3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation

Abstract : This paper proposes a simple and efficient method for the reconstruction and extraction of geometric parameters from 3D tubular objects. Our method constructs an image that accumulates surface normal information, then peaks within this image are located by tracking. Finally, the positions of these are optimized to lie precisely on the tubular shape centerline. This method is very versatile, and is able to process various input data types like full or partial mesh acquired from 3D laser scans, 3D height map or discrete volumetric images. The proposed algorithm is simple to implement, contains few parameters and can be computed in linear time with respect to the number of surface faces. Since the extracted tube centerline is accurate, we are able to decompose the tube into rectilinear parts and torus-like parts. This is done with a new linear time 3D torus detection algorithm, which follows the same principle of a previous work on 2D arc circle recognition. Detailed experiments show the versatility, accuracy and robustness of our new method.
Type de document :
Communication dans un congrès
18th International Conference on Image Analysis and Processing, Sep 2015, Genova, Italy. 2015, 〈10.1007/978-3-319-23231-7_29〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01139374
Contributeur : Bertrand Kerautret <>
Soumis le : mardi 23 juin 2015 - 13:59:10
Dernière modification le : mardi 24 avril 2018 - 13:52:03
Document(s) archivé(s) le : mardi 25 avril 2017 - 19:20:32

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Bertrand Kerautret, Adrien Krähenbühl, Isabelle Debled-Rennesson, Jacques-Olivier Lachaud. 3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation. 18th International Conference on Image Analysis and Processing, Sep 2015, Genova, Italy. 2015, 〈10.1007/978-3-319-23231-7_29〉. 〈hal-01139374v2〉

Partager

Métriques

Consultations de la notice

281

Téléchargements de fichiers

258