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ABSTRACT1

Mutation may impose a substantial load on populations, which varies accord-2

ing to the reproductive mode of organisms. Over the last years, different authors used3

adaptive landscape models to predict the long term effect of mutation on mean fitness;4

however, many of these studies assumed very weak mutation rates, so that at most5

one mutation segregates in the population. In this paper we derive several simple6

approximations (confirmed by simulations) for the mutation load at high mutation7

rate (U), using a general model that allows us to play with the number of selected8

traits (n), the degree of pleiotropy of mutations and the shape of the fitness function9

(which affects the average sign and magnitude of epistasis among mutations). When10

mutations have strong fitness effects, the equilibrium fitness W of sexuals and asexu-11

als is close to e−U ; under weaker mutational effects, sexuals reach a different regime12

where W is a simple function of U and of a parameter describing the shape of the13

fitness function. Contrarily to weak-mutation results showing that W is an increasing14

function of population size and a decreasing function of n, these parameters may have15

opposite effects in sexual populations at high mutation rate.16

17

Keywords: adaptive landscape, epistasis, evolutionary quantitative genetics, multi-18

locus models, mutation load, stabilizing selection19
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INTRODUCTION20

Although mutation represents the ultimate fuel for adaptation, it is also the21

source of a fitness cost for populations due to the production of sub-optimal geno-22

types. This “mutation load” may in turn affect many important evolutionary pro-23

cesses, such as the evolution of sex and recombination (Kondrashov, 1988; Barton,24

1995; Keightley and Otto, 2006; Otto, 2009), inbreeding depression and the evolu-25

tion of mating systems (Lande and Schemske, 1985; Charlesworth and Charlesworth,26

1999; Charlesworth, 2006), mate choice (Rowe and Houle, 1996) or ploidy levels (Otto27

and Goldstein, 1992; Otto and Marks, 1996). Different types of models have explored28

the effect of recurrent mutation on the average fitness of populations. The simplest29

model assumes that each mutation decreases fitness by a fixed factor, independently30

of the genetic background (multiplicative model). In that case, the average fitness of a31

population at mutation-selection balance (relative to the maximal possible fitness) is32

approximately e−U , where U is the genomic rate of deleterious mutation (e.g., Crow,33

1970). This results holds for both sexual (randomly mating) and asexual populations,34

as long as stochastic effects can be neglected. However, it seems unlikely that most35

mutations have independent effects: for example, direct measures of fitness effects of36

mutations (alone and in combination) in microorganisms usually show a wide distri-37

bution of epistatic interactions among pairs of mutations (e.g., Martin et al., 2007).38

Kimura and Maruyama (1966) explored the effects of epistasis among deleterious al-39

leles on mean fitness, assuming that epistasis is the same for all pairs of mutations.40

They showed that when interactions among mutations tend to reinforce their deleteri-41

ous effect (negative epistasis) the mean fitness of sexual populations increases, while it42
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decreases when deleterious alleles tend to compensate each other (positive epistasis).43

By contrast, the mean fitness of asexual populations is not affected by epistasis and44

remains approximately e−U .45

In a different class of models, mutations affect a given number of phenotypic46

traits which in turn influence fitness. Fisher (1930), Haldane (1932) and Wright (1935)47

considered different models of stabilizing selection acting on a single quantitative trait48

influenced by many genes. In particular, Haldane and Wright derived expressions for49

equilibrium allele frequencies, from which mean fitness can be deduced; further de-50

velopments (to which we will return below) were done in the sixties and seventies,51

in particular by Kimura (1965), Bulmer (1971, 1972) and Lande (1976, 1977). Inter-52

estingly, compensatory effects between mutations emerge naturally from this type of53

model (a mutation that displaces from the optimum can be compensated by another54

mutation bringing closer to the optimum), together with distributions of epistatic in-55

teractions among mutations. In his Genetical Theory of Natural Selection, Fisher also56

proposed a model involving multiple phenotypic traits in support of his idea that adap-57

tation is mainly due to mutations of small effect: this geometrical model represents58

an n-dimensional phenotypic space where each dimension corresponds to the value of59

a quantitative trait, and where mutations correspond to random vectors displacing60

individuals in phenotypic space. Fitness is assumed to decrease monotonously as the61

Euclidean distance from a point corresponding to the optimal phenotype increases.62

Although the initial goal of Fisher’s geometrical model was to describe the dynamics63

of adaptation (Fisher, 1930; Orr, 1998, 2000; Welch and Waxman, 2003), it has also64

been used to explore the effects of various parameters (population size, number of65

phenotypic traits under selection, shape of the fitness peak...) on the mean fitness66
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of populations in equilibrium situations. Several authors considered a weak-mutation67

limit (NU � 1, where N is population size and U the total rate of mutations affecting68

the traits under selection) so that at most one mutation segregates in the popula-69

tion at a given time (Hartl and Taubes, 1998; Poon and Otto, 2000; Sella and Hirsh,70

2005; Tenaillon et al., 2007; Sella, 2009): the population evolves away from the op-71

timum by fixing weakly deleterious alleles by random drift, and occasionally returns72

near the optimum by fixing a compensatory mutation. For example, using the fitness73

function W = exp
(
−dQ

)
, where d is the Euclidean distance from the optimum in74

phenotypic space and Q a parameter affecting the shape of the fitness peak, Tenail-75

lon et al. (2007) showed that the equilibrium mean fitness of a haploid population is76

approximately (1− 1/ (2N))
n
Q , where n is the number of traits affecting fitness (often77

called “complexity”). Note that this result does not depend on the reproductive mode78

of organisms (sexual or asexual) since at most one locus is polymorphic in this low79

mutation limit.80

It seems likely that in many organisms, however, NU � 1, in which case many81

of the loci affecting the traits under selection may be polymorphic at the same time.82

In this regime, and assuming that the position of the optimum remains constant over83

time, the population can be represented by a collection of points centered around the84

optimum, while mean fitness can usually be expressed in terms of the variance of the85

different trait values in the population. Since the original works of Haldane (1932)86

and Wright (1935), numerous models have been used to calculate the genetic variance87

of a quantitative trait (or a set of traits) maintained at mutation-selection balance,88

and different regimes have been described (e.g., Bulmer, 1989; Bürger, 2000; Johnson89

and Barton, 2005; Zhang and Hill, 2005). When mutations tend to have strong fitness90
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effects, the distribution of phenotypic values is often highly leptokurtic (with a sharp91

peak at the optimum) and may present a singularity (Waxman and Peck, 1998). In92

the limit of very strong selection, the expected contribution to future generations93

of individuals located away from the optimum becomes negligible; in this case, one94

expects that mean fitness, relative to the fitness of individuals at the optimum (W/W0)95

should be approximately e−U when the number of new mutations per individual is96

Poisson-distributed, independently of the exact shape of the fitness peak. Indeed,97

a recursion for the frequency of individuals at the optimum (x0) is given by x0
′ =98

e−Ux0W0/W (e−U being the probability that no mutation occurs), which yields the99

desired result when x′
0 = x0 (e.g., Kimura and Maruyama, 1966).100

When mutations tend to have weak fitness effects, different results can be ob-101

tained by assuming that equilibrium distributions of phenotypic values are Gaussian.102

Most models exploring this regime considered a single trait under selection and a103

Gaussian (or quadratic) fitness function, although multivariate models have also been104

proposed (Lande, 1980; Turelli, 1985). Different assumptions regarding the genetic ar-105

chitecture of traits (in particular the number of alleles per locus) have been explored.106

Continuum-of-alleles models assume that an infinite number of alleles (having different107

phenotypic effects) segregate at each locus; expressions for the genetic variance and108

mean fitness under this scenario have been obtained by assuming that the equilibrium109

distribution of allelic effects in the population is Gaussian at each locus (e.g., Kimura,110

1965; Lande, 1976). Lande (1980) generalized these models to the case where selection111

acts on multiple traits, assuming a multivariate Gaussian fitness function. Although112

the general expression for equilibrium genetic variances (and mean fitness) is cumber-113

some, it takes a simpler form when selection acts independently on each trait, and in114
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the absence of correlation of mutational effects across traits (p.294 in Bürger, 2000).115

Neglecting linkage disequilibria among loci, mean fitness can then be written as a sim-116

ple function that depends on the number of selected traits, number of loci, strength117

of selection and mutational variance (see Results section below). Other models con-118

sidered stabilizing selection (Gaussian fitness function) acting on a single trait coded119

by multiple biallelic loci (e.g., Bulmer, 1972, 1985; Barton, 1986, 1989). As shown by120

Barton (1986), multiple possible equilibria exist for allele frequencies at the different121

loci. Although the population mean phenotype may deviate from the optimum at122

some of these equilibria, Barton (1989) argues that perturbations generated for exam-123

ple by random drift should keep the population mean near the optimum. Neglecting124

linkage disequilibria, and as long as the effects of mutation and drift at each locus are125

weaker than selection, one obtains from the expression of the equilibrium genetic vari-126

ance that mean fitness should be close to e−U . More recently, Zhang and Hill (2003)127

investigated the maintenance of genetic variation in multiple-trait models (including128

correlations among traits), assuming that the fitness function is multivariate Gaussian,129

and that selection at each locus is sufficiently strong so that mutations remain rare in130

the population (only one mutant allele segregates at each locus). Results for the case131

of a changing optimum have been derived by Zhang (2012). Finally, effects of linkage132

disequilibria have been explored in both continuum-of-alleles and biallelic models, for133

the case of a single trait under Gaussian stabilizing selection (Bulmer, 1974; Lande,134

1976; Turelli and Barton, 1990), and were shown to be minor as long as the total rate135

of mutation on loci affecting the trait remains small, and linkage is not too tight.136

In this article, we derive several simple approximations for the mutation load in137

both sexual and asexual populations at high mutation rate, using a general model that138
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allows us to play with the shape of the fitness peak (which in turn affects the average139

sign and magnitude of epistasis among mutations), the number of traits under selection140

and the degree of pleiotropy of mutations. These results are tested by individual-141

based simulations representing stabilizing selection on traits coded by large numbers142

of loci. As we will see, two different regimes are observed in asexual populations: when143

mutations tend to have large fitness effects, mean fitness only depends on the mutation144

rate and is close to e−U , while under weaker mutational effects mean fitness increases145

as mutational effects decreases, and can be expressed in terms of the mutation rate,146

the dimensionality of the landscape, the shape of the fitness peak and the average147

deleterious effect of mutations. By contrast, three regimes are observed in the case148

of sexual populations: under strong mutational effects, mean fitness is again close to149

e−U , while it switches to a different value that only depends on the mutation rate150

and the shape of the fitness peak as mutational effects decrease. Interestingly, mean151

fitness is the same under these two regimes when the fitness function is Gaussian152

(W ≈ e−U), while W > e−U in the second regime when the fitness peak is flatter153

than a Gaussian around the optimum, and W < e−U when the fitness peak is sharper.154

Finally, as mutational effects continue decreasing a third regime is entered, where allele155

frequency dynamics are dominated by mutation and drift. We also obtain expressions156

for linkage disequilibria and find that they can have a substantial effect on fitness, in157

particular when the mutation rate is high and the number of traits under selection is158

low.159
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MODEL160

Multivariate stabilizing selection. Parameters and variables are summarized in161

Table 1. The model represents an infinite haploid population with discrete generations,162

under stabilizing selection on n phenotypic traits; for each individual, trait values are163

given by the vector z = (z0, z1, . . . , zn). Following others (Wilke and Adami, 2001;164

Tenaillon et al., 2007; Gros et al., 2009), we assume for simplicity that the fitness165

function is spherically symmetric, and is given by:166

W = exp

[
− dQ

2VS

]
(1)

where d =
√∑n

i=1 z2
i is the Euclidean distance in phenotypic space from the optimal167

phenotype (located at zi = 0 for each trait i), VS measures the strength of selection,168

while the parameter Q determines the shape of the fitness peak: Q = 2 corresponds to169

a (multivariate) Gaussian fitness function, while Q < 2 (resp. Q > 2) leads to a sharper170

(resp. flatter) fitness peak. Traits are coded by L biallelic loci, each locus affecting171

a subset m ≤ n of phenotypic traits (sampled randomly and independently for each172

locus among the set of n traits). As in Lourenço et al. (2011), the parameter m thus173

measures the number of traits affected by a single mutation (“mutation pleiotropy”),174

while n is the total number of traits under selection (“complexity”): m = n corresponds175

to maximal pleiotropy, where each mutation affects all selected traits (as in Fisher’s176

model). The genomic mutation rate is denoted U , so that each locus mutates at rate177

u = U/L. For simplicity, we assume additive effects of the different loci on phenotypic178

traits, and no environmental variance. Denoting 0 and 1 the two alleles at each locus,179

and Xj an indicator variable that equals 0 if an individual carries allele 0 at locus j,180
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and 1 otherwise, the value of trait i in a given individual is given by:181

zi =
L∑

j=1

rijXj (2)

where rij measures the effect of allele 1 at locus j on trait i: an individual carrying182

alleles 0 at all loci is thus at the phenotypic optimum. For each locus j, the effect183

of allele 1 on each of the m traits affected by the locus is sampled in a Gaussian184

distribution with mean 0 and variance a2 (therefore, rij can be positive or negative).185

Finally, we denote s the mean deleterious effect of mutations (measured on log-fitness)186

in a population at the optimum, given by Gros et al. (2009):187

s =
(2a2)

Q
2

2VS

Γ
(

m+Q
2

)
Γ

(
m
2

) (3)

(where Γ is Euler’s gamma function), which simplifies to s = m
2

(a2/VS) in the case of188

a Gaussian fitness function (Q = 2, in agreement with Martin and Lenormand, 2006).189

As shown by Gros et al. (2009), the average epistasis among pairs of mutations (at the190

optimum, and measured on log-fitness) is given by e =
(
2− 2Q/2

)
s, which equals zero191

when Q = 2 (see also ref. Martin et al., 2007) but it positive for Q < 2, and negative192

for Q > 2.193

Finally, we can note that the strength of selection VS (equation 1) can be con-194

sidered as a scaling parameter: using the scaled variables zi,s = zi/ (2VS)
1
Q to measure195

phenotypic traits, fitness in terms of zi,s variables becomes independent of VS, while the196

variance of the distribution of mutational effects on each zi,s equals a2
s = a2/ (2VS)

2
Q :197

therefore, a2 and VS affect the results only through the compound parameter a2
s . In198

the simulations (described next), we used VS = 1/2 so that a2
s = a2. As shown by199

equation 3, large (resp. small) values of a2
s imply that mutations have strong (resp.200

weak) fitness effects.201
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Simulations. Analytical predictions are tested using individual-based simulations.202

Our program (written in C++, and available upon request) represents a haploid pop-203

ulation of N individuals with discrete generations. The genome of each individual is204

represented by a sequence of L bits (0 or 1) corresponding to the different loci. Phe-205

notypic effects of mutation at each locus are sampled at the start of the simulation:206

the m traits affected by a given locus are sampled randomly (and independently for207

each locus) among the n selected traits, and the effect of mutation on each of these m208

traits is sampled from a Gaussian distribution with mean 0 and variance a2. At the209

start of a generation, phenotypic values are computed for each individual; from this,210

one obtains the fitness of the individual based on equation 1. For each individual of211

the next generation, two parents are sampled (the probability that an individual is212

sampled being proportional to its fitness); selfing is allowed if the same individual is213

sampled twice. To generate a recombinant chromosome, the number of cross-overs is214

sampled from a Poisson distribution with parameter R (genome map length), and the215

position of each cross-over along the chromosome is sampled from a uniform distribu-216

tion (R = 0 corresponds to the case of an asexual population). Finally, the number217

of new mutations occurring in each genome is sampled from a Poisson distribution218

with parameter U , and the positions of mutant loci are sampled randomly; alleles are219

switched at mutant loci, from 0 to 1 or from 1 to 0 (mutation and back mutation thus220

occur at the same rate). In order to gain execution speed, the program is parallelized221

(using the MPI library) to run on several processors, each processor dealing with a222

given segment of the genome, for all individuals; execution speed can be considerably223

increased when the number of processors is sufficiently large so that the probability224

that an event (mutation or cross-over) occurs in a given segment per generation is225
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low (in which case most genome segments stay unchanged from one generation to the226

next).227

At the start of the simulation each genome contains only “0” alleles, which cor-228

responds to the fitness optimum. Simulations run for 50000 generations, equilibrium229

being reached during the first 30000 generations for most parameter values tested.230

Every 1000 generations, the program records the mean fitness of the population and231

the first 6 moments of the distribution of each phenotypic trait in the population.232

The results shown in the different figures correspond to averages over the last 20000233

generations. Error bars were calculated using Hastings’ (1970) batching method, di-234

viding these 20000 generations into 4 batches of 5000 generations and calculating the235

standard error over these 4 batches; however, error bars were generally small relative236

to the size of symbols used in the figures and are thus not shown. All our simulation237

results (with the Mathematica commands used to generate the figures) can be found238

in the Supplementary Material.239

RESULTS240

Asexual population. Figure 1 shows the equilibrium mean fitness of an asexual241

population as a function of the variance of mutational effects (on scaled traits) a2
s242

(left) or of the mean deleterious effect of mutations s (right), and for different values243

of the shape parameter Q. As a2
s becomes large, mean fitness converges to e−U (which244

is close to 0.6 for U = 0.5, dashed line). For smaller values of the scaled mutational245

variance, however, the population reaches a different regime where W > e−U . In this246

case, an approximation for mean fitness can be obtained by assuming that distributions247
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of phenotypic traits zi are Gaussian at equilibrium. As explained in Supplementary248

File S1, Euclidean distances from the optimum (d) then follow a χ-distribution, which249

yields:250

ln W = −(2VG)
Q
2

2VS

Γ
(

n+Q
2

)
Γ

(
n
2

) (4)

where VG is the genetic variance at equilibrium (the variance of zi, which by symme-251

try should be the same for all traits i); for Q = 2 (Gaussian fitness function), this252

simplifies to ln W = − (n/2) (VG/VS). An expression for VG at equilibrium is derived253

in Supplementary File S1. Assuming that ln W ≈ ln W , one obtains that when m = n254

(that is, when each mutation affects all phenotypic traits):255

W ≈ exp

[
−s

(
n U

s Q

) Q
2+Q

]
(5)

When Q = 2, equation 5 simplifies to exp
[
−

√
n
2
U s

]
, in agreement with the result256

obtained from Lande’s analysis (1980) when selection acts independently on the dif-257

ferent traits, and in the absence of mutational covariances among traits (that is, when258

the variance-covariance matrices representing the effects of selection and mutation on259

the traits are diagonal). Indeed, in an asexual population the whole genome can be260

considered as a single locus with many alleles (provided that the number of loci is261

sufficiently large), in which case Lande’s analysis of the continuum-of-alleles model262

yields VG =
√

U a2 VS when mutation and selection covariance matrices are diagonal263

(the equilibrium genetic variance for each trait is not affected by the other traits under264

selection, see also p. 294 in ref. Bürger, 2000). When m < n, equation 5 still holds265

when the fitness function is Gaussian (Q = 2), while W is given by a slightly more266

complicated expression when Q 6= 2 (Supplementary File S1). However, this expres-267

sion only depends weakly on m (for fixed s) and remains close to equation 5 in most268
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cases (unless Q is high and m is small). As shown by Figure 1, equation 5 provides269

accurate predictions for W as long as a2
s is not too high. Supplementary Figure S1270

shows the genetic variance VG at equilibrium, for the same parameter values as in271

Figure 1.272

273

Sexual population. Figure 2 shows the equilibrium mean fitness of a sexual popu-274

lation as a function of a2
s and s. When mutations have strong effects on fitness, one275

obtains again that W ≈ e−U (right-most points on Figure 2). As a2
s decreases, a sec-276

ond regime is entered where W reaches a new value which is independent of a2
s , but277

depends on the shape parameter Q (roughly for −4 < log10 (a2
s ) < −2). Finally, as a2

s278

continues decreasing a third regime is entered where W increases up to W ≈ 1 as a2
s279

decreases. In Supplementary File S2, we show that approximations for mean fitness280

under these last two regimes (a2
s small) can be obtained by assuming that distributions281

of phenotypic values in the population are Gaussian. As in previous models (e.g., Bul-282

mer, 1972; Barton, 1986) one obtains that the equilibrium frequency of allele 1 at locus283

j (pj) is either (i) at pj = 1/2 (when selection at locus j is weak relative to mutation)284

or (ii) at one of the two symmetric equilibria where pj (1− pj) = X < 1/4 (where X is285

a function of the model’s parameters), the locus being closer to fixation (for allele 0 or286

1) as selection increases. Assuming that all loci are at equilibrium (ii) and neglecting287

linkage disequilibria among loci, one obtains the following approximation for mean288

fitness:289

W ≈ exp

[
−2U

Q

]
(6)

Figure 2 shows that this expression does indeed provide a correct prediction of W for290

intermediate values of a2
s (dashed lines). A better approximation can be obtained by291
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taking into account effects of the linkage disequilibria, which is done in Supplementary292

File S2 using the methods developed by Turelli and Barton (1990). As described before293

(Bulmer, 1971, 1974; Lande, 1976; Turelli and Barton, 1990), stabilizing selection tends294

to generate negative covariances among loci, which affect W through two effects: a295

reduction of the genetic variance VG which directly increases W , and an effect on296

equilibrium allele frequencies and thus on the genic variance Vg (see Appendix A)297

which has the opposite effect on W . As long as linkage disequilibria remain small298

the second effect predominates, and one obtains the following approximation for W299

(assuming that the number of loci L is large):300

W ≈ exp

[
−2U

Q

(
1 +

2U

n

(
1

rH

− 1

))]
(7)

where rH is the harmonic mean recombination rate between all pairs of loci (derived in301

Appendix B under our simulated genetic architecture). Figure 2 shows that equation302

7 does indeed provide a slightly better approximation than equation 6 for intermediate303

values of a2
s (horizontal solid lines). Interestingly, Supplementary Figure S1 shows that304

Q has only a weak effect on the equilibrium genetic variance VG in this intermediate305

regime, which remains close to the value obtained for Q = 2, neglecting linkage dise-306

quilibria: VG = 2UVS/n (which is also obtained from house-of-cards models assuming307

a Gaussian fitness function, e.g. Turelli, 1985; Bürger, 2000). Finally, when a2
s is very308

small (so that mutations have very weak fitness effects) one predicts that most loci309

should be at the equilibrium where pj = 1/2, in which case W ≈ exp
[
−s (L/4)

Q
2

]
310

where L is the total number of loci. However, in this regime we expect that the311

relative effect of genetic drift on allele frequency dynamics could be important. In312

Supplementary File S4, we show that when selection at each locus becomes weaker313
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than mutation and drift, an approximation for mean fitness is given by:314

W ≈ exp

[
−s

(
NU

1 + 4Nu

)Q
2

]
(8)

where N is population size. Figure 2 shows that equation 8 provides accurate pre-315

dictions when a2
s is very small (left part of the figures). Furthermore, combining316

equations 7 and 8 (solid curves) gives good predictions for all values of a2
s as long317

as they remain small (roughly, < 10−2 for the parameter values of Figure 2) so that318

the Gaussian approximation holds. For higher values of a2
s , simulations indicate that319

distributions of phenotypic values depart from Gaussian distributions: in particular,320

the fourth and sixth cumulants K4 and K6 are positive and increase as a2 increases321

(while the third and fifth cumulants stay close to zero), for all values of Q (results not322

shown). In Supplementary File S3, we show that using a Gram-Charlier expansion to323

approximate the distribution of phenotypic effects yields an expression for W in terms324

of the genetic variance VG and of higher cumulants (K4, K6). Furthermore, these325

higher cumulants can in turn be expressed in terms of the genetic variance, assuming326

that pjqj is small at each locus (rare-alleles approximation, e.g. Barton and Turelli,327

1987; Turelli and Barton, 1990): one obtains in particular K4 ≈ a2VG [3m/ (2 + m)],328

K6 ≈ a4VG [15m/ (4 + m)], which fits well with the simulation results (see Figure 1 in329

Supplementary File S3). Finally, the methods developed by Turelli and Barton (1994)330

can be used to calculate VG at equilibrium in this non-Gaussian regime. As shown in331

Supplementary File S3, the result (which has to be obtained numerically) fits well with332

the simulation results as long as a2
s is not too large, and Q ≥ 2; however, we could not333

find any simple analytical expression for W in this non-Gaussian regime. From the334

expressions of K4 and K6 above, one predicts that the Gaussian regime should be left335
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more rapidly (as a2 increases) for larger m, since K4 and K6 are increasing functions336

of m; Figure 3 (left) confirms that this is indeed the case. However, Figure 3 right337

indicates that for a fixed s, W is relatively insensitive to m.338

Figure 4 explores the effect of linkage on mean fitness: for U = 0.5 and n = 50,339

the effect of linkage disequilibria on W remains small as long as the harmonic mean340

recombination rate rH is not too small (with L = 10000 loci, rH ≈ 0.053 for a map341

length of 1 Morgan, while rH ≈ 0.3 for a map length of 10 Morgans — see Appendix342

B). In this regime, increasing linkage tends to reduce mean fitness (through an in-343

crease in genic variance Vg), and equation 7 matches well with the simulation results344

(except for Q = 1 where the fit is less good). For tighter linkage, however (roughly,345

R < 1) simulations results depart from the prediction from equation 7 (which assumes346

that the contribution of linkage disequilibria to the genetic variance remains small)347

and show that W increases as recombination decreases: overall, linkage thus has a348

non-monotonic effect on mean fitness. Interestingly, equation 7 indicates that the con-349

tribution of linkage disequilibria becomes more important when the number of traits350

under selection (n) is small. Figure 5 confirms this result, showing that lower values351

of n lead to a stronger decrease in W for both s = 0.01 and s = 0.1, while the effect352

is less marked (and may even be reversed) when s = 0.001. This effect of n can be353

understood as follows: mean fitness decreases when the sum of genetic variances for354

the different traits
∑n

i=1 VG,i increases. Due to the symmetry of our model, the two355

components of the genetic variance (the genic variance Vg,i, and the contribution of356

linkage disequilibria di, see Appendix A) should be the same for all traits. As shown357

in Supplementary File S2 (see also Turelli, 1985; Bürger, 2000), when the effects of358

linkage disequilibria are neglected the genetic variance for each trait at equilibrium is359
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proportional to 1/n (roughly, pjqj at each locus scales with 1/m, since the strength360

of selection at each locus increases with m; however, a proportion m/n only of loci361

contribute to trait i: therefore, the effect of m cancels and Vg,i scales with 1/n). As362

a consequence W (which depends on the product nVG) is independent of n. The363

contribution of associations between loci depends on all pairwise linkage disequilibria364

and is proportional to Vg
2 (see Supplementary File S2) and therefore to 1/n2. As a365

consequence, the overall contribution of linkage disequilibria to mean fitness is pro-366

portional to 1/n. However, pairwise linkage disequilibria may not be the only cause367

of the strong reduction of W shown on Figure 5 at low values of n (for s = 0.01 and368

0.1): indeed, simulations indicate that for these low values of n, distributions of phe-369

notypic traits in the population depart from Gaussian distributions (fourth and sixth370

cumulants become significantly different from zero), in which case the results derived371

in Supplementary File S2 (which assume Gaussian distributions of phenotypic traits)372

do not hold.373

374

Effects of population size and number of loci. Many of the results shown above375

assume a large population size and large number of loci. Figure 6 explores the effects376

of varying population size: in the case of a sexual population (Figure 6A), smaller377

population sizes tend to decrease W when the average fitness effect of mutations is378

sufficiently strong (right part of the figure). However, for lower values of s one observes379

the opposite effect, with higher values of mean fitness for lower population sizes. With380

a Gaussian fitness function (Q = 2, as in Figure 6), a diffusion model can be used to381

predict the equilibrium genetic variance under selection, mutation and drift, assuming382

that mean phenotypes stay at the optimum (Bulmer, 1972). In Supplementary File S4,383
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we obtain an approximation for mean fitness (in terms of hypergeometric functions)384

valid for Nu� 1, which fits well with simulation results for N = 500 (dotted curve in385

Figure 6A). In contrast to the sexual case, the effects of population size are less marked386

in the case of asexual organisms (Figure 6B), and W always decreases as N decreases.387

These effects of finite population size can be understood as follows. Genetic drift affects388

mean fitness through two different effects: an effect on the genetic variance maintained389

at equilibrium, which is usually (but not always) lower in smaller populations, and an390

effect on mean phenotypes, which may be displaced from the optimum due to drift.391

In the case of a Gaussian fitness function (Q = 2), these two effects can easily be392

separated: indeed, log-fitness equals −
∑n

i=1 (zi − z∗i )
2 / (2VS), where zi is the value of393

phenotype i and z∗i the optimal value for this phenotype (fixed to zero in our model).394

Therefore, the average log-fitness is given by −
∑n

i=1

(
VG,i + (zi − z∗i )

2) / (2VS), where395

VG,i is the genetic variance for trait i and zi the average value of trait i (see also396

Charlesworth, 2013). Assuming that ln W ≈ ln W , mean fitness can thus be written397

as a product of two terms:398

W ≈ exp

[
−

∑n
i=1 VG,i

2VS

]
exp

[
−

∑n
i=1 (zi − z∗i )

2

2VS

]
. (9)

The first term (denoted hereafter W VG
) shows that increasing the variance of pheno-399

typic traits tends to decrease mean fitness, while the second term (denoted hereafter400

W z) shows that displacing mean phenotypes from the optimum also decreases W .401

Simulations show that injecting equilibrium values of genetic variances VG,i and mean402

phenotypes zi (measured in the simulations) into equation 9 accurately predict W for403

all parameters tried with Q = 2, as long as log10 (s) ≤ −1 (results not shown). Note404

that all the mathematical derivations performed in the different Supplementary Files405
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assume that mean phenotypes are at the optimum, and therefore that W z = 1. Sup-406

plementary Figure S2 shows measures of W VG
and W z for the different values of N407

and s explored in Figure 6. These results can be summarized as follows: in a sexual408

population (Figure 6A), W z stays close to 1 in most cases, but may be slightly less409

than 1 (around 0.97 - 0.98) for N = 500: mean phenotypes thus generally stay close410

to their optimal values, and the mutation load is mainly generated by the term W VG
.411

When mutations tend to have strong fitness effects (log10 (s) ≥ −2), drift tends to412

increase genetic variances VG,i (by increasing pjqj at each locus j above its value at413

mutation-selection balance), and thus decreases W VG
— note that this effect is taken414

into account by the diffusion model (equation 6 in Supplementary File S4). When415

mutations tend to have weak fitness effects (log10 (s) ≤ −3) however, drift tends to416

reduce VG,i by bringing the different loci closer to fixation, thereby increasing W VG
417

(and hence W ). By contrast, in an asexual population drift always reduce the genetic418

variance (W VG
increases as N decreases), but also has a substantial effect on mean419

phenotypes (W z decreases as N decreases). Because the second effect is stronger than420

the first, the overall effect of drift is to reduce the mean fitness of asexuals.421

Our model is somehow artificial, however, as we assumed that the fitness opti-422

mum is located at the origin (z∗i = 0 for all i). Due to the symmetry of the model, one423

expects that mean phenotypes should be at the origin (and thus at the optimum) in424

the regime where dynamics are mainly driven by mutation and drift (low s), when the425

number of loci is large: for example if a large, random proportion of loci are fixed for426

allele 1 and the other loci fixed for allele 0, mean phenotypes should be close to zero427

since the sum of all mutational effects (corresponding to the effects of fixed alleles 1)428

converges to the average effect of mutations, which is zero. It seems artificial, however,429
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to assume that optimal trait values are precisely the values towards which the pop-430

ulation should converge at mutation-drift equilibrium, and it seems more likely that431

in many cases, mean phenotypes at mutation-drift equilibrium should be far from the432

optimal values (decreasing the value of W z in the mutation-drift regime). In order to433

explore that, we modified our simulation program so that the fitness optimum is not434

located at the origin of the phenotypic space (zi = 0 for all i). To do this, we select a435

genotype sufficiently distant from the origin (in phenotypic space) so that when setting436

optimal phenotypic values z∗i to the values coded by this genotype, fitness at the origin437

is less than 0.1. At the start of the simulation, the population is fixed for the genotype438

corresponding to the fitness optimum. At mutation-drift balance, the population is439

still expected to converge to the origin (due to the symmetry of the distribution of440

mutational effects), where fitness is lower than 0.1. Results are shown on Figures 6C441

and 6D in the case of a sexual and asexual population, respectively. As can be seen442

on these Figures, the position of the fitness optimum has little effect as long as selec-443

tion is sufficiently strong (log10 (s) ≥ −3), since in this case selection maintains the444

population near the optimum. For lower s, however, mutation and drift tend to bring445

populations away from the optimum (and closer to the origin), which decreases W z446

and thus decreases mean fitness (see also Supplementary Figure S2), this effect being447

more pronounced in asexual than in sexual populations (in sexuals, this effect becomes448

important only for s = 10−5). Note that we could not obtain results for s = 10−6,449

because with such low mutational effects (and with 10000 loci) it was not possible to450

find a genotype sufficiently distant from the origin so that fitness at the origin is lower451

than 0.1 when setting the optimum to the phenotypic values coded by this genotype.452

Interestingly, in the sexual case (Figure 6C) one still observes an intermediate range453
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of s (s = 10−4, 10−3) where decreasing population size increases mean fitness: in this454

regime, drift tends to bring each locus closer to fixation (thus reducing VG,i), but se-455

lection still maintains mean phenotypes zi close to the optimum. Decreasing s (or456

decreasing N further, as shown in Supplementary Figure S2 for N = 100) generates457

departures of mean phenotypes from the optimum, decreasing W z (and thus W ).458

Finally, Supplementary Figure S3 shows that changing the number of loci L459

(for a fixed U) has generally stronger effects in the case of sexual populations, where460

in the low s regime, decreasing the number of loci decreases the genetic variance (and461

thus increases W ).462

DISCUSSION463

As we have seen in introduction, different forms of models have been proposed464

to predict the overall effect of recurrent mutation on the mean fitness of populations.465

Typically, models representing deleterious mutations (without including a phenotypic466

dimension) do not consider possible compensatory effects among mutations, and as-467

sume that epistasis is the same for all pairs of mutations (Kimura and Maruyama,468

1966; Charlesworth, 1990). Using this type of model, Kimura and Maruyama (1966)469

predicted that epistasis should have no effect on the mean fitness of asexuals (which470

should remain close to e−U), while it should increase the fitness of sexuals if it is471

negative, and decrease W if it is positive. On the other hand, models representing sta-472

bilizing selection on a set of quantitative phenotypic traits (such as Fisher’s geometric473

model) provide a natural way of incorporating compensatory effects among mutations474

and distributions of selection coefficients and epistatic effects. In this paper, we used a475
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general model that allows us to play with the number of traits under selection (n), the476

number of traits affected by a given mutation (m) and the shape of the fitness peak477

(Q). Interestingly, this last parameter was already shown by others to affect the av-478

erage sign of epistasis among pairs of mutations: epistasis is positive on average when479

the fitness peak is sharper than a Gaussian function (Q < 2), while it is negative when480

the fitness peak is flatter than a Gaussian (Q > 2), and equal to zero when fitness is481

exactly Gaussian (Martin et al., 2007; Gros et al., 2009). Furthermore, the average482

deleterious effect of mutations at the optimum s can be expressed as a simple function483

of the variance of scaled phenotypic effects of mutations a2
s and the parameters m and484

Q (equation 3).485

In the case of an asexual population, we found that mean fitness stays indeed486

close to e−U when mutations tend to have strong fitness effects; however, W > e−U
487

under weaker fitness effects of mutations (Gaussian regime), due to the possibility of488

compensatory effects among mutations at different loci. For a fixed s, mean fitness is489

higher under positive epistasis (Q < 2) than under negative epistasis (Q > 2); this is490

probably due to the fact that selection for compensatory mutations is stronger when491

the fitness peak is sharp, keeping the population closer to the fitness optimum. In492

contrast, under negative epistasis the fitness landscape presents a plateau around the493

optimum, and at equilibrium many genotypes are located near the edge of this plateau,494

where the effect of deleterious mutations tends to be strong. Finally, we showed that495

under this regime mean fitness can be expressed as a simple function of U , s, n and Q496

(equation 5), which indicates that W decreases as the number of traits under selection497

n increases.498

In a sexual population, mean fitness is also at e−U when mutations have very499
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strong fitness effects: this is expected, as mutations stay at very low frequency and500

epistatic interactions among mutations have thus little effect. For weaker mutational501

effects, Kimura and Maruyama (1966)’s prediction is verified: positive epistasis de-502

creases W , while negative epistasis increases it; furthermore, we showed that W con-503

verges to a very simple expression (e−
2U
Q ) when the phenotypic effect of mutations504

is sufficiently weak, so that distributions of phenotypic values in the population are505

nearly Gaussian. Although this expression assumes that linkage disequilibria among506

loci can be neglected, effects of genetic associations can be computed, showing that507

linkage disequilibria tend to reduce W as long as they remain weak, the importance of508

this effect increasing as the number of selected traits n decreases. Contrarily to results509

obtained previously assuming NU � 1 (Hartl and Taubes, 1998; Poon and Otto, 2000;510

Tenaillon et al., 2007; Lourenço et al., 2011), our model predicts a higher mean fitness511

when the number of traits is large, through this effect on linkage disequilibrium. Figure512

5 indeed shows important reductions in fitness when the number of traits decreases513

(for moderate to strong fitness effects of mutations, of the order 0.01 to 0.1), which514

may also involve higher-order genetic associations (since distributions of phenotypic515

values depart from Gaussian distributions for very low values of n). Rather than the516

“cost of complexity” often described at low mutation rate, we thus predict a “cost of517

simplicity” when the overall mutation rate is large (as shown by equation 7, this effect518

is proportional to U2 and should thus become negligible when the overall mutation519

rate is small). Note that this cost does not depend on the degree of pleiotropy (m) of520

individual mutations, but only on the total number of traits under selection. Interest-521

ingly, these results do not depend on the precise shape of the distribution of mutational522

effects (which was Gaussian in the simulations), since the derivation of equations 6 and523
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7 in Supplementary File S2 makes no assumption on this distribution. It does assume524

uncorrelated mutational effects on the different traits, however, and it would be inter-525

esting to extend our analysis by incorporating mutational and/or selective correlations526

among traits — as shown by Martin and Lenormand (2006), the overall effect of such527

correlations is to reduce the effective number of phenotypic traits (see also Zhang and528

Hill, 2003 for an analysis of the effects of correlations among traits). Furthermore,529

different ways of incorporating restricted pleiotropy could be considered: in particu-530

lar, Welch and Waxman (2003) proposed a model in which different sets of traits are531

affected by different subsets of loci (modular pleiotropy), and it would be interesting532

to explore how this form of modularity would affect our results.533

Regarding genetic architecture, an important assumption of our model is the534

fact that loci are biallelic. By contrast, Lande (1980)’s analysis considered an infinite535

number of alleles per locus (continuum-of-alleles model); in that case, assuming di-536

agonal mutation and selection matrices (no mutational or selective covariance among537

traits) and neglecting linkage disequilibria, one obtains that the mean log-fitness should538

be −
√

n
2
LU s (where L is the number of loci) in the case of a Gaussian fitness function539

(this stems from the fact that the contribution of each locus to the genetic variance540

is
√

u a2 VS, where u is the per-locus mutation rate). This contrasts with the result541

that mean log-fitness should be ≈ −U when Q = 2 in biallelic models, and indicates542

that assumptions about the number of alleles per locus may have important effects.543

However, a key assumption of Lande’s analysis is the fact that distributions of allelic544

effects in the population are Gaussian at each locus, which is much stronger than the545

assumption that distributions of overall phenotypes are Gaussian, and may not hold546

for realistic values of per-locus mutation rates and mutational variances (e.g., Turelli,547
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1984). It would thus be interesting to explore how sensitive are our results to as-548

sumptions regarding the number of alleles per locus. In particular, our assumption of549

biallelic loci should not hold when Nu ∼ 1 (in which case many alleles may segregate550

at the same locus).551

Finally, we found that the degree of pleiotropy of mutations (m) affects mean552

fitness mostly through its effect on s, in regimes where W is affected by s: in partic-553

ular the Gaussian regime in asexual populations (equation 5), and the regime where554

selection at each locus is weaker than mutation and drift in sexual populations (equa-555

tion 8). This contrasts with the result obtained by Lourenço et al. (2011) in the low556

mutation limit (NU � 1), showing that the average fitness at equilibrium depends557

on the total number of selected traits but not on the degree of mutational pleiotropy.558

Another difference concerns the effect of population size: although the load always559

increases as population size decreases when NU � 1 (Hartl and Taubes, 1998; Poon560

and Otto, 2000; Tenaillon et al., 2007; Lourenço et al., 2011), we found that in sexu-561

als, the mutation load may actually be lower at smaller population sizes in the weak562

selection regime (Figure 6). As we have seen, this occurs whenever the fitness effect563

of mutations is small (s = 10−4, 10−3 in the case of Figure 6), so that diversity at564

each locus (pjqj) at mutation-selection balance is substantial, in which case drift tends565

to reduce this diversity and therefore reduces the genetic variance VG — the same566

effect has also recently been discussed by Charlesworth (2013) in a 1-trait model. For567

very low fitness effects of mutations, however, mutation and drift may displace mean568

phenotypes away from the optimum and substantially reduce mean fitness (Figures569

6C and D). This last effect may only occur for a restricted range of parameters, since570

when s becomes very low, very large numbers of loci are required for fitness to decrease571
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significantly (see also Charlesworth, 2013).572

In general, we found that asexual populations have a higher mean fitness than573

sexual populations, in agreement with previous models of stabilizing selection with a574

constant optimum (e.g., Charlesworth, 1993): this is due to the fact that genotypes575

coding for optimal trait values are preserved by asexual reproduction, but broken by576

recombination. Nevertheless, sexuals may have a higher mean fitness than asexuals577

when epistasis among mutations is negative on average (Q > 2), as long as s is not too578

small (so that W stays close to e−U in asexuals, but reach higher values in sexuals);579

this occurs for example for Q = 6, when s ≥ 10−4 (for the parameter values used in580

Figures 1 and 2). Sexuals may also have a higher mean fitness when the effects of581

drift are important: in particular, Figure 6C and 6D show that deviations of mean582

phenotypes from their optimal values caused by drift are generally more important583

in asexual than in sexual populations (for low s). Although we only observed this584

last effect for restricted ranges of parameters, it may become more important in the585

case of populations subdivided into many small demes. Previous models explored the586

evolution of recombination modifiers under stabilizing selection (Charlesworth, 1993;587

Barton, 1995), but ignored the effects of genetic drift: it would thus be interesting to588

extend these models to the case of finite (or spatially structured) populations. Explor-589

ing the effects of diploidy and of the mating system would be other possible extensions590

of the present work.591
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APPENDIX A: VARIANCE COMPONENTS598

We call VG,i the variance of the value of trait i in the population: VG,i =599

Var [zi]. Because we assume additive effects of the different loci on phenotypic traits600

(zi =
∑

j rijXj, where the sum is over all loci j), VG,i can be decomposed into two601

terms (e.g., Lynch and Walsh, 1998): VG,i = Vg,i + di, where Vg,i =
∑

j rij
2pj (1− pj)602

is the genic variance (pj being the frequency of allele 1 at locus j in the population),603

and di =
∑

j 6=k rijrikDjk the effect of linkage disequilibria on the genetic variance604

(Djk = Cov [Xj, Xk] being the linkage disequilibrium between loci j and k). In the605

case of an asexual population, the genetic variance at equilibrium can be calculated606

by considering the whole genome as a single locus with a large number of alleles607

(Supplementary File S1). In the sexual case, Vg,i and di at equilibrium can be computed608

using the methods developed by Turelli and Barton (1990), extended to deal with609

multiple traits under selection (Supplementary File S2). Due to the symmetry of the610

model we expect that VG,i and Vg,i should be the same for all traits at equilibrium,611

and are thus simply denoted VG and Vg in the text.612

28



APPENDIX B: HARMONIC MEAN RECOMBINATION RATE613

Under the genetic setting described above, the harmonic mean recombination614

rate among pairs of loci rH (that appears in equation 7) can be computed as follows.615

The genetic distance between adjacent loci (in Morgans) is R/ (L− 1), and therefore616

the distance between two loci separated by i between-locus intervals is iR/ (L− 1).617

Furthermore, the number of different pairs of loci separated by i intervals is L − i.618

Finally, the rate of recombination between two loci at genetic distance x (probability619

that an odd number of cross-overs occurs within the interval) is given by Haldane’s620

mapping function: r (x) = 1
2
(1− e−2x), yielding:621

1

rH

=
1

1
2
L (L− 1)

L−1∑
i=1

L− i
1
2

[
1− exp

(
−2i R

L−1

)] (10)

which has to be evaluated numerically. For L = 10000 and R = 10, one obtains622

rH ≈ 0.3.623
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Figure 1. Mean fitness of an asexual population as a function of a2
s and s. X-axes

correspond to the mutational variance on scaled traits a2
s = a2/ (2VS)

2
Q (left) and the

average deleterious effect of mutations (on log-fitness) at the optimum s (right). The

different colors correspond to different shapes of the fitness function, controlled by the

parameter Q: Q = 1, 2, 3, 4, 5, 6 from red to purple. The dashed horizontal line

corresponds to e−U , while colored curves are predictions from equation 5, and dots are

simulation results. Parameter values are U = 0.5, n = 50, m = 5; in the simulations

VS = 0.5, population size is set to N = 50000 and the number of loci to L = 10000.
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Figure 2. Mean fitness of a sexual population as a function of a2
s and s (defined as

the average effect of mutations on log-fitness at the optimum). Parameter values are

the same as in Figure 1, with genome map length R = 10 Morgans (which leads to

rH ≈ 0.3, see Appendix B). Dots correspond to simulation results, and curves to differ-

ent approximations obtained assuming Gaussian distributions of phenotypic traits in

the population: equations 6 (dashed lines), 7 (horizontal solid lines) and 8 (solid curves

on the left). Note that in the left figure all points are superposed for log10 (a2
s ) = 0.
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Figure 3. Mean fitness of a sexual population: effect of the degree of pleiotropy m.

Squares: simulation results for Q = 6, m = 5 (white) and m = 50 (black); other

parameters are as in Figure 2. The solid line corresponds to the prediction from

equation 7 (Gaussian regime), and the dashed line to e−U .
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Figure 4. Mean fitness as a function of map length R in Morgans. R corresponds

to the mean number of cross-overs per meiosis within the genome; note that R = 0

corresponds to asexual reproduction. Parameter values are the same as in Figures

1 and 2, with a2 = 0.0002 in the simulations (so that s = 0.001 for Q = 2). Dots

correspond to simulation results, and curves to the prediction from equation 7.
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Figure 5. Mean fitness of a sexual population as a function of the number selected

traits n. The fitness function is Gaussian (Q = 2). Curve: prediction from equation

7; dots: simulation results with s = 0.001 (empty circles), s = 0.01 (filled circles) and

s = 0.1 (filled squares). Other parameters are as in Figure 2.

40



ç
ç

ç

ç ç ç ç ç

á

á

á
á

á á

æ æ
æ

æ

æ
æ

æ

-6 -5 -4 -3 -2 -1 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
HAL

ç ç ç ç
ç

ç

ç

ç

ç

á á á á
á

á

á

á

á

æ æ æ
æ

æ

æ

æ

æ

æ

-6 -5 -4 -3 -2 -1 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
HBL

ç

ç

ç ç ç ç

á á

á á
á á

æ

æ

æ

æ
æ

æ

-6 -5 -4 -3 -2 -1 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
HCL

ç

ç

ç

ç

ç

ç

á

á
á

á

á

á

æ

æ
æ

æ

æ

æ

-6 -5 -4 -3 -2 -1 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
HDL

W

log10HsL log10HsL

log10HsLlog10HsL

W

W W

Figure 6. Mean fitness of a sexual (A, C) and asexual (B, D) populations: effects

of population size. Dots correspond to simulation results for to N = 50000 (empty

circles), 5000 (empty squares), 500 (filled circles). Other parameters are as in Figure 1

and 2, with Q = 2. A, B: the optimum is located at the origin (in phenotypic space),

that is, in zi = 0 for all traits i; C, D: the optimum is located away from the origin,

so that the fitness of an individual at the origin is less than 0.1 (see text for more

explanations). Solid curves on the left figures (sexual populations) correspond to the

predictions from equation 8 for N = 50000, 5000 and 500 from left to right, while

the dotted curves corresponds to equation 6 in Supplementary File S4 (for N = 500).

Curves on the right figures (asexual populations) correspond to equation 5. Finally,

the dashed horizontal lines correspond to e−U .
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Table 1: Parameters and variables of the model.

n number of phenotypic traits under selection

m number of traits affected by a single mutation

Q shape of the fitness peak (see equation 1)

VS strength of selection (see equation 1)

a2 variance of phenotypic effects of mutations

a2
s = a2/ (2VS)

2
Q variance of mutational effects on scaled traits

L number of loci affecting selected traits

U total rate of mutation per generation on selected loci

u = U/L mutation rate per locus

s mean deleterious effect of mutations (on log-fitness) at the

fitness optimum (given by equation 3)

R genome map length (in Morgans)

rH harmonic mean recombination rate among pairs of loci

N population size

zi value of trait i in a given individual

rij effect of mutation at locus j on trait i

pj frequency of allele 1 at locus j in the population

Djk linkage disequilibrium between loci j and k

VG genetic variance (variance of zi among individuals, which at

equilibrium should be the same for all traits i)

Vg genic variance (see Appendix A)
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