.00
19 -0.6283 2.00
20 0 2.00

Table 1: Theoretical datasets coordinates publisimeitie BCR report n°3327 [19].

Small displacement screw method Reference Chebyshieest-fit Form error
variation
Theoretical test
Form errorAF (um) Form errorfAF2 (um) |AF2 ‘AF1|
(nm)
MIC 1.0000 1.0000 0
MCC 1.0000 1.0000 0
MzC 1.0000 1.0000 0
LSC 1.0000 1.0000 0

Table 2: LSC, MIC, MCC and MZC analyses of the ithigcal dataset in Table 1 and
published in the BCR report n°3327 [19], by apptyithe developed SDS method. The
obtained values of the LSC, MIC, MCC and MZC asmniital to those published in the BCR
report and to those obtained when applying thereagfee Chebyschev best-fit method.
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6. Experiment set-up

6.1. Conventional machine for cylindrical measurement

To evaluate the developed methodology based o8& method on real datasets, an
experiment is developed using conventional higtcipien machines (“KOSAKA” machine)
for roundness assessment. Measurements are pedfdopnecomparing the form of the
measured part with a high quality movement of tindbearing spindle. The roundness of a
part is measured by subjecting it to a high quabtyational movement and by monitoring its
surface with a fixed probe. These machines typidadive a series of loop structures, which
are made of a succession of solids joined by cugtite linkages able to generate relative
positions or movements between two solids [1].Km). shows a picture of the conventional
and industrial geometry measurement machine usedtbeachieve the experiment. Fig.4(b)
describes the kinematic scheme of this type of machnd shows the metrology loop that
reflects its metrological performance. Therefotee tecorded measurement combines both

form and motion errors [2].

—_—
E. o ‘
~ ! N
‘
\

Metrology loop

Arm

Prismatic: linear
guidance system

artefac

spindle

000rra0nA00000000GA0TINTTTTTIRR00NN

Supporting arm

Revolute

(b)

Fig. 4: Photo and kinematics diagram of the Kosakaventional high precision machine
and identification of the metrology loop which pesghrough the supporting frame, the
metrology frames and the sensing element (tactilebg) (Expanded interval estimate
Ugsy, = 242 nm, confidence interval: 95 %).

In the case of cylindrical artefacts, the surfacéé¢ measured is scanned using three
serial linkages which represent the essential compis of the metrology loop: a revolute
joint between the precision air-bearing spindle dhe supporting frame, a mechanical
guiding element between the column and the carreye a mechanical guiding element

between the carriage and the arm. A coder andsralex used to determine the coordinates

11



along the scanning axes. The measuring probe,ntacbwith the artefact to be measured, is
the last component of the metrology loop.

6.2. Experiment conditions

Tests are carried out inside the LNE cleanroone tEmperature and hygrometry are

respectively controlled at 2@0.2 and 50%5. The whole experiment is installed on an
optical table with advanced vibration isolationtteas to avoid low frequency vibrations.
Three measurements are completed separately olindasystandard, a flick standard and a
cylindrical artefact with different undulations peevolution (UPR). These standards
represent the most employed artefacts in indusapgalications to respectively calibrate the
rotation error of the air-bearing spindle, the &ng/behaviour of the tactile probe and to
evaluate the filtering function (longwave-pass ahdrtwave-pass filters) incorporated in all
the software that equip the industrial conventiooyindrical machine, as described in the
European standard EN ISO 12180-2.
For a best use of the roundness machine, thesteptconsists in centring and tilting, as much
as possible, the cylindrical artefact axis alorg\hrtical rotating z-axis of the machine. Then
3,600 points over the cylindrical target surface aecorded. The developed routine and
methodology are applied in order to evaluate threnferror (roundness) of the cylindrical

artefact.
6.3. Results

The first experimental test is carried-out with tbglindrical artefact of 75 mm
diameter. 3,600 points are recorded and the evatuaif the results is done using the
developed SDS method. The recorded data combine déarors of the artefact, motion errors
of the air-bearing spindle, noise of the measutaagile probe and nonlinear residuals of the
same probe. The form errors (roundness here) \@grding to the angular positions of the
artefact, the error of the air-bearing spindle vacgording to its angular positions and the
probe errors vary according to its working rangee €rror motions of the air-bearing spindle
include two aspects: repeatable (systematic) andpeatable errors. The repeatable error
motions can be identified using any technique frerersal, multi-step and multi-probe error
separation methods [2, 19]. The unrepeatable emations are random errors and can not be
identified. Nevertheless they can be reduced byyayppthe temporal redundancy which
consists in increasing and averaging the numbemefsurements, or by applying a

shortwave-pass filter.

12
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Therefore the repeatable error motions of the earing spindle are identified here when
applying the multi-step separation error methoded@idistant angular-step positions of the
artefacts are generated and the processing ofetteeded data gives the evolution of the
repeatable error motions of the air-bearing spiratieording to the angular positions. The
maximum repeatable error motion’s value is lesa 20 nm.

After a compensation of the repeatable error meationly roundness, unrepeatable error
motions, noise error of the measuring probe andndslinear residuals are kept. The
unrepeatable error motions, respecting a Gausssanbdtion, are of 25 nm and are small in
comparison to the repeatable error motions. Intemdiboth noise and nonlinear residuals of
the tactile probe are evaluated to less than 20when a working range of 20 um is
considered. The obtained data after compensatidheofepeatable error motions of the air-
bearing spindle are dominated by the roundness &orar.

The budget of uncertainty of the Kosaka machinecyindricity assessment evaluates to
u=+21 nm, which leads to the expanded uncertaintyeifnal estimate) ofJgsy, = +42 Nm
when considering the confidence interval of 95 % Wdéticed that the established uncertainty

does not take into account any error relating ¢éoptocessing of the recorded dataset.

s Roundness (LSC) Roundness (MIC) L Roundness (MZC) L Roundness (MCC)
5 1 . .

1 1

o
(4]
Y axis (um
o
o w =

Y axis (um)
<)
(4]

Y axis (um
o

4
1

-0.5

X axis (um) X axis (um) X axis (um) X axis (um)

@) (b) (© (d)
Fig. 5: LSC, MIC, MCC and MZC analyses of the ekpental datasets measured on the

cylindrical artefact, using the SDS methoe==experimental datasetss=—  SDS analysis)
(Expanded interval estimategkd,= #42 nm, confidence interval: 95 %). The analyses are
performed on the datasets after compensation ofr¢peatable error motions of the air-
bearing spindle (a): evolution of the least squamgxle, (b): evolution of the maximum
inscribed circle, (c): evolution of the minimum aimscribed circle, (d): evolution of the
minimum zone circle.

For the first test on the cylindrical artefact & mm diameter, LSC, MIC, MCC and MZC
analyses of the roundness are obtained and prdsemtd=ig.5. Only for a graphical
visualization need, the diameter of the artefactcissidered as being equal to one

micrometer; otherwise it would be impractical taaghically visualize form error of the

13



artefact which is very small (around 0.4 um). Hoarewhen processing the recorded dataset,
the considered value of the diameter is equaléadial value of the test cylindrical artefact's

diameter (75 mm). The corresponding values of roesd are presented in Table 3.

Small displacement screw Reference Chebyshev best- Form error variation

method fit |AF2 ‘AF1| (nm)
Cylindrical artefact Form errorAFy (um) Form errorAF, (um)
(diameter of 75 mm) (Expanded interval estimate (Expanded interval estimate

Ugsy, = 42 nm, confidence Ugsy, =+42 nm, confidence

interval: 95 %) interval: 95 %)
MIC 0.4139*0%% 0.4139 % 0
MCC 0.375300% 0.3753 % 0
MzC 0.36330 % 0.3633* % 0
LSC 0.36670 % 0.3677 % 1

LSC- Roundness (um)

Table 3: LSC, MIC, MCC and MZC analyses of the expntal dataset which are obtained
when measuring the cylindrical artefact of 75 mrandgter and by applying the developed
SDS method. The results are compared to those bipribe reference Chebyschev method
which are identical.

To investigate the influence of the value of thendgeter on the roundness and check whether
the value of the diameter should be absolutely drighan the value of the form error, the
processing is done again with many values of thie dhameter/form-error between 0.37 and
10. According to Fig. 6, when the ratio diametertieerror is less than 1, the values of
roundness can considerably change which leadsrsider that the SDS method can not be
applicable for very small holes (the value of thi@nteter of the hole is close to the value of
the form error). For such a case (small diametedeveloped method based on the adjacent
facets can be applied to evaluate roundness [20]erMhe ratio (diameter/form error)
increases, the roundness values become unchangnghe entire range.

Influence of the ratio (diameter / form error) Influence of the ratio (diameter / form error) Influence of the ratio (diameter / form error) Influence of the ratio (diameter / form error)

on the results (LSC) on the results (MIC) on the results (MCC) on the results (MZC)

0.367, I I I I _ 042 __ 037157 T T T T . 0364 T T T T
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0.366) | | | | 2 041 = e N B B B 30362,,,L,,L,,L,,L,,
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0364 |- —F——I-——I———-I-—— 2 B 08785k — \— - —l—-— - — 4 — — - 'g 036 |- —F——F——F—-—+—-—
I I I I 3 039 3 ) I I I I I I I
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[ el el e It e T - 4 - | | | | 14 0358 | | | |
S A e = I T
s j =
0.361 | | | | 0.37 0.3753 | | | | - | | | |
0 2 4 6 8 10 0 0 2 4 6 8 10 0-356 2 4 6 8 10
Ratio (diameter / form error) Ratio (diameter / form error) Ratio (diameter / form error) Ratio (diameter / form error)

Fig. 6: Analysis of the LSC, MIC, MCC and MZC pregiag of the recorded dataset for the
cylindrical artefact (roundness measurement) whdranging the ratio between the

considered value of the diameter and the form ewbrcylindrical artefacts (Expanded

14



interval estimate by, = #42 nm, confidence interval: 95 %). The analysesp@dormed on
the datasets after compensation of the repeatabte motions of the air-bearing spindle (a):
evolution of the least squares circle accordinghe ratio variation (diameter / form error),
(b): evolution of the maximum inscribed circle aating to the ratio variation (diameter /
form error), (c): evolution of the minimum circuenibed circle according to the ratio
variation (diameter / form error), (d): evolutiorf the minimum zone circle according to the
ratio variation (diameter / form error).

The second measurement is performed on the flarkdstrd of 14.3 pum and of 50 mm
diameter under the same conditions. 3,600 datatgare recorded and the values of
roundness (LSC, MIC, MCC and MZC) are presentetiible 4.

Small displacement screw  Reference Chebyshev best- Form error variation

Flick standard Form errorAF; (um) Form errorAF2 (um)
(14.3 um) (Expanded interval estimate (Expanded interval estimate

Ugse, = 242 nm, confidence  Ugsy, = £42 nm, confidence

interval: 95%) interval: 95%)
MIC 14.37200%% 14.37200%* 0
MCC 14.39330%% 14.39330%% 0
MzZC 14.34960%% 14.34960%% 0
LSC 14.3800 %% 14.3800%* 0

Table 4: LSC, MIC, MCC and MZC analyses of the expntal dataset which are obtained
when measuring the flick standard of 14.3 um anajplying the developed SDS method.
The results are compared to those done by the eefer Chebyschev method which are

identical.

The third measurement is achieved on a cylindrctdfact of 75 mm diameter and
with different undulations per revolution (UPR): UPR, 50 UPR, 150 UPR and 500 UPR
(European standard EN ISO 12180-2). When the nunabeundulations per revolution
exceeds 500 UPR, the error is considered as bé@gdughness. 3,600 data points are
recorded over one perimeter of the artefact andréis¢ Fourier Transform (FFT) is applied as
in Fig.7. It reveals that the form error amplitwbdues are quite similar for all undulations
(between 0.5 and 0.6 um). The values of roundness,(MIC, MCC and MZC) are analyzed
by applying the SDM method and the values aregntesl in Table 5.

15



Small displacement screw Reference Chebyshev best-fit Form error variation

method |AF2 —AF1| (nm)
Form error AF1 (um) Form errorAF2 (um)

Standard with different

undulations per revolution

(diameter of 75 mm) (Expanded interval estimate  (Expanded interval estimate

Ugse, = 242 nm, confidence Ugse, = 242 nm, confidence

interval: 95%) interval: 95%)
MIC 3.726300% 3.726300% 0
MCC 3.72580:0% 3.7258%00% 0
MZC 3.7136i0'04: 3l713610.042 0
LsC 3.72530:0% 3.72530:0% 0

Table 5: LSC, MIC, MCC and MZC analyses of the expntal dataset which are obtained
when measuring the cylindrical artefact with di#fet undulations per revolution (15 UPR,
50 UPR, 150 UPR and 500 UPR) and by applying theldped SDS method. The results are

compared to those done by the reference Chebysaéthod which are identical.

Amplitude of the form error vs. undulation per rewn
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Fig. 7: Application of the FFT to the datasets repenting the form of the artefact which
contains four undulations per revolution (15 UPRQ BPR, 150 UPR and 500 UPR)

(Expanded interval estimateskd, = #42 nm, confidence interval: 95 %).

6.3. Analysis and comparison with Chebyshev best-fit results

To evaluate the limitation of the proposed methmdpmparison with existing methods
should be done for LSC, MIC, MCC and MZC. The refere Chebyshev best-fit is known by
its robust results

A/ Description of the Reference Chebyshev algorithm for 2D-circles

The Chebyshev algorithm is used to calculate thidecthat minimizes the maximum

distance separating a data point from the surfdcéh® element taken orthogonally. In
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mathematical terms, if the circle is described gsirvector of parameters, then the Chebyshev
best-fit element, withv based on the approach using the constrained @atiioin problems,
can be defined as the following general formula. {8}

mVinG(v) subject toci(v)=0, OiOl Eq.18
where ¢ (v) is the constraints function, denotes the indices of inequality constraints and
G(V) is the objective function. This expression (Eq.f@&)vides an important advantage

because of the availability of considerable matherak theories and algorithmic

approaches for this form [12-13]. For both casesao2D-circle and minimum zone
problem, if we suppose that the circle is specibgdhe parameter¥ and d; (v) (distance
between thd™ measured point to the element defined Yyvhich can be positive or
negative according to the position of the point d@mel element) then the MZC can be
identified by solving the following formula (Eq.19)
mvinmia%di (v) Cwith Oi Ol EqQ.19

For both MCC and MIC 2D-circles problems, Anthonyad [11-12] assumed

variable i (V) , which denotes the distance from iflemeasured point to the core of the

element and is always a positive quantity (Eq.20 21).
min mia>1fi V) with OO Eq.20

m\?m}inIfi V) with Di I Eq.21
For a 2D-circle whose centre has coordindtes), the distance from thid' measured point
(Xi ; yi) to the core of the circle element can be descriyethe conventional equation of the

circle. By applying the reference Chebyshev algaritthe constraint function can be solved

as a linear problem.
B/ Analysis and discussion

The performance of the proposed SDS method is atexdluby comparing the obtained
values of roundness (LSC, MIC, MCC and MZC) measwa the cylindrical artefact of
75 mm diameter to those with the reference Chebwybbst-fit method. The developed SDS
method is applied to analyze the roundness forciimdrical artefact. The comparison

between both the SDS and the Chebyshev best-fitadstis done and the values are reported
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in the Table 3. They illustrate a perfect agreenetiveen both methods, except the for the
LSC, which presents a variation of 1 nm.

The agreement between both methodologies is coadiragain for the flick standard of
14.3 um and of 50 mm diameter. As previously, tbpeatable error motions of the air-
bearing spindle are compensated and both the SB$harreference Chebyshev best-fit are
applied to analyze the roundness. All roundnesseg(LSC, MIC, MCC and MZC) are
presented in Table 4 and reveal identical results.

For the last test done on the cylindrical artefatt75 mm diameter and with different
undulations per revolution, and after a compensatib the repeatable error motions, the
process is done again by applying the SDS andefleeence Chebyshev best-fit methods. The
results (LSC, MIC, MCC and MZC) concerning the lteit are presented in Table 5 and

again reveal a perfect agreement.
C/ Investigation of the SDS and Chebyshev best-fitmethods stabilities

The roundness analyzes (MIC, MCC and MZC) usingSbs and Chebyshev best-fit
methods illustrate a perfectly similar result wremsidering higher values of the diameters
(>1mm). To understand the limitation the SDS metindn scanning small holes, the SDS
method stability was investigated by varying théugaof the diameter between 20 um and
50 mm. The investigation of the impact of the ditarie variation is completed when re-
analyzing the MZC, MIC and MCC, corresponding te ffecond test performed on the flick
standard. The results of MIC, MCC and MZC analgsis presented in Fig.8 and the values
are recorded in Table 6. From Table 6, we note\lnan applying the SDS method, the MIC
analysis is constant over the whole range of diaradietween 20 um and 50 mm. However,
the MIC analysis based on the Chebyshev best-fidtable only when the value of the
diameter exceeds 10 mm. The maximum variation @fGhebyshev best-fit when analysing
MCC can reach 10 nm. The analysis based on the @BiBod is more stable than the
reference Chebyshev method. For the MCC analylses, SDS method also present results
(variation of 2 nm for the diameter variation betéwe20 um and 50 mm) more stable than
those done by the reference Chebyshev best-fit adefhariation of 4 nm). For the MzZC
analysis, the SDS method presents less stabletggsalriation of 6 nm for the diameter
variation between 20 um and 50 mm) than those diynéhe Chebyshev best-fit method
(variation of 4 nm for the diameter variation beéne20 pm and 50 mm).

Since these programs will be integrated in the yewmitra-high cylindrical measurement

machine, with nanometric levels of accuracy, iessential to be vigilant on such kind of
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issues in order to avoid introducing additionaloesr related to numerical processing.
Following the different comparisons presented ibl&éa6, the diameter value of the part
should be at least 700 times the value of the fermar when using either the SDS or the

reference Chebyshev best-fit method.

“"MIC —— MIC -&-McCC =4--MCC =G-MzC =-G- MzC
Form error vs. the diameter of the artefact
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Fig. 8: Investigation of the stability of both S@8ue curves) and Chebyshev (red curves)
methodologies following the evolution of the cylical artefact diameter between 20 um and

50 mm (Expanded interval estimatgsdd= #42 nm, confidence interval: 95 %).

MIC MCC MzC
(Expanded interval (Expanded interval (Expanded interval
Diameter (um) estimatéUgso, = +42 Nnm,  estimatélUgge, = 242 nm,  estimatéUgsey, = +42 nm,

confidence interval: 95%) confidence interval: 95%) confidence interval: 95%)

SDS Cheb SDS Cheb SDS Cheb
50000 14.3720 14.3720 14.3933 14.3933 14.3496 926.34
10000 14.3720 14.3720 14.3933 14.3933 14.3496 98.34
1000 14.3720 14.3718 14.3934 14.3934 14.3498 1%.349
500 14.3720 14.3716 14.3934 14.3935 14.3499 14.3498
400 14.3720 14.3715 14.3934 14.3935 14.3500 14.3499
300 14.3720 14.3713 14.3935 14.3936 14.3501 14.3500
200 14.3720 14.3709 14.3936 14.3937 14.3504 14.3501
100 14.3720 14.3699 14.3938 14.3942 14.3510 14.3506
50 14.3720 14.3678 14.3943 14.3950 14.3523 14.3514
30 14.3720 14.3651 14.3949 14.3962 14.3537 14.3523
20 14.3719 14.3619 14.3957 14.3976 14.3551 14.3531

Table 6: Investigation of the stability of both tHeveloped SDS and reference Chebyshev
best-fit (Cheb) methods when changing the valuthefdiameter of the flick standard of
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14.3 um. The change of the diameter is realize¢y artien processing the data and the

experimental datasets are the same for all analyses
7. Conclusion

In this paper, the mathematical formulations of #meall Displacement Screw (SDS)
method are presented and detailed. This methodvislaped and implemented in Matlab to
analyze roundness: LSC, MIC, MCC and MZC. The dgwedl SDS method is applied to
analyze one theoretical dataset, published in BB Beport n°3327 and results are identical
to those published.

To evaluate the SDS method on a real dataset, periment is prepared to measure
the roundness of three cylindrical artefacts: ddinstandard of 75 mm, flick standard of
14.3 um and the cylindrical artefact of 75 mm diteneand with different undulations per
revolution (15 UPR, 50 UPR, 150 UPR and 500 UPResSE targets are frequently used in
mechanical industrial production to calibrate cartianal high-precision machines, which are
used to control manufactured parts. The experinseabmpleted inside the LNE clean-room
under excellent environmental conditions: tempeeathlygrometry, pressure and cleanliness.
The SDS is applied to analyze LSC, MIC, MCC and MZC

In order to investigate the limitation of the SD®thod, the obtained results were
compared to those obtained when applying the neféereChebyshev best-fit method. The
comparison of the results reveals identical vakfethe MIC, MCC and MZC and confirms
both the performance and accuracy of the SDS method

The stability of both methodologies is investigatatt reveals that results usually
remain unchanged when the diameter value of theipaqual to 700 times than the value of
the form error (roundness). Moreover, the SDS nuetlsomore stable than the Chebychev
method when the diameter of the artefact is leas 00 um, especially for the MIC and

MCC analysis methods.
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