Plates with incompatible prestrain of high order

Abstract : We study the effective elastic behaviour of the incompatibly prestrained thin plates, characterized by a Riemann metric G on the reference configuration. We assume that the prestrain is " weak " , i.e. it induces scaling of the incompatible elastic energy E^h of order less than h^2 in terms of the plate's thickness h. We essentially prove two results. First, we establish the Γ-limit of the scaled energies h^{−4} E^h and show that it consists of a von Kármán-like energy, given in terms of the first order infinitesimal isometries and of the admissible strains on the surface isometrically immersing G_{2×2} (i.e. the prestrain metric on the midplate) in R^3. Second, we prove that in the scaling regime E^h~ h^β with β > 2, there is no other limiting theory: if inf h^{−2} E^h → 0 then inf E^h ≤ Ch^4 , and if inf h^{−4} E^h → 0 then G is realizable and hence min E^h = 0 for every h.
Type de document :
Article dans une revue
Annales de l'Institut Henri Poincaré, 2017, <10.1016/j.anihpc.2017.01.003 >
Liste complète des métadonnées
Contributeur : Annie Raoult <>
Soumis le : mercredi 1 avril 2015 - 17:21:27
Dernière modification le : lundi 13 mars 2017 - 23:03:32
Document(s) archivé(s) le : mardi 18 avril 2017 - 07:46:28


Fichiers produits par l'(les) auteur(s)




Marta Lewicka, Annie Raoult, Diego Ricciotti. Plates with incompatible prestrain of high order. Annales de l'Institut Henri Poincaré, 2017, <10.1016/j.anihpc.2017.01.003 >. <hal-01138338>



Consultations de
la notice


Téléchargements du document