A. A. Agrachev, D. Barilari, and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry, Calculus of Variations and Partial Differential Equations, vol.137, issue.3???4, pp.3-4355, 2011.
DOI : 10.1007/s00526-011-0414-y

URL : https://hal.archives-ouvertes.fr/hal-00672260

A. A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and sub- Riemannian geometry (from Hamiltonian viewpoint), p.2012, 2012.

A. F. Alouges, Y. Chitour, and R. Long, A Motion-Planning Algorithm for the Rolling-Body Problem, IEEE Transactions on Robotics, vol.26, issue.5, pp.827-836, 2010.
DOI : 10.1109/TRO.2010.2053733

URL : https://hal.archives-ouvertes.fr/hal-00974885

A. A. Agrachev, A. V. Sarychev, and J. , Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems English transl.: Soviet Math, BBI01. D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry, pp.777-781104, 1987.

E. Risler, . Sub-riemannian, and . Geometry, Motion planning for kinematic systems, Progress in Mathematics. Birkhäuser, pp.1430-1442, 1996.

B. J. Bonnans, J. Ch, C. Gilbert, C. Lemaréchal, and . Sagastizábal, Numerical Optimization-Theoretical and Practical Aspects, 2006.

B. F. Bullo, A. Lewis, and N. Leonard, Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups, Boo86. W. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, 1986.
DOI : 10.1109/9.871753

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.648.353

. N. Bou72 and . Bourbaki, Groupes et Algèbres de Lie. Hermann, Paris, 1972. Can88. J. F. Canny. The Complexity of Robot Motion Planning, CC03. A. Chelouah and Y. Chitour. On the motion planning of rolling surfaces, pp.727-758, 1988.

C. Y. Chitour, F. Jean, and R. Long, Path planning on compact Lie groups using a continuation method Chi06. Y. Chitour. A continuation method for motion-planning problems A global steering method for nonholonomic systems Genericity results for singular curves, CJT06. Y. Chitour, F. Jean, and E. Trélat, pp.383-392, 1903.

C. Y. References, F. Chitour, E. Jean, and . Trélat, Singular trajectories of control-affine systems, Integral Estimates And Motion Planning Using A Continuation Method. IMA, pp.231-246, 1998.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, vol.4, issue.6, pp.1327-1361, 1995.
DOI : 10.1109/9.73561

. A. Gab95 and . Gabrielov, Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Mathematical Research Letters, vol.2, pp.437-451, 1995.

G. V. Ya, . Gershkovich, . M. Gg89, R. Grayson, . Grossman et al., Nilpotent lie algebras and vector fields Models for free nilpotent lie algebra A new class of (H k , 1)-rectifiable subsets of metric spaces Geometric control theory and sub-Riemannian geometry., volume 5, chapter Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds Multiplicity of polynomials on trajectories of polynomials vector fields in C 3, Symbolic Computation: Applications to Scientific Computing Singularities Symposium ? ?ojasiewicz 70 GJZ10. J. Gauthier, B. Jakubczyk, and V. Zakalyukin. Motion planning and fastly oscillating controls. SIAM Journal on Control and Optimization, pp.506-510, 1984.

. M. Gro96 and . Gromov, Carnot-Carathéodory spaces seen from within

H. H. Hermes, Nilpotent and High-Order Approximations of Vector Field Systems, SIAM Review, vol.33, issue.2, pp.238-264, 1991.
DOI : 10.1137/1033050

J. F. Jean, . F. Jk97, P. Jean, . Koseleff, . F. Jov05 et al., Uniform estimation of sub-Riemannian balls Elementary approximation of exponentials of Lie polynomials A globally convergent steering algorithm for regular nonholonomic systems, Proceedings 12th AAECC Symp., volume 1255 of Lect. Notes in Comp. Science Proceedings of 44th IEEE CDC-ECC'05, pp.473-500, 1997.
DOI : 10.1023/A:1013154500463

M. Kawski, Nilpotent lie algebras of vectorfields Kup96. I. Kupka. Géométrie sous-riemannienne, Journal fr die reine und angewandte Mathematik, pp.1-17, 1988.

L. G. Lafferriere, A general strategy for computing steering controls of systems without drift, [1991] Proceedings of the 30th IEEE Conference on Decision and Control, 1991.
DOI : 10.1109/CDC.1991.261506

L. W. Liu, An Approximation Algorithm for Nonholonomic Systems, SIAM Journal on Control and Optimization, vol.35, issue.4, pp.1328-1365, 1995.
DOI : 10.1137/S0363012993260501

L. E. Lee, L. Markus, . G. Ls92, H. J. Lafferriere, . Sussmann et al., Foundations of Optimal Control Theory A differential geometric approach to motion planning Guidelines in nonholonomic motion planning for mobile robots, Nonholonomic Motion Planning. Kluwer Robot Motion Planning and Control, volume 229 of Lect. Notes in Information and Control Sciences, 1967.

M. J. Mitchell, On Carnot-Carath??odory metrics, Journal of Differential Geometry, vol.21, issue.1, pp.35-45299, 1985.
DOI : 10.4310/jdg/1214439462

M. P. Martin, R. M. Murray, and P. Rouchon, Flat systems: open problems, infinite dimensional extension, symmetries and catalog, Advances in the Control of Nonlinear Systems, Lecture Notes in Control and Information Sciences, pp.33-57, 2001.
DOI : 10.1007/BFb0110378

M. R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications . Math. Surveys and Monographs Nonholonomic motion planning: Steering using sinusoids, IEEE Trans. Autom. Control, issue.5, pp.38700-716, 1993.

M. R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems, Mathematics of Control, Signals, and Systems, vol.38, issue.5, pp.58-75398, 1966.
DOI : 10.1007/BF01211485

N. A. Nagel, E. M. Stein, and S. Wainger, Metrics defined by vector fields Oriolo and M. Vendittelli. A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism, Acta Math. IEEE Trans. on Robotics, vol.155, issue.212, pp.103-147162, 1985.

O. Dan, J. T. Popa, . Wen, . L. Rs76, E. M. Rothschild et al., Hypoelliptic differential operators and nilpotent groups Real and complex analysis Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories Lie bracket extensions and averaging: the single-bracket case Control of systems without drift via generic loops, 30th IEEE Conference on Decision and Control Nonholonomic Motion Planning SS83. J. T. Schwartz and M. Sharir. On the 'piano movers' problem II: General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, pp.57-75247, 1970.

. P. Ste74 and . Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc, vol.29, issue.3, pp.699-713, 1974.

. G. Ste86 and . Stefani, On local controllability of a scalar-input system, Theory and Appl. of Nonlinear Control Syst, pp.167-179, 1986.

. H. Sus73 and . Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc, vol.180, pp.171-188, 1973.

R. H. Sus74 and . Sussmann, An extension of theorem of Nagano on transitive Lie algebras, Proc

. Amer, . Math, . Soc, . H. Sus87, and . Sussmann, A general theorem on local controllability A continuation method for nonholonomic path-finding problems, Proceedings of 32nd IEEE CDC, pp.349-356158, 1974.

H. J. Sussmann, Smooth Distributions Are Globally Finitely Spanned, Analysis and design of nonlinear control systems, pp.3-8, 2008.
DOI : 10.1007/978-3-540-74358-3_1

K. Tcho´ntcho´n, J. Jakubiak, and ?. Ma?ek, Motion planning of nonholonomic systems with dynamics, Computational Kinematics, pp.125-132, 2009.