Effect of rapid thermal annealing on Nd-SiO x thin film properties
Chuan Hui Liang, Julien Cardin, Larysa Khomenkova, Fabrice Gourbilleau

To cite this version:
Chuan Hui Liang, Julien Cardin, Larysa Khomenkova, Fabrice Gourbilleau. Effect of rapid thermal annealing on Nd-SiO x thin film properties. Conference: SPIE Photonics Europe, Apr 2012, Brussels, Belgium. 10.1117/12.922349 . hal-01139857

HAL Id: hal-01139857
https://hal.archives-ouvertes.fr/hal-01139857
Submitted on 10 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of rapid thermal annealing on Nd-SiO\textsubscript{x} thin film properties

C.–H. Liang*, J. Cardin†, L. Khomenkova, F. Gourbilleau
aCIMAP (CNRS/CEA/ENSICAEN/UCBN), Ensicaen, 6 Bd Maréchal Juin, 14050 Caen, France

ABSTRACT

The series of Nd3+-doped Si-rich SiO\textsubscript{2} thin films with different excess Si content were deposited by magnetron co-sputtering of three different (SiO\textsubscript{2}, Si and Nd\textsubscript{2}O\textsubscript{3}) targets under a plasma of pure argon at 500 °C. The Si excess content in the samples was monitored via a power applied on Si cathode. The films were submitted to the rapid thermal annealing (RTA) at 900, 1000 and 1100 °C, respectively. It was observed a phase separation and a formation of Si nanoclusters embedded in oxide host. The Si excess, remaining after a RTA-1100 °C annealing, was found to be negligible, confirmed nearly complete phase separation. The Nd3+ photoluminescence (PL) property was explored as a function of Si excess and/or annealing temperature. The most efficient Nd3+ PL emission was found for the samples with about 4.7% of Si excess. These optimal samples, submitted to RTA-900 °C-1 min treatment and conventional annealing at 900°C for 1 h in nitrogen flow, demonstrated comparable Nd3+ PL intensities. This offers future application of RTA treatment to achieve an efficient emission from the materials doped with rare-earth ions.

Keywords: Si-rich SiO\textsubscript{2}, neodymium, photoluminescence, rapid thermal annealing

1. INTRODUCTION

Since the discovery of strong visible emission in porous Si observed by Canham1 at room temperature, Si-based nanostructured materials have been considered as promising candidates for a large number of optoelectronic and photonic applications. Many groups demonstrated that Si nanoclusters (Si-ncs) embedded in SiO\textsubscript{2} host possess visible luminescence. Its peak position is controlled by Si-nc sizes due to the quantum confinement effect2. Moreover, these Si-ncs can play a sensitizing role towards rare earth (RE) ions such as Er3+ and Nd3+, whose effective cross section increases consequently by 3-4 orders of magnitude3. In other words, the interaction of Si-ncs with nearby RE ions allows achieving efficient RE luminescence. Several factors affect Si-ncs-RE ions energy transfer process; they are (i) the size and density of Si-ncs, (ii) a distance between RE ions and Si-nc and (iii) the density of RE ions. The control of all these parameters allowed achieving an optimal RE emission.

Si-ncs embedded in Si-based material have been prepared by many approaches such as sputtering4,5, chemical vapor deposition6, molecular beam epitaxy7, laser ablation8 and ion implantation9. The samples fabricated by most of these techniques are in the form of Si-rich material, which should proceed with a post-annealing to allow a phase separation process to obtain Si-ncs. It was found that in Si-rich SiO\textsubscript{2} system, amorphous Si-ncs start to form and grow during the 900 °C-annealing, while the 1100 °C-annealing will lead the Si-nc crystallization10. During the annealing, there are two competing mechanisms: (i) the growth of existing Si-ncs due to the diffusion of Si atoms in the sample and (ii) the formation and subsequent growth of new Si-ncs at nucleation sites11. Moreover, the annealing may also result in the clusterization of RE ions that causes quenching of the RE emission.

To prevent the further growth of Si-ncs and to obtain small Si-ncs with high density and narrow distribution, a decreasing of the annealing time is expected in the post-annealing12-13. As a consequence, rapid thermal annealing (RTA) is an attractive choice especially in the thin film fabrication process. The RTA can activate dopants, while at the same time it can minimize their diffusion14. This work aimed at the investigation of the effect of RTA treatment on the properties of Nd3+-doped Si-rich SiO\textsubscript{2} (Nd-SiO\textsubscript{3}) thin film with different Si excess (Si\textsubscript{ex}).

* Corresponding authors: C.–H. Liang, e-mail: chuan-hui.liang@ensicaen.fr
† J. Cardin, e-mail: julien.cardin@ensicaen.fr;
2. EXPERIMENTAL TECHNIQUES

The series of Nd-SiO$_x$ thin films were deposited onto p-type silicon wafers by radio frequency magnetron co-sputtering of three confocal cathodes - Si, SiO$_2$, and Nd$_2$O$_3$ - in a pure argon plasma at a pressure of 3 mTorr. The Si$_{ex}$ was controlled by the monitoring of the Si cathode power density (P_{Si}) from 1.04 to 1.78 W/cm2, whereas those for SiO$_2$ and Nd$_2$O$_3$ were fixed at 8.88 and 0.30 W/cm2, respectively. The layer thickness was in the 320-360 nm range for all samples investigated. A RTA treatment was performed in a rapid thermal furnace at 900, 1000 or 1100 °C for 30 to 180 s duration under nitrogen gas. However, hereafter the most results will be presented for RTA-1 min treatment. The ramp-up rate to reach annealing temperature was 45 °C/s. The Si$_{ex}$ value was estimated from the Fourier transform infrared (FTIR) spectrum measured at normal incidence of beam light. The photoluminescence spectra were obtained using the 488-nm-line of Ar$^+$ laser, which is non-resonant excitation for Nd$^{3+}$ ions.

3. RESULTS AND DISCUSSION

Figure 1 displays the variation of TO$_3$ peak position of Si-O vibration bond versus P_{Si}, obtained for as-deposited (AD) Nd-SiO$_x$ samples from FTIR spectra measured at normal incidence of excitation beam light.

![Figure 1](image)

Figure 1. Evolution of TO$_3$ peak position (left axis) and of estimated S_{ex}^{total} (at%, right axis) as a function of P_{Si} for as-deposited (AD) samples.

These data allow a rough estimation of a total Si excess, S_{ex}^{total}. Meanwhile, the obtained data can be underestimated because of the formation of Si agglomerates caused by high deposition temperature (500 °C). It was estimated according to the following two equations:\(^1\):

$$x = 0.02 \cdot \nu_{TO_3} - 19.3 \quad (1)$$

and

$$S_{ex}^{total} \text{ (at\%)} = \frac{2 - x}{2 + 2x} \cdot 100\% \quad (2)$$

where ν_{TO_3} and x being the TO$_3$ peak position and [O]/[Si] ratio, respectively.

Figure 2 represents the evolution of FTIR spectra versus annealing temperature for the samples submitted to RTA treatment.
The RTA treatment causes the shift of FTIR spectra towards longer wavenumbers. This is an evidence of the phase separation between Si and SiO\(_y\) in Nd-SiO\(_x\) samples, which can be considered as a reaction:

\[
\text{SiO}_x \xrightarrow{\text{RTA}} y - x \text{Si} + \frac{x}{y} \text{SiO}_y .
\] (3)

The first term in right part represents the formed Si-ncs, while the second term is the SiO\(_y\) phase containing the isolated Si atoms. Thus, the excess Si atoms in RTA layer is in two forms, i.e. Si-ncs, \(S_{\text{ex}}^{\text{Si-nc}}\), and isolated Si atoms. To obtain the \(S_{\text{ex}}^{\text{Si-nc}}\), the \(y\) value in Eq.(3) has to be determined. It can be deduced similar to the \(x\) estimation above based on the equation (4) \(^{16}\):

\[
y = 2 \cdot \frac{v_{\text{TO}_3}^{\text{SiO}_y} - v_{\text{TO}_3}^{\text{Si}}} {v_{\text{TO}_3}^{\text{SiO}_y} - v_{\text{TO}_3}^{\text{SiO}_2}} ,
\] (4)

where \(v_{\text{TO}_3}^{\text{Si}}\) value is 965 cm\(^{-1}\) \(^{17}\), while the \(v_{\text{TO}_3}^{\text{SiO}_y}\) and \(v_{\text{TO}_3}^{\text{SiO}_2}\) values correspond to the TO\(_3\) peak for RTA Nd-SiO\(_x\) and 320-nm SiO\(_2\) films, respectively. The close values of \(v_{\text{TO}_3}^{\text{SiO}_y}\) and \(v_{\text{TO}_3}^{\text{SiO}_2}\) peak positions were obtained for the Nd-SiO\(_x\) and pure SiO\(_2\) samples submitted to RTA-1100 °C treatment (Fig.2). This could be considered as an evidence of a complete phase separation in Nd-SiO\(_x\) samples. However, their FTIR spectra are still broader than that for SiO\(_2\) layers. This means that the excess Si atoms are still present either as isolated ones or as some agglomerates with Nd ions such as Nd-Si-O similar to the case described in our previous work \(^{18}\). Furthermore, the \(S_{\text{ex}}^{\text{Si-nc}}\) was obtained on the basis of equation (5):

\[
S_{\text{ex}}^{\text{Si-nc}} \text{ (at\%) } = \frac{y}{1 + x} \cdot 100\%.
\] (5)
The evolution of $S_{\text{Si-nc}}$ versus $S_{\text{Si}}^{\text{total}}$ for different annealing temperatures is shown in Fig. 3. The ratio of $S_{\text{Si-nc}}^{\text{total}}$ to $S_{\text{Si}}^{\text{total}}$ was estimated by the following equation:

$$\eta(\%) = \frac{S_{\text{Si-nc}}^{\text{total}}}{S_{\text{Si}}^{\text{total}}} = \frac{2(y-x)}{y(2-x)} \cdot 100\%.$$

It was found to be $\eta \approx 78\%$, 88% and 98% $S_{\text{Si}}^{\text{total}}$ to form Si-ncs for samples after annealing at 900, 1000 and 1100 °C, respectively. This behavior can be observed in Fig. 3 from the slope of curves that increases with the temperature and approaches the value of about 1 that is an ideal case, when all excess Si atoms are agglomerated into Si-ncs. This indicated that for all the samples (i) the η value depends mainly on annealing temperature; (ii) 1100 °C-annealing can allow a complete phase separation.

Figure 3. Evolution of $S_{\text{Si-nc}}^{\text{total}}$ as a function of $S_{\text{Si}}^{\text{total}}$ for RTA-samples treated at different annealing temperatures (T_α).

Figure 4. Evolution of the integrated intensity of Nd$^{3+}$ PL for $^4F_{3/2} - ^4I_{9/2}$ transition as a function of $S_{\text{Si}}^{\text{total}}$ for AD and RTA-treated samples.
The evolution of the integrated intensity of Nd$^{3+}$ PL was investigated as a function of S_{ex}^{total} for AD and RTA samples and it is presented for $^{4}F_{3/2} - ^{4}I_{9/2}$ transition in Fig. 4. Each curve in this figure shows the increase of PL intensity with S_{ex}^{total} from 1.4 to 4.7 at%, and then its decrease with the further rise of S_{ex}^{total} from 5.6 to 6.4 at%. Therefore, the maximum integrated intensity corresponds to the samples with the $S_{ex}^{total} = 4.7 \text{ at\%}$ for each curve. This Nd$^{3+}$ PL behavior versus S_{ex}^{total} was explained in the case of $S_{ex}^{total} < 4.7 \text{ at\%}$, by the increase of Si-ncs number as well as higher coupling rate between Si-ncs and Nd$^{3+}$ ions. In the case of $S_{ex}^{total} > 4.7 \text{ at\%}$ the larger Si-ncs form at the expense of small size Si-ncs, that causes a decrease of their number and lower coupling rate of larger Si-ncs with Nd$^{3+}$ ions. In addition, comparing different curves in Fig. 4, the integrated PL intensity of RTA-900 ºC treated samples exceeds significantly that of the AD samples for each S_{ex}^{total} sample. This indicates that RTA-900 ºC annealing at short time (1 min) allowed obtaining the optimal Si-nc density and coupling with Nd$^{3+}$ ions. The decrease of Nd$^{3+}$ PL intensity with the annealing temperature from 900 to 1100 ºC is due to enlargement of Si-ncs sizes and improved quality of silicon oxide host (approaching stoichiometric SiO$_2$) with higher temperatures. This can lead to the formation of SiO$_2$ shell covered Si-ncs and results in the higher potential barrier for the carriers participating in the energy transfer from Si-ncs towards Nd$^{3+}$ ions. Besides, the formation of Nd$^{3+}$ clusters can occur. This assumption agrees with the following consideration for the samples with $S_{ex}^{total} \leq 4.7 \text{ at\%}$. One can suppose that the Si-nc density in these samples RTA treated at 900 and 1000 ºC proportional to S_{ex}^{Si-nc}, i.e. the $S_{ex}^{total} = 4.0 \text{ at\%}$ allowed to obtain $S_{ex}^{Si-nc} = 3.4 \text{ at\%}$ in RTA-1000 ºC, whereas for sample $S_{ex}^{total} = 4.7 \text{ at\%}$ after RTA-900 ºC treatment the $S_{ex}^{Si-nc} = 3.6 \text{ at\%}$. However, in spite of these close values, corresponding PL intensities differ in about 1.3-1.4 times (Fig.4).

Figure 5 shows the evolution of Nd$^{3+}$ PL intensity versus RTA duration at 900 ºC for the optimal sample ($S_{ex}^{total} = 4.7 \text{ at\%}$). The PL intensity increased greatly in the first one minute, while it saturates for the longer RTA duration. The level of the Nd$^{3+}$ PL intensity achieved for the samples submitted to a conventional annealing (CA) at 900 ºC for 1 h in nitrogen flow is also presented in Fig.5 by solid line. The inset of this figure shows the PL spectra for RTA-900 ºC-1 min and CA-900 ºC -1 h sample, respectively. One can see that both of them have close PL intensities (the

Figure 5. Evolution of the integrated intensity of Nd$^{3+}$ PL for $^{4}F_{3/2} - ^{4}I_{9/2}$ transition as a function of annealing time at RTA-900 ºC for the optimal sample ($S_{ex}^{total} = 4.7 \text{ at\%}$). The solid line on top represent of the level of PL intensity for the same transition obtained for similar sample treated by conventional annealing (CA) at 900 ºC for 1 h in nitrogen flow. The inset is the PL spectra for RTA-900 ºC-1 min and CA-900 ºC -1 h sample, respectively.
RTA-900 °C-1 min optimal sample had an integrated intensity of about 95% of that of a sample after a CA-900 °C-1 h). It is seen that only first few minutes transform the sample microstructure and allow reaching high PL intensity of Nd$^{3+}$ ions, whereas further, longer annealing changes Nd$^{3+}$ PL efficiency insignificantly. These results demonstrate that RTA treatment offers a possibility to obtain an efficient emission of Nd$^{3+}$ ions in SiO$_x$ samples comparable with that achieved for CA-treated samples; however some optimization of RTA conditions is still required.

4. CONCLUSIONS

This study supported that the RTA treatment had a significant effect on the microstructure of Nd-SiO$_x$ thin films, and great increase of Nd$^{3+}$ PL intensity was obtained after RTA. Moreover, with the aim to optimize Nd$^{3+}$ PL by RTA, the layers with various S_{ex}^{total} were investigated and the strongest Nd$^{3+}$ PL was obtained for sample with 4.7 at% S_{ex}^{total} annealed at 900 °C. This result may push RTA as an exciting candidate for the thin film fabrication process.

5. ACKNOWLEDGEMENTS

The authors thank the French National Agency (ANR), which supported this work through the Nanoscience and Nanotechnology program (DAPHNES project ANR-08-NANO-005).

REFERENCES

