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Abstract
A long-standing goal in artificial intelligence is creating agents that can learn a variety of differ-

ent skills for different problems. In the artificial intelligence subfield of neural networks, a barri-

er to that goal is that when agents learn a new skill they typically do so by losing previously

acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the

new task, neural learning algorithms change connections that encode previously acquired

skills. How networks are organized critically affects their learning dynamics. In this paper, we

test whether catastrophic forgetting can be reduced by evolvingmodular neural networks.
Modularity intuitively should reduce learning interference between tasks by separating func-

tionality into physically distinct modules in which learning can be selectively turned on or off.

Modularity can further improve learning by having a reinforcement learning module separate

from sensory processingmodules, allowing learning to happen only in response to a positive

or negative reward. In this paper, learning takes place via neuromodulation, which allows

agents to selectively change the rate of learning for each neural connection based on environ-

mental stimuli (e.g. to alter learning in specific locations based on the task at hand). To pro-

ducemodularity, we evolve neural networks with a cost for neural connections. We show that

this connection cost technique causes modularity, confirming a previous result, and that such

sparsely connected, modular networks have higher overall performance because they learn

new skills faster while retaining old skills more and because they have a separate reinforce-

ment learning module. Our results suggest (1) that encouraging modularity in neural networks

may help us overcome the long-standing barrier of networks that cannot learn new skills with-

out forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of

natural animals might be to alleviate the problem of catastrophic forgetting.

Author Summary

A long-standing goal in artificial intelligence (AI) is creating computational brain models
(neural networks) that learn what to do in new situations. An obstacle is that agents typi-
cally learn new skills only by losing previously acquired skills. Here we test whether such
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forgetting is reduced by evolving modular neural networks, meaning networks with many
distinct subgroups of neurons. Modularity intuitively should help because learning can be
selectively turned on only in the module learning the new task. We confirm this hypothe-
sis: modular networks have higher overall performance because they learn new skills faster
while retaining old skills more. Our results suggest that one benefit of modularity in natu-
ral animal brains may be allowing learning without forgetting.

Introduction
A long-standing scientific challenge is to create agents that can learn, meaning they can adapt
to novel situations and environments within their lifetime. The world is too complex, dynamic,
and unpredictable to program all beneficial strategies ahead of time, which is why robots, like
natural animals, need to be able to continuously learn new skills on the fly.

Having robots learn a large set of skills, however, has been an elusive challenge because they
need to learn new skills without forgetting previously acquired skills [1–3]. Such forgetting is
especially problematic in fields that attempt to create artificial intelligence in brain models
called artificial neural networks [1, 4, 5]. To learn new skills, neural network learning algo-
rithms change the weights of neural connections [6–8], but old skills are lost because the
weights that encoded old skills are changed to improve performance on new tasks. This prob-
lem is known as catastrophic forgetting [9, 10] to emphasize that it contrasts with biological an-
imals (including humans), where there is gradual forgetting of old skills as new skills are
learned [11]. While robots and artificially intelligent software agents have the potential to sig-
nificantly help society [12–14], their benefits will be extremely limited until we can solve the
problem of catastrophic forgetting [1, 15]. To advance our goal of producing sophisticated,
functional artificial intelligence in neural networks and make progress in our long-term quest
to create general artificial intelligence with them, we need to develop algorithms that can learn
how to handle more than a few different problems. Additionally, the difference between
computational brain models and natural brains with respect to catastrophic forgetting limits
the usefulness of such models as tools to study neurological pathologies [16].

In this paper, we investigate the hypothesis that modularity, which is widespread in biologi-
cal neural networks [17–21], helps reduce catastrophic forgetting in artificial neural networks.
Modular networks are those that have many clusters (modules) of highly connected neurons
that are only sparsely connected to neurons in other modules [19, 22, 23]. The intuition behind
this hypothesis is that modularity could allow learning new skills without forgetting old skills
because learning can be selectively turned on only in modules learning a new task (Fig. 1, top).
Selective regulation of learning occurs in natural brains via neuromodulation [24], and we in-
corporate an abstraction of it in our model [25]. We also investigate a second hypothesis: that
modularity can improve skill learning by separating networks into a skill module and a reward
module, resulting in more precise control of learning (Fig. 1, bottom).

To evolvemodular networks, we add another natural phenomenon: costs for neural connec-
tions. In nature, there are many costs associated with neural connections (e.g. building them,
maintaining them, and housing them) [26–28] and it was recently demonstrated that incorpo-
rating a cost for such connections encourages the evolution of modularity in networks [23].
Our results support the hypothesis that modularity does mitigate catastrophic forgetting: mod-
ular networks have higher overall performance because they learn new skills faster while retain-
ing old skills more. Additional research into this area, including investigating the generality of
our results, will catalyze research on creating artificial intelligence, improve models of neural
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learning, and shed light on whether one benefit of modularity in natural animal brains is an
improved ability to learn without forgetting.

Background
Catastrophic forgetting. Catastrophic forgetting (also called catastrophic interference)

has been identified as a problem for artificial neural networks (ANNs) for over two decades:
When learning multiple tasks in a sequence, previous skills are forgotten rapidly as new infor-
mation is learned [9, 10]. The problem occurs because learning algorithms only focus on solv-
ing the current problem and change any connections that will help solve that problem, even if
those connections encoded skills appropriate to previously encountered problems [9].

Many attempts have been made to mitigate catastrophic forgetting. Novelty vectorsmodify
the backpropagation learning algorithm [7] to limit the number of connections that are
changed in the network based on how novel, or unexpected, the input pattern is [29]. This
technique is only applicable for auto-encoder networks (networks whose target output is iden-
tical to their input), thus limiting its value as a general solution to catastrophic forgetting [1].
Orthogonalization techniques mitigate interference between tasks by reducing their representa-
tional overlap in input neurons (via manually designed preprocessing) and by encouraging
sparse hidden-neuron activations [30–32]. Interleaved learning avoids catastrophic forgetting
by training on both old and new data when learning [10], although this method cannot scale
and does not work for realistic environments because in the real world not all challenges are
faced concurrently [33, 34]. This problem with interleaved learning can be reduced with pseudo
rehearsal, wherein input-output associations from old tasks are remembered and rehearsed

Fig 1. Two hypotheses for how neural modularity can improve learning.Hypothesis 1: Evolving non-modular networks leads to the forgetting of old
skills as new skills are learned. Evolving networks with a pressure to minimize connection costs leads to modular solutions that can retain old skills as new
skills are learned. Hypothesis 2: Evolving modular networks makes reward-based learning easier, because it allows a clear separation of reward signals and
learned skills. We present evidence for both hypotheses in this paper.

doi:10.1371/journal.pcbi.1004128.g001
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[34]. However, scaling remains an issue with pseudo rehearsal because such associations still
must be stored and choosing which associations to store is an unsolved problem [15]. These
techniques are all engineered approaches to reducing the problem of catastrophic forgetting
and are not proposed as methods by which natural evolution solved the problem of catastroph-
ic forgetting [1, 10, 29–32, 34].

Dual-net architectures, on the other hand, present a biologically plausible [35] mechanism
for limiting catastrophic forgetting [33, 36]. The technique, inspired by theories on how
human brains separate and subsequently integrate old and new knowledge, partitions early
processing and long-term storage into different subnetworks. Similar to interleaved learning
techniques, dual-net architectures enable both new knowledge and input history (in the form
of current network state) to affect learning.

Although these methods have been suggested for reducing catastrophic forgetting, many
questions remain about how animals avoid this problem [1] and which mechanisms can help
avoid it in neural networks [1, 15]. In this paper, we study a new hypothesis, which is thatmod-
ularity can help avoid catastrophic forgetting. Unlike the techniques mentioned so far, our so-
lution does not require human design, but is automatically generated by evolution. Evolving
our solution under biologically realistic constraints has the added benefit of suggesting how
such a mechanism may have originated in nature.

Evolving neural networks that learn. One method for setting the connection weights of
neural networks is to evolve them, meaning that an evolutionary algorithm specifies each
weight, and the weight does not change within an organism’s “lifetime” [5, 37–39]. Evolution-
ary algorithms abstract Darwinian evolution: in each generation a population of “organisms”
is subjected to selection (for high performance) and then mutation (and possibly crossover)
[5, 38]. These algorithms have shown impressive performance—often outperforming human
engineers [40, 41]—on a range of tasks, such as measuring properties in quantum physics [12],
dynamic rocket guidance [42], and robot locomotion [43, 44].

Another approach to determining the weights of neural networks is to initialize them ran-
domly and then allow them to change via a learning algorithm [5, 7, 45]. Some learning
algorithms, such as backpropagation [6, 7], require a correct output (e.g. action) for each
input. Other learning algorithms are considered more biologically plausible in that they
involve only information local to each neuron (e.g. Hebb’s rule [45]) or infrequent reward sig-
nals [8, 46, 47].

Evolution and learning can be combined, wherein evolution creates an initial neural net-
work and then a learning algorithm modifies its connections within the lifetime of the organ-
ism [5, 37, 47–49]. Compared to behaviors defined solely by evolution, evolving agents that
learn leads to better solutions in fewer generations [48, 50, 51], improved adaptability to chang-
ing environments [48, 49], and enables evolving solutions for larger neural networks [48].
Computational studies of evolving agents that learn have also shed light on open biological
questions regarding the interactions between evolution and learning [50, 52, 53].

The idea of using evolutionary computation to reduce catastrophic forgetting has not been
widely explored. In one relevant paper, evolution optimized certain parameters of a neural net-
work to mitigate catastrophic forgetting [15]. Such parameters included the number of hidden
(internal) neurons, learning rates, patterns of connectivity, initial weights, and output error tol-
erances. That paper did show that there is a potential for evolution to generate a stronger resis-
tance to catastrophic forgetting, but did not investigate the role of modularity in helping
produce such a resistance.

Neuromodulatory learning in neural networks. Evolutionary experiments on artificial
neural networks typically model only the classic excitatory and inhibitory actions of neurons in
the brain [5]. In addition to these processes, biological brains employ a number of different
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neuromodulators, which are chemical signals that can locally modify learning [24, 54, 55]. By
allowing evolution to design neuromodulatory dynamics, learning rates for particular synapses
can be upregulated and downregulated in response to certain inputs from the environment.
These additional degrees of freedom greatly increase the possible complexity of reward-based
learning strategies. This type of plasticity-controlling neuromodulation has been successfully
applied when evolving neural networks that solve reinforcement learning problems [25, 46],
and a comparison found that evolution was able to solve more complex tasks with neuromodu-
lated Hebbian learning than with Hebbian learning alone [25]. Our experiments include this
form of neuromodulation (Methods).

Evolved modularity in neural networks. Modularity is ubiquitous in biological networks,
including neural networks, genetic regulatory networks, and protein interaction networks [17–
21]. Why modularity evolved in such networks has been a long-standing area of research [18–
20, 56–59]. Researchers have also long studied how to encourage the evolution of modularity
in artificial neural networks, usually by creating the conditions that are thought to promote
modularity in natural evolution [19, 57–61]. Several different hypotheses have been suggested
for the evolutionary origins of modularity.

A leading hypothesis has been that modularity emerges when evolution occurs in rapidly
changing environments that have common subproblems, but different overall problems [57].
These environments are said to havemodularly varying goals. While such environments can
promote modularity [57], the effect only appears for certain frequencies of environmental
change [23] and can fail to appear with different types of networks [58, 60, 61]. Moreover, it is
unclear how many natural environments changemodularly and how to design training prob-
lems for artificial neural networks that have modularly varying goals. Other experiments have
shown that modularity may arise from gene duplication and differentiation [19], or that it may
evolve to make networks more robust to noise in the genotype-phenotype mapping [58] or to
reduce interference between network activity patterns [59].

Recently, a different cause of module evolution was documented: that modularity evolves
when there are costs for connections in networks [23]. This explanation for the evolutionary
origins of modularity is biologically plausible because biological networks have connection
costs (e.g. to build connections, maintain them, and house them) and there is evidence that nat-
ural selection optimally arranges neurons to minimize these connection costs [26, 27]. More-
over, the modularity-inducing effects of adding a connection cost were shown to occur in a
wide range of environments, suggesting that adding a selection pressure to reduce connection
costs is a robust, general way to encourage modularity [23]. We apply this technique in our
paper because of its efficacy and because it may be a main reason that modularity evolves in
natural networks.

Experimental Setup
To test our hypotheses, we set up an environment in which there is a potential for catastrophic
forgetting and where individuals able to avoid this forgetting receive a higher evolutionary fit-
ness, meaning they are more likely to reproduce. The environment is an abstraction of a world
in which an organism performs a daily routine of trying to eat nutritious food while avoiding
eating poisonous food. Every day the organism observes every food item one time: half of the
food items are nutritious and half are poisonous. To achieve maximum fitness, the individual
needs to eat all the nutritious items and avoid eating the poisonous ones. After a number of
days, the season changes abruptly from a summer season to a winter season. In the new season,
there is a new set of food sources, half of them nutritious and half poisonous, and the organism
has to learn which is which. After this winter season, the environment changes back to the
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summer season and the food items and their nutritious/poisonous statuses are the same as in
the previous summer. The environment switches back and forth between these two seasons
multiple times in the organism’s lifetime. Individuals that remember each season’s food associ-
ations perform better by avoiding poisonous items without having to try them first.

We consider each pair of a summer and winter season a year. Every season lasts for five
days, and in each day an individual encounters all four food items for that season in a random
order. A lifetime is three years (Fig. 2). To ensure that individuals must learn associations with-
in their lifetimes instead of having genetically hardcoded associations [47, 62], in each lifetime
two food items are randomly assigned as nutritious and the other two food items are assigned
as poisonous (Fig. 3). To select for general learners rather than individuals that by chance do
well in a specific environment, performance is averaged over four random environments (life-
times) for each individual during evolution, and over 80 random environments (lifetimes)
when assessing the performance of final, end-of-experiment individuals (Methods).

Fig 2. The environment for one individual’s lifetime. A lifetime lasts 3 years. Each year has 2 seasons:
winter and summer. Each season consists of 5 days. In each day, each individual sees all food items
available in that season (only two are shown) in a random order.

doi:10.1371/journal.pcbi.1004128.g002

Fig 3. Randomizing food associations between generations. To ensure that agents learn associations
within their lifetimes instead of genetically hardcoding associations, whether each food item is nutritious or
poisonous is randomized each generation. There are four food items per season (two are depicted).

doi:10.1371/journal.pcbi.1004128.g003
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This environment selects for agents that can avoid forgetting old information as they learn
new, unrelated information. For instance, if an agent is able to avoid forgetting the summer as-
sociations during the winter season, it will immediately perform well when summer returns,
thus outcompeting agents that have to relearn summer associations. Agents that forget, espe-
cially catastrophically, are therefore at a selective disadvantage.

Our main results were found to be robust to variations in several of our experimental pa-
rameters, including changes to the number of years in the organism’s lifetime, the number of
different seasons per year, the number of different edible items, and different representations
of the inputs (the presence of items being represented either by a single input or distributed
across all inputs for a season). We also observed that our results are robust to lengthening the
number of days per season: networks in the experimental treatment (called “P&CC” for rea-
sons described below) significantly outperform the networks in the control (“PA”) treatment
(p< 0.05) even when doubling or quadrupling the number of days per season, although the
size of the difference diminished in longer seasons.

Neural network model. The model of the organism’s brain is a neural network with 10
input neurons (Supp. S1 Fig). From left to right, inputs 1-4 and 5-8 encode which summer and
winter food item is present, respectively. During summer, the winter inputs are never active
and vice versa. Catastrophic forgetting may appear in these networks because a non-modular
neural network is likely to use the same hidden neurons for both seasons (Fig. 1, top). We seg-
mented the summer and winter items into separate input neurons to abstract a neural network
responsible for an intermediate phase of cognition, where early visual processing and object
recognition have already occurred, but before decisions have been made about what to do in re-
sponse to the recognized visual stimuli. Such disentangled representations of objects have been
identified in animal brains [63] and are common at intermediate layers of neural network
models [64]. The final two inputs are for reinforcement learning: inputs 9 and 10 are reward
and punishment signals that fire when a nutritious or poisonous food item is eaten, respective-
ly. The network has a single output that determines if the agent will eat (output> 0) or ignore
(output< = 0) the presented food item.

Associations can be learned by properly connecting reward signals through neuromodula-
tory neurons to non-modulatory neurons that determine which actions to take in response to
food items (Methods). Evolution determines the neural wiring that produces learning dynam-
ics, as described next.

Evolutionary algorithm. Evolution begins with a randomly generated population of neu-
ral networks. The performance of each network is evaluated as described above. More fit net-
works tend to have more offspring, with fitness being determined differently in each treatment,
as explained below. Offspring are generated by copying a parent genome and mutating it by
adding or removing connections, changing the strength of connections, and switching neurons
from being modulatory to non-modulatory or vice versa. The process repeats for 20,000
generations.

To evolvemodular neural networks, we followed a recently demonstrated procedure where
modularity evolves as a byproduct of a selection pressure to reduce neural connectivity [23].
We compared a treatment where the fitness of individuals was based on performance alone
(PA) to one based on both maximizing performance and minimizing connection costs
(P&CC). Specifically, evolution proceeds according to a multi-objective evolutionary algorithm
with one (PA) or two (P&CC) primary objectives. A network’s connection cost equals its num-
ber of connections, following [23]. More details on the evolutionary algorithm can be found in
Methods.
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Results

A Connection Cost Increases Performance and Modularity
The addition of a cost for connections (the P&CC treatment) leads to a rapid, sustained, and
statistically significant fitness advantage versus not having a connection cost (the PA treat-
ment) (Fig. 4). In addition to overall performance across generations, we looked at the day-to-
day performance of final, evolved individuals (Fig. 5). P&CC networks learn associations faster
in their first summer and winter, and maintain higher performance over multiple years (pairs
of seasons).

The presence of a connection cost also significantly increases networkmodularity (Fig. 4),
confirming the finding of Clune et al. [23] in this different context of networks with within-life
learning. Networks evolved in the P&CC treatment tend to create a separate reinforcement
learning module that contains the reward and punishment inputs and most or all neuromodu-
latory neurons (Fig. 6). One of our hypotheses (Fig. 1, bottom) suggested that such a separation
could improve the efficiency of learning, by regulating learning (via neuromodulatory neurons)
in response to whether the network performed a correct or incorrect action, and applying that
learning to downstream neurons that determine which action should be taken in response to
input stimuli.

To quantify whether learning is separated into its own module, we adopted a technique
from [23], which splits a network into the most modular decomposition according to the mod-
ularity Q score [65]. We then measured the frequency with which the reinforcement inputs (re-
ward/punishment signals) were placed into a different module from the remaining food-item
inputs. This measure reveals that P&CC networks have a separate module for learning in 31%
of evolutionary trials, whereas only 4% of the PA trials do, which is a significant difference
(p = 2.71 × 10−7), in agreement with our hypothesis (Fig. 1, bottom). Analyses also reveal that
the networks from both treatments that have a separate module for learning perform signifi-
cantly better than networks without this decomposition (median performance of modular net-
works in 80 randomly generated environments (Methods): 0.87 [95% CI: 0.83, 0.88] vs. non-

Fig 4. The addition of a cost for network connections, which is present only in the P&CC treatment, significantly increases performance and
modularity.Modularity is measured via a widely used approximation of the standardQmodularity score [23, 57, 65, 67] (Methods). For each treatment, the
median from 100 independent evolution experiments is shown ± 95% bootstrapped confidence intervals of the median (Methods). Asterisks below each plot
indicate statistically significant differences at p< 0.01 according to the Mann-Whitney U test, which is the default statistical test throughout this paper unless
otherwise specified.

doi:10.1371/journal.pcbi.1004128.g004
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Fig 5. Performance each day for evolved agents from both treatments. Plotted is median performance
per day (± 95% bootstrapped confidence intervals of the median) measured across 100 organisms (the
highest-performing organism from each experiment per treatment) tested in 80 new environments (lifetimes)
with random associations (Methods). P&CC networks significantly outperform PA networks on every day
(asterisks). Eating no items or all items produces a score of 0.5; eating all and only nutritious food items
achieves the maximum score of 1.0.

doi:10.1371/journal.pcbi.1004128.g005

Fig 6. PA networks are visually non-modular whereas P&CC networks tend to create a separate module for learning (red and orange neurons), as
hypothesized in Fig. 1 (bottom). Dark blue nodes are inputs that encode which type of food has been encountered. Light blue nodes indicate internal, non-
modulatory neurons. Red nodes are reward or punishment inputs that indicate if a nutritious or poisonous item has been eaten. Orange neurons are
neuromodulatory neurons that regulate learning. P&CC networks tend to separate the reward/punishment inputs and neuromodulatory neurons into a
separate module that applies learning to downstream neurons that determine which actions to take. For each treatment, the highest-performing network from
each of the nine highest-performing evolution experiments are shown (all are shown in the Supporting Information). In each panel, the left number reports
performance and the right number reports modularity. We follow the convention from [23] of placing nodes in the way that minimizes the total
connection length.

doi:10.1371/journal.pcbi.1004128.g006
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modular networks: 0.80 [0.71, 0.84], p = 0.02). Even though only 31% of the P&CC networks
are deemed modular in this particular way, the remaining P&CC networks are still significantly
more modular on average than PA networks (median Q scores are 0.25 [0.23, 0.28] and 0.2
[0.19, 0.22] respectively, p = 4.37 × 10−6), suggesting additional ways in which modularity im-
proves the performance of P&CC networks.

After observing that a connection cost significantly improves performance and modularity,
we analyzed whether this increased performance can be explained by the increased modularity,
or whether it may better correlate with network sparsity, since P&CC networks also have fewer
connections (P&CC median number of connections is 35.5 [95% CI: 31.0, 40.0] vs. PA 82.0
[74.0, 97.1], p = 7.97 × 10−19). Both sparsity and modularity are correlated with the perfor-
mance of networks (Fig. 7). Sparsity also correlates with modularity (p = 5.15 × 10−40 as calcu-
lated by a t-test of the hypothesis that the correlation is zero), as previously shown [23, 66].
Our interpretation of the data is that the pressure for both functionality and sparsity causes
modularity, which in turn helps evolve learners that are more resistant to catastrophic for-
getting. However, it cannot be ruled out that sparsity itself mitigates catastrophic forgetting [1],
or that the general learning abilities of the network have been improved due to the separation
into a skill module and a learning module. Either way, the data support our hypothesis that a
connection cost promotes the evolution of sparsity, modularity, and increased performance on
learning tasks.

Modular P&CC Networks Learn More and Forget Less
We next investigated whether the improved performance of P&CC individuals is because they
forget less. Measuring the percent of information a network retains can be misleading, because
networks that never learn anything are reported as never forgetting anything. In many PA ex-
periments, networks did not learn in one or both seasons, which looks like perfect retention,
but for the wrong reason: they do not forget anything because they never knew anything to
begin with. To prevent such pathological, non-learning networks from clouding this analysis,

Fig 7. Performance is correlated with sparsity andmodularity. Black dots represent the highest-performing network from each of the 100 experiments
from both the PA and P&CC treatments. Both the sparsity (p = 1.08 × 10−16) and modularity (p = 1.19 × 10−5) of networks significantly correlates with their
performance. Performance was measured in 80 randomly generated environments (Methods). Significance was calculated by a t-test of the hypothesis that
the correlation is zero. Notice that many of the lowest-performing networks are close to the maximum of 150 connections.

doi:10.1371/journal.pcbi.1004128.g007
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we compared only the 50 highest-performing experiments from each treatment, instead of all
100 experiments. For both treatments, we then measured retention and forgetting in the high-
est-performing network from each of these 50 experiments.

To illuminate how old associations are forgotten and new ones are formed, we performed an
experiment from studies of association forgetting in humans [11]: already evolved individuals
learned one task and then began training on a new task, during which we measured how their
performance on the original task degraded. Specifically, we allowed individuals to learn for 50
winter days—to allow even poor learners time to learn the winter associations—before exposing
them to 20 summer days, during which we measured how rapidly they forgot winter associations
and learned summer associations (Methods). Notice that individuals were evolved in seasons
lasting only 5 days, but we measure learning and forgetting for 20 days in this analysis to study
the longer-term consequences of the evolved learning architectures. Thus, the key result relevant
to catastrophic forgetting is what occurs during the first five days. We included the remaining 15
days to show that the differences in performance persist if the seasons are extended.

P&CC networks retain higher performance on the original task when learning a new task
(Fig. 8, left). They also learn the new task better (Fig. 8, center). The combined effect signifi-
cantly improves performance (Fig. 8, right), meaning P&CC networks are significantly better
at learning associations in a new season while retaining associations from a previous one.

To further understand whether the increased performance of the P&CC individuals is be-
cause they learn more, retain more, or both, we counted the number of retained and learned as-
sociations for individuals in 80 randomly generated environments (lifetimes). If we regard
performance in each season as a skill, this experiment measures whether the individuals can re-
tain a previously-learned skill (perfect summer performance) after learning a new skill (perfect
winter performance). We tested the knowledge of the individuals in the following way: at the
end of each season, we counted the number of sets of associations (summer or winter) that in-
dividuals knew perfectly, which required them knowing the correct response for each food
item in that season. We formulated four metrics that quantify how well individuals knew and
retained associations.

Fig 8. Comparing the retention and forgetting of networks from the two treatments. P&CC networks, which are more modular, are better at retaining
associations learned on a previous task (winter associations) while learning a new task (summer associations), better at learning new (summer) associations,
and significantly better when measuring performance on both the associations for the original task (winter) and the new task (summer). Note that networks
were evolved with five days per season, so the results during those first five days are the most informative regarding the evolutionary mitigation of
catastrophic forgetting: we show additional days to reveal longer-term consequences of the evolved architectures. Solid lines showmedian performance and
shaded areas indicate 95% bootstrapped confidence intervals of the median. The retention scores (left panel) are normalized relative to the original
performance before training on the new task (an unnormalized version is provided as Supp. S6 Fig). During all performance measurements, learning was
disabled to prevent such measurements from changing an individual’s known associations (Methods).

doi:10.1371/journal.pcbi.1004128.g008

Modularity Enables Learning New Skills without Forgetting Old Skills

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004128 April 2, 2015 11 / 24



The first metric (“Perfect”) measures the number of seasons an individual knew both sets of
associations (summer and winter). Doing well on this metric indicates reduced catastrophic
forgetting because it requires retaining an old skill even after a new one is learned. P&CC indi-
viduals learned significantly more Perfect associations (Fig. 9, Perfect).

The second metric (“Known”) is the sum of the number of seasons that summer associations
were known and the number of seasons that winter associations were known. In other words, it
counts knowing either season in a year and doubly counts knowing both. P&CC individuals
learned significantly more of these Known associations (Fig. 9, Known).

The third metric counts the number of seasons in which an association was “Forgotten”,
meaning an association was completely known in one season, but was not in the following sea-
son. There is no significant difference between treatments on this metric when measured in ab-
solute numbers (Fig. 9, Forgotten). However, measured as a percentage of Known items, P&CC
individuals forgot significantly fewer associations (Fig. 9, % Forgotten). The modular P&CC
networks thus learned more and forgot less—leading to a significantly lower percentage of
forgotten associations.

Fig 9. P&CC networks significantly outperform PA networks in both learning and retention. P&CC
individuals learn significantly more associations, whether counting only when the associations for both
seasons are known (“Perfect” knowledge) or separately counting knowledge of either season’s association
(total “Known”). P&CC networks also forget fewer associations, defined as associations known in one season
and then forgotten in the next, which is significant when looking at the percent of known associations
forgotten (“%Forgotten”). P&CC networks also retain significantly more associations, meaning they did not
forget one season’s association when learning the next season’s association. See text for more information
about the “Perfect”, “Known”, “Forgotten,” and “Retained”metrics. During all performance measurements,
learning was disabled to prevent such measurements from changing an individual’s known associations
(Methods). Bars showmedian performance, whiskers show the 95% bootstrapped confidence interval of the
median. Two asterisks indicate p< 0.01, three asterisks indicate p< 0.001.

doi:10.1371/journal.pcbi.1004128.g009
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The final metric counts the number of seasons in which an association was “Retained”,
meaning an association was completely known in one season and the following season. P&CC
individuals retained significantly more than PA individuals, both in absolute numbers (Fig. 9,
Retained) and as a percentage of the total number of known items (Fig. 9, % Retained).

In each season, an agent can know two associations (summer and winter), leading to a max-
imum score of 6 × 80 × 2 = 960 for the knownmetric (6 seasons per lifetime (Fig. 2), 80 random
environments). The agent can retain or forget two associations each season except the first,
making the maximum score for these metrics 5 × 80 × 2 = 800. However, the agent can only
score one perfect association (meaning both summer and winter is known) each season, lead-
ing to a maximum score of 6 × 80 = 480 for that metric.

In summary, this analysis reveals that a connection cost caused evolution to find individuals
that are better at gaining new knowledge without forgetting old knowledge. In other words,
adding a connection cost mitigated catastrophic forgetting. That, in turn, enabled an increase
in the total number of associations P&CC individuals learned in their lifetimes.

Removing the Ability of Evolution to Improve Retention
To further test whether the improved performance in the P&CC treatment results from it miti-
gating catastrophic forgetting, we conducted experiments in a regime where retaining skills be-
tween tasks is impossible. Under such a regime, if the P&CC treatment does not outperform
the PA treatment, that is evidence for our hypothesis that the ability of P&CC networks to out-
perform PA networks in the normal regime is because P&CC networks retain previously
learned skills more when learning new skills.

To create a regime similar to the original problem, but without the potential to improve per-
formance by minimizing catastrophic forgetting, we forced individuals to forget everything
they learned at the end of every season. This forced forgetting was implemented by resetting all
neuromodulated weights in the network to random values between each season change. The
experimental setup was otherwise identical to the main experiment. In this treatment, evolu-
tion cannot evolve individuals to handle forgetting better, and can focus only on evolving good
learning abilities for each season. With forced forgetting, the P&CC treatment no longer signif-
icantly outperforms the PA treatment (Fig. 10).

This result indicates that the connection cost specifically helps evolution in optimizing the
parts of learning related to resistance against forgetting old associations while learning
new ones.

Interestingly, without the connection cost (the PA treatment), forced forgetting significantly
improves performance (Fig. 10, p = 2.5 × 10−5 via bootstrap sampling with randomization
[68]). Forcing forgetting likely removes some of the interference between learning the two sep-
arate tasks. With the connection cost, however, forced forgetting leads to worse results, indicat-
ing that the modular networks in the P&CC treatment have found solutions that benefit from
remembering what they have learned in the past, and thus are worse off when not allowed to
remember that information.

The Importance of Neuromodulation
We hypothesized that a key factor that causes modularity to help minimize catastrophic for-
getting is neuromodulation, which is the ability for learning to be selectively turned on and off
in specific neural connections in specific situations. To test whether neuromodulation is essen-
tial to evolving a resistance to forgetting in our experiments, we evolved neural networks with
and without neuromodulation. When we evolve without neuromodulation, the Hebbian learn-
ing dynamics of each connection are constant throughout the lifetime of the organism: this is
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accomplished by disallowing neuromodulatory neurons from being included in the networks
(Methods).

Comparing the performance of networks evolved with and without neuromodulation dem-
onstrates that with purely Hebbian learning (i.e. without neuromodulation) evolution never
produces a network that performs even moderately well (Fig. 11). This finding is in line with
previous work demonstrating that neuromodulation allows evolution to solve more complex
reinforcement learning problems than purely Hebbian learning [25]. While the non-modulato-
ry P&CC networks perform slightly better than non-modulatory PA networks, the differences,
while significant (P&CC performance 0.72 [95% CI: 0.71, 0.72] vs. PA 0.70 [0.69, 0.71],
p = 0.003), are small. Because networks in neither treatment learn much, studying whether
they suffer from catastrophic forgetting is uninformative. These results reveal that neuromodu-
lation is essential to perform well in these environments, and its presence is effectively a prereq-
uisite for testing the hypothesis that modularity mitigates catastrophic forgetting. Moreover,
neuromodulation is ubiquitous in animal brains, justifying its inclusion in our default model.
One can think of neuromodulation, like the presence of neurons, as a necessary, but not suffi-
cient, ingredient for learning without forgetting. Including it in the experimental backdrop al-
lows us to isolate whether modularity further improves learning and helps mitigate
catastrophic forgetting.

Discussion
In the experiments we performed, we found evidence that adding a connection cost when
evolving neural networks significantly increases modularity and the ability of networks to learn
new skills while retaining previously learned skills. The resultant networks have a separate
learning module and exhibit significantly higher performance, learning, and retention. We fur-
ther found three lines of evidence that modularity improves performance and helps prevent
catastrophic forgetting: (1) networks with a separate learning module performed significantly

Fig 10. Forcing individuals to forget what they have learned in the past eliminates the performance
benefits of adding a connection cost.With forced forgetting, P&CC does not significantly outperform PA:
P&CC 0.91 [95% CI: 0.91, 0.91] vs. PA 0.91 [0.90, 0.91], p> 0.05. In the default treatment where
remembering is possible, P&CC significantly outperforms PA: P&CC 0.94 [0.92, 0.94] vs. PA 0.78 [0.78,
0.81], p = 8.08 × 10−6.

doi:10.1371/journal.pcbi.1004128.g010
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better, (2) modularity and performance are significantly correlated, and (3) the performance
increase disappeared when the ability to retain skills was artificially eliminated. These findings
support the idea that neural modularity can improve learning performance both for tasks with
the potential for catastrophic forgetting, by reducing the overlap in how separate skills are
stored (Fig. 1, top), and in general, by modularly separating learned skills from reward signals
(Fig. 1, bottom).

We also found evidence supporting the hypothesis that the ability to selectively regulate
per-connection learning in specific situations, called neuromodulation, is critical for the bene-
fits of a connection cost to be realized. In the presence of neuromodulatory learning dynamics,
which occur in the brains of natural animals [24, 54], a connection cost could thus significantly
mitigate catastrophic forgetting. This work thus provides a new candidate technique for im-
proving learning and reducing catastrophic forgetting, which is essential for advancing our
goal of making sophisticated robots and intelligent software based on neural networks. It also
suggests that one benefit of the modularity ubiquitous in natural networks may be improved
learning via reduced catastrophic forgetting.

While we found these results hold in the experiments we conducted, much work remains to
be done on the interesting question of how catastrophic forgetting is avoided in animal brains.
Future work in different types of problems and experimental setups are needed to confirm or
deny the hypotheses suggested in this paper. Specific studies that can investigate the generality
of our hypothesis include studying whether the connection cost technique still reduces interfer-
ence when inputs cannot be as easily disentangled (for instance, if certain inputs are shared

Fig 11. The effect of neuromodulation and connection costs when evolving solutions for catastrophic
forgetting. Connection costs and neuromodulatory dynamics interact to evolve forgetting-resistant solutions.
Without neuromodulation, neither treatment performs well, suggesting that neuromodulation is a prerequisite
for solving these types of problems, a result that is consistent with previous research showing that
neuromodulation is required to solve challenging learning tasks [25]. However, even in the non-
neuromodulatory (pure Hebbian) experiments, P&CC is more modular (0.33 [95% CI: 0.33, 0.33] vs PA 0.26
[0.22, 0.31], p = 1.16 × 10−12) and performs significantly better (0.72 [95% CI: 0.71, 0.72] vs. PA 0.70 [0.69,
0.71], p = 0.003). That said, because both treatments perform poorly without neuromodulation, and because
natural animal brains contain neuromodulated learning [28], it is most interesting to see the additional impact
of modularity against the backdrop of neuromodulation. Against that backdrop, neural modularity improves
performance to a much larger degree (P&CC 0.94 [0.92, 0.94] vs. PA 0.78 [0.78, 0.81], p = 8.08 × 10−6), in
part by reducing catastrophic forgetting (see text).

doi:10.1371/journal.pcbi.1004128.g011
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between several skills), investigating the effect of more complex learning tasks that may not be
learned at all if the agent forgets between training episodes, and further exploring the effect of
experimental parameters, such as the length of training episodes, number of tasks, and different
neural network sizes and architectures.

Additionally, while we focused primarily on evolution specifying modular architectures,
those architectures could also emerge via intra-life learning rules that lead to modular neural
architectures. In fact, there may have been evolutionary pressure to create learning dynamics
that result in neural modularity: whether such “modular plasticity” rules exist, how they mech-
anistically cause modularity, and the role of evolution in producing them, is a ripe area for fu-
ture study. More generally, exploring the degree to which evolution encodes learning rules that
lead to modular architectures, as opposed to hard coding modular architectures, is an interest-
ing area for future research.

The experiments in this paper are meant to invigorate the conversation about how evolution
and learning produce brains that avoid catastrophic forgetting. While the results of these ex-
periments shed light on that question, the importance, magnitude, and complexity of the ques-
tion will yield fascinating research for decades, if not centuries, to come.

Methods

Neural Network Model Details
We utilize a standard network model common in previous studies of the evolution of modular-
ity [23, 57], extended with neuromodulatory neurons to add reinforcement learning dynamics
[25, 69]. The network has five layers (Supp. S1 Fig) and is feed-forward, meaning each node re-
ceives inputs only from nodes in the previous layer and sends outputs only to nodes in the next
layer. The number of neurons is 10/4/2 for the three hidden layers. The weights (connection
strengths) and biases (activation thresholds) in the network take values in the range [-1, 1]. Fol-
lowing the paper that introduced the connection cost technique [23], networks are directly en-
coded [70, 71].

Information flows through the network from the input layer towards the output layer, with
one layer per time step. The output of each node is a function of its inputs, as described in the
next section.

Learning Model
The neuromodulated ANNmodel in this paper was introduced by Soltoggio et al. [25], and
adapted for the Sferes software package by Tonelli and Mouret [69]. It differs from standard
ANNmodels by employing two types of neurons: non-modulatory neurons, which are regular,
activity-propagating neurons, andmodulatory neurons. Inputs into each neuron consist of two
types of connections:modulatory connections Cm and non-modulatory connections Cn (normal
neural network connections).

The output of a neuron is decided by the weighted sum of its non-modulatory input connec-
tions, as follows:

ai ¼φ
X
j2Cn

wijaj þ bi

 !
ð1Þ

where i and j are neurons, aj is the output of neuron j, bi is the bias of neuron i, wij is the weight
of the connection between neuron i and j, and φ is a sigmoid function that maps its input to a
value in the range [−1, 1], allowing both positive and negative outputs.

Modularity Enables Learning New Skills without Forgetting Old Skills

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004128 April 2, 2015 16 / 24



Only non-modulatory connections (outgoing connections from non-modulatory neurons)
are plastic. Their weight modification depends on the sum of modulatory inputs to the down-
stream neurons they connect to and a constant learning rate η. Their weight change is calculat-
ed by the following two equations:

mi ¼φ
X
j2Cm

wijaj

 !
ð2Þ

8j 2 Cn : Dwij ¼ Z �mi � ai � aj ð3Þ

Equation 2 describes how the modulatory input to each neuron is calculated. φ is a sigmoid
function that maps its input to the interval [−1, 1] (thus allowing both positive and negative
modulation). The sum includes weighted contributions from all modulatory connections.

Equation 3 describes how this modulatory input determines the learning rate of all incom-
ing, non-modulatory connections to neuron i. η is a constant learning rate that is set to 0.04 in
our experiments. The ai�aj component is a regular Hebbian learning term that is high when the
activity of the pre- and post-synaptic neurons of a connection are correlated [45]. The result is
a Hebbian learning rule that is regulated by the inputs from neuromodulatory neurons, allow-
ing the learning rate of specific connections to be increased or decreased in specific
circumstances.

In control experiments without the potential for neuromodulation, all neurons were non-
modulatory. Updates to the weights of their incoming connections were calculated via Equa-
tion 3 withmi set to a constant value of 1.

Evolutionary Algorithm
Our experiments feature a multi-objective evolutionary algorithm, which optimizes multiple
objectives simultaneously. Specifically, it is a modification of the widely used Non-dominated
Sorting Genetic Algorithm (NSGA-II) [72]. However, NSGA-II does not take into account that
one objective may be more important than others. In our case, network performance is essential
to survival, and minimizing the sum of connection costs is a secondary priority. To capture
this difference, we follow [23] in having a stochastic version of Pareto dominance, in which the
secondary objective (connection cost) only factors into selection for an individual with a given
probability p. In the experiments reported here, the value of p was 0.75, but preliminary runs
demonstrated that values of p of 0.25 and 0.5 led to qualitatively similar results, indicating that
the results are robust to substantial changes to this value. However, a p value of 1 was found to
overemphasize connection costs at the expense of performance, leading to pathological solu-
tions that perform worse than the PA networks.

Evolutionary algorithms frequently get stuck in local optima [5] and, due to computational
costs, are limited to small population sizes compared to biological evolution. To better capture
the power of larger populations, which contain more diversity and thus are less likely to get
trapped on local optima, we adopted the common technique of encouraging phenotypic diver-
sity in the population [5, 73, 74]. Diversity was encouraged by adding a diversity objective to
the multi-objective algorithm that selected for organisms whose network outputs were different
than others in the population. As with performance, the diversity objective factors into selec-
tion 100% of the time (i.e. the probability p for PNSGA was 1). Technically, we register every
choice (to eat or not) each individual makes and determine how different its sequence of
choices is from the choices of other individuals: differences are calculated via a normalized
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bitwise XOR of the binary choice vectors of two individuals. For each individual, this difference
is measured with regards to all other individuals, summed and normalized, resulting in a value
between 0 and 1, which measures how different the behavior of this individual is from that of
all other individuals. Preliminary experiments demonstrated that, for the problems in this
paper, this diversity-promoting technique is necessary to reliably obtain functional networks in
either treatment, and is thus a necessary prerequisite to conduct our study. This finding is in
line with previous experiments that have showed that diversity is especially necessary for
problems that involve learning, because learning problems are especially laden with local
optima [74].

All experiments were implemented in the Sferes evolutionary algorithm software package
[75]. The exact source code and experimental configuration files used in our experiments,
along with data from all our experiments, are freely available in the online Dryad scientific ar-
chive at http://dx.doi.org/10.5061/dryad.s38n5.

Mutational Effects
The variation necessary to drive evolution is supplied via randommutation. In each genera-
tion, every new offspring network is a copy of its parent that is randomly mutated. Mutations
can add a connection, remove a connection, change the strength of connections, move connec-
tions and change the type of neurons (switching between modulatory and non-modulatory).
Probabilities and details for each mutational event are given in Supp. S1 Table. We chose
these evolutionary parameters, including keeping things simple by not adding crossover, to
maintain similarity with related experiments on evolving modularity [23] and neuromodulated
learning [76].

Fitness Function
The fitness function simulates an organism learning associations in a world that fluctuates peri-
odically between a summer and a winter season. During evolution, each individual is tested in
four randomly generated environments (i.e. for four “lifetimes”, Fig. 2) that vary in which
items are designated as food and poison, and in which order individuals encounter the items.
Because there is variance in the difficulty of these random worlds, we test in 4 environments
(lifetimes), instead of 1, to increase the sample size. We further increase the sample size to 80
environments (lifetimes) when measuring the performance of final, evolved, end-of-experi-
ment individuals (e.g. Figs. 8 and 9). Individuals within the same generation are all subjected to
the same four environments, but across generations the environments are randomized to select
for learning, rather than genetically hard-coded solutions (Fig. 3). To start each environment
(note: not season) from a clean slate, before being inserted in an environment the modulated
weights of individuals are randomly initialized, which follows previous work with this neuro-
modulatory learning model [76]. Modulatory connections never change, and thus do not need
to be altered between environments. In the runs without neuromodulation, all connections are
reset to their genetically specified weights.

Throughout its life, an individual encounters different edible items several times (Fig. 2).
Fitness is proportional to the number of food items consumed minus the number of poison
items consumed across all environments (Supp. S7 Fig). Individuals that can successfully learn
which items to eat and which to avoid are thus rewarded, and the best fitness scores are ob-
tained by individuals that are able to retain this information across the fluctuating seasons (i.e.
individuals that do not exhibit catastrophic forgetting).
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Modularity Calculations
Our modularity calculations follow those developed by Leicht and Newman for directed net-
works [67], which is an extension of the most well-established modularity optimization meth-
od [65]. That modularity optimization method relies on the maximization of a benefit function
Q, which measures the difference between the number of connections within each module and
the expected fraction of such connections given a “null model”, that is, a statistical model of
random networks. High values of Q indicate an “unexpectedly modular” network.

For undirected networks, the null model traditionally corresponds to random networks
constrained to have the same degree sequence as the network whose modularity is measured.
Leicht and Newman extend this model to directed networks by distinguishing between the in-
degree and out-degree of each node in the degree sequence [67]. The probability that the ana-
lyzed network has a connection between node i and j is therefore kini k

out
j =m, where kini and koutj

are the in- and out-degrees of node i and j, respectively,m is the total number of edges in the
network, and the modularity of a given decomposition for directed networks is as follows:

Q ¼ 1

m

X
ij

Aij �
kini k

out
j

m

� �
dci;cj ð4Þ

Aij is the connectivity matrix (1 if there is an edge from node i to node j, and 0 otherwise),m
is the total number of edges in the network, and δci, cj is a function that is 1 if i and j belong to
the same module, and 0 otherwise. Our results are qualitatively unchanged when using layered,
feed-forward networks as “null model” to compute and optimize Q (Supp. S2 Table).

Maximizing Q is an NP-hard problem [77], meaning it is necessary to rely on an approxi-
mate optimization algorithm instead of an exact one. Here we applied the spectral optimization
method, which gives good results in practice at a low computational cost [67, 78]. As suggested
by Leicht and Newman [67], each module is split in two until the next split stops increasing the
modularity score.

Experimental Parameters
Each experimental treatment was repeated 100 times with different stochastic events (accom-
plished by initiating experiments with a different numeric seed to a random number genera-
tor). Analyses are based on the highest-performing network from each trial. The experiments
lasted 20,000 generations and had a population size of 400.

The environment had 2 different seasons (“summer” and “winter”). Each season lasted 5 days,
and cycled through 3 years (Fig. 2). In each season, 2 poisonous items and 2 nutritious items were
available, each item encoded by a separate input neuron (i.e. a “one-hot encoding” [64]).

Considering the fact that visiting objects in a different order may affect learning, the total
number of possible different environments is 25,920. Each day we randomize the order in
which food items are presented, yielding 4! = 24 different possibilities per day. There are in
total 5 days per season, and an individual lives for 6 seasons, resulting in 5 × 6 = 30 days per
lifetime (Fig. 2), and thus 24 × 30 = 720 different ways to visit the items in a single lifetime. In
addition to randomizing the order items are visited in, the edibility associations agents are sup-
posed to learn are randomized between environments. We randomly designate 2 of the 4 items

as nutritious food, giving 4

2

 !
¼ 6 different possibilities for summer and 6 different possibilities

for winter. There are thus a total of 6 × 6 = 36 different ways to organize edibility associations
across both seasons. In total, we have 720 × 36 = 25,920 unique environments, reflecting the
720 different ways food items can be presented and the 36 possible edibility associations.
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As mentioned in the previous section, four of these environments were seen by each individ-
ual during evolution, and 80 of them were seen in the final performance tests. In both cases
they were selected at random from the set of 25,920.

Statistics
Unless otherwise stated, the test of statistical significance is the Mann-Whitney U test. 95%
bootstrapped confidence intervals of the median are calculated by re-sampling the data 5,000
times. In Fig. 4, we smooth the plotted values with a median filter to remove sampling noise.
The median filter has a window size of 11, and we plot each 10 generations, meaning the medi-
an spans a total of 110 generations.

Measuring Learning and Retention
While measuring the forgetting and retention of evolved individuals (e.g. Figs. 8 and 9), further
learning was disabled. The process is thus (1) learn food associations, (2) measure what was
learned and forgotten without further learning, and (3) repeat. Disabling learning allows mea-
surements of what has been learned without the evaluation changing that learned information.

Supporting Information
S1 Fig. The number and layout of the input, hidden, and output neurons. Inputs provide in-
formation about the environment. The output is interpreted as the decision to eat a food item
or ignore it.
(TIFF)

S2 Fig. The highest-performing networks from all of the 100 experiments in the PA treat-
ment (part 1 of 2). Dark blue nodes are inputs that encode which type of food has been en-
countered. Light blue nodes indicate internal, non-modulatory neurons. Red nodes are reward
or punishment inputs that indicate if a nutritious or poisonous item has been eaten. Orange
nodes are neuromodulatory neurons that regulate learning. In the cases where an input neuron
was modulatory, we indicate this with an orange circle around the neuron. In each panel, the
left number reports performance and the right number reports modularity. We follow the con-
vention from [23] of placing nodes in the way that minimizes the total connection length.
(TIFF)

S3 Fig. The highest-performing networks from all of the 100 experiments in the PA treat-
ment (part 2 of 2). See the previous figure caption for more details.
(TIFF)

S4 Fig. The highest-performing networks from all of the 100 experiments in the P&CC
treatment (part 1 of 2). Dark blue nodes are inputs that encode which type of food has been
encountered. Light blue nodes indicate internal, non-modulatory neurons. Red nodes are re-
ward or punishment inputs that indicate if a nutritious or poisonous item has been eaten. Or-
ange nodes are neuromodulatory neurons that regulate learning. In the cases where an input
neuron was modulatory, we indicate this with an orange circle around the neuron. In each
panel, the left number reports performance and the right number reports modularity. We fol-
low the convention from [23] of placing nodes in the way that minimizes the total
connection length.
(TIFF)
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S5 Fig. The highest-performing networks from all of the 100 experiments in the P&CC
treatment (part 2 of 2). See the previous figure caption for more details.
(TIFF)

S6 Fig. Unnormalized values for Fig. 8 (left panel). Shows how old associations are forgotten
as new ones are learned for the two experimental treatments. The treatment with a connection
cost (P&CC) was able to learn the associations better and shows a more gradual forgetting in
the first timesteps. Together, this leads it to outperform the regular treatment (PA) significantly
when measuring how fast individuals forget. Note that networks were evolved with five days
per season, so the results during those first five days are the most informative regarding the
evolutionary mitigation of catastrophic forgetting: we show additional days to reveal longer-
term consequences of the evolved architectures.
(TIFF)

S7 Fig. The steps for evaluating the fitness of an individual. The example describes what
happens when an agent encounters a food item during summer. For the winter season, the pro-
cess is the same, but with winter inputs active instead of summer inputs.
(TIFF)

S1 Table. The mutation operators along with their probabilities of affecting an individual.
(TIFF)

S2 Table. Two different null models for calculating the modularity score. The conventional
way to calculate modularity is inherently relative: one computes the modularity of network N
by searching for the modular decomposition (assigning N’s nodes to different modules) that
maximizes the number of edges within the modules compared to the number of expected edges
given by a statistical model of random, but similar, networks called the “null model”. There are
different ways to model random networks, depending on the type of networks being measured
and their topological constraints. Here, we calculated the modularity Q-score with two differ-
ent null models, one modeling random, directed networks and the other modeling random,
layered, feed-forward networks. When calculating modularity with either null model, P&CC
networks are significantly more modular than PA networks. Aij is 1 if there is an edge from
node i to node j, and 0 otherwise, kin

i and kout
j are the in- and out-degrees of node i and j, respec-

tively,m is the total number of edges in the network,mij is the number of edges between the
layer containing node i and the layer containing node j, and δci, cj is a function that is 1 if i and j
belong to the same module, and 0 otherwise.
(TIFF)
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