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Abstract

The present theoretical study focuses on the shock front propagation in a density graded cellular

rod. It aims at the determination of the shock front velocity evolution as well as the stress

evolution during the impact. The density gradient leads necessarily to the property gradient,

which is taken into account in this analysis. The locking strain in classical shock front theory is

replaced by the notion of the locking density to adapt to the studied case. Analytical solutions

of linear, quadratic and square root density profiles are obtained. They are compared to the

FEM solution with a good agreement. This study reveals a possibility to reduce the maximum

impact stress for the impacted structures (same impacting mass, same energy absorption) using

a proper density gradient.

Keywords: Shock front propagation, Cellular materials, Density graded cellular rod, Energy

absorption

1. Introduction

Cellular materials (e.g. honeycomb, stochastic foam, hollow sphere agglomerate and lattice

truss core material) have attracted important interests in both fundamental researches and in-

dustrial applications due to their high specific strength and good energy absorption capabilities.

Therefore, a great number of experimental, numerical and analytical studies on the behaviour of

cellular materials under quasi-static and dynamic loading have been reported in the past decades,

showing that (i) the behaviour of a cellular material can be derived from its base material (cell
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wall material) and the relative density with a reasonable accuracy (Gibson and Ashby, 1997);

(ii) their strain rate sensitivities come not only from the base material rate sensitivity but also

from structural effects (Zhao et al., 2005; Hou et al., 2012).

Among those researches, an interesting feature is the shock front formation within the cel-

lular materials under high speed impact. The pioneer study in the domain was carried out by

Reid and Peng (1997). They observed a huge strength increase when the balsa wood specimens

were shoot at a velocity up to 250m/s against an instrumented Hopkinson bar. In order to

explain the measured increases which seemed to be proportional to the square of the impact

velocity, they developed a rigid perfectly plastic locking (RPPL) shock model.

The basic assumption of this model is that there exists a moving shock front separating the

specimen into two zones: one (ahead of shock front) is rigid perfectly plastic and the other

(behind the front) is compacted to a constant locking strain εd.

The conservation laws lead to the following estimate of the stress behind the shock front σd,

called afterward dynamic crushing stress:

σd = σp +
ρ0
εd

V 2 (1)

This one-dimensional shock theory framework was successfully applied by a number of previ-

ous works to various metallic foams (Tan et al., 2005; Hanssen et al., 2002; Radford et al., 2005;

Tan et al., 2012). Experimental observations of those two distinct zones with high speed camera

(Elnasri et al., 2007; Nemat-Nasser et al., 2007) gave a physical proof.

Improvements of such a theory were also reported. Lopatnikov et al. (2003, 2004) proposed

to take into account the initial elasticity with an elastic perfectly plastic rigid model (EPPR).

Pattofatto et al. (2007) used a power law shock model to reduce the effect of a constant locking

strain. Zheng et al. (2012) proposed another extension of RPPL model using a linearly hardening

plastic locking model (R-LHP-L).

Recently, the idea of functionally graded cellular materials was spread out. Gupta (2007)

investigated the hollow particles filled by functionally graded syntactic foam under quasi-static

loading, in which the gradient was achieved by agglomerating different densities of hollow parti-

cles. Cui et al. (2009) extensively studied the influence in energy absorption capability of foam

with five different density gradient profiles under low speed impact loading and concluded that

functionally graded foams were better in energy absorption than the uniform foam. Honeycomb-

like structures with gradient were also theoretically and numerically investigated (Ali et al.,

2008; Ajdari et al., 2011). Zeng et al. (2010) investigated the influence of the density gradient
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profile on the mechanical properties of the graded polymeric hollow sphere agglomerates with

Hopkinson bars techniques and direct impact tests. The experimental results showed that the

gradient profile played an important role in both energy absorption and the transmitted force.

Wang et al. (2013) investigate the energy absorption capacity of density graded Voronoi hon-

eycomb with a numerical method. Another kind of gradient, varying cross-section, can also be

found (Shen et al., 2013b).

With a property gradient, a very interesting question is the influence of the gradient on the

shock front formation/propagation. Indeed, Shen et al. (2013a) presented an analytical study of

the shock front propagation in property graded cellular rods. They proposed that the plastic

plateau stress of the cellular material varied with its position within the cellular rod while the

initial relative density remained the constant. This assumption permits to apply easily the

framework of RPPL model proposed by Reid and Peng (1997) with a constant locking strain.

Results showed a significant influence of property gradient.

However, from the theoretical analysis provided by Gibson and Ashby (1997), the quasi-static

yield stress σp should be expressed as

σp = B(
ρ0
ρs

)3/2σys (2)

where ρ0 and ρs are respectively the density of the foam and that of base material, σys denotes

the yielding stress of the base material and B a constant determined by experimental data.

Thus, the gradient introduced by Shen et al. (2013a) was issued from an assumption where

gradient was achieved by the yield stress variation of the base material σys without any density

change. However, in the industrial manufacture, the property gradient is generally obtained with

the density gradients (Gupta, 2007; Zeng et al., 2010; Hohe et al., 2012).

This paper tends to study the shock front formation/propagation in a cellular rod with

property gradient due to relative density gradient. The main difficulty lies in the fact that the

locking strain can not be constant so that the basic framework RPPL model in the previous

literature can not be applied anymore. The basic assumption of this work is that the locking

will take place at a given density. Indeed, the locking strain for cellular structures made of same

base material and similar morphology varies with its initial porosities. However, at this locking

point, the density of all those cellular material (same base material and morphology) is more or

less the same. For example, if densification is idealised as a no porosity state, cellular structure

made of same base materials will densify at the same base material density.

This assumption leads to an extension of the shock front theory to the case of the density
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gradient cellular rods. The theoretical analysis is presented and analytical solutions are found for

linear, quadratic and square root gradient profiles. Finally, the effect of density gradient on the

shock front formation/propagation in terms of resulting shock stress as well as energy absorption

capacity are discussed in the cases of cellular rod with and without a backing mass.

2. Shock front in a cellular rod with density gradient

2.1. From locking strain to locking density

As mentioned in the introduction, the theory of shock formation in cellular materials is built

with the notion of locking strain where cellular material begins to densify. This locking strain

varies with the initial density of the cellular material and it is difficult to apply this notion for a

cellular rod with a density gradient. However, this locking strain denotes the state where nearly

all the initial voids have been compressed. It means also that at this state the density of the

compressed cellular materials should have a given density (or given ratio between its density and

the density of base materials). This idea leads to the notion of the locking density which is the

starting point of our analysis.

The introduction of locking density is based on the theoretical prediction of densification

strain:

εd = 1−D
ρ0
ρs

(3)

This is a first order simplification, more accurate prediction should include an item of the third

order of the relative density (ρ0/ρs) (Ashby et al., 2000). Actually, the first order form is widely

used in literatures for simplicity. Gibson and Ashby (1997) suggested a value of 1.4 for the

parameter D while Hu and Yu (2010) deduced the value of D (=4/3) by a theoretical analysis

of honeycomb crush and this was also validated by FEM simulation. Based on these works, we

can transform the Eq. (3) as

εd = 1− ρ0
ρs/D

(4)

Thus, locking density (ρd) is introduced as following:

ρd =
ρs
D

(5)

Therefore, the locking strain reads as Eq. (6).

εd = 1− ρ0
ρd

(6)
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where ρ0 and ρd are the densities ahead of and behind shock front.

In order to verify this assumption, the ratio between the density at the locking strain and the

base material density is calculated for the random cellular structures of various initial density

(polymeric/aluminum foam, hollow sphere agglomerates, etc) available in open literature. All the

experimental data leads to a more or less constant value. It manifests therefore that the locking

density is rather independent to the initial density of cellular materials. Such an experimental

observation is not exhaustive and it is only valid for listed materials and in the aformentioned

range of impact velocity.

It was reported by the previous works of Tan et al. (2012) and Zou et al. (2009) that the

locking strain is inevitably dependent on the impact velocity. Here, the data collected contains

experimental results under quasi-static as well as moderate impact loading (<100m/s). The case

of extremely high speed plate impact testing (around km/s) are not considered in this work.

It is also emphasized that our study is limited in the case that the density gradient is rather

small and the highest relative density of graded cellular bar is also small. With those limitations,

the cell morphology variation and other induced structure effect due to density gradient can be

neglected.

Therefore, in this studied density graded cellular rod, the locking density ρd is considered as

a constant. However, the locking strain varies with the initial density of cellular materials, which

depends on the current spatial coordinate.

2.2. Governing equations

Considering a cellular rod launched against the rigid wall with an initial velocity V0 as shown

in Fig. 1, the initial length of the rod is l0 and the density of the rod ρ(Z) is a function of its

initial Lagrangian coordinate Z.

At the instant t after the impact, it is assumed that there exists a shock front propagating

along the rod behind which the density is ρd and the particle velocity zero. Assuming that this

front arrives at x and the rear free end of the rod moves a distance of u, the position of shock

front in Lagrangian coordinate Z is expressed from the geometrical relationship (see Fig. 1) as

follows:

Z = x+ u (7)

The mass conservation law applied to portion of compacted rod (behind shock front) gives:
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Figure 1: The diagram of direct impact experiment against a rigid wall

ρdA0x = m =

∫ Z

0

ρ(l)A0dl (8)

Where A0 is the cross section area of rod and m the mass of compacted portion. Then,

x =

∫ Z

0
ρ(l)dl

ρd
(9)

Differentiating Eq. (8) and Eq. (9), we get separately

dm

dt
= ρ(Z)A0

dZ

dt
(10)

dx

dt
=

ρ(Z)

ρd

dZ

dt
(11)

Substituting Eq. (11) into the differential form of Eq. (7), we get the expression of V , the velocity

of the free end:

V =
du

dt
=

dZ

dt
− dx

dt
=

[

1− ρ(Z)

ρd

]

dZ

dt
(12)

Besides, the conservation of the momentum of the portion ahead of shock front gives:

− σp(Z)A0dt = (M −m)dV (13)

Here, M denotes the total mass of the cellular rod and plastic plateau stress, σp(Z), can be

known from Eq. (2) by replacing the constant density of foam ρ0 by ρ(Z):
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σp(Z) = B

[

ρ(Z)

ρs

]3/2

σys (14)

By substituting the expression of V given in Eq. (12), the momentum conservation equation,

Eq. (13), becomes

σp(Z)A0 = −(M −m)
d

dt

{[

1− ρ(Z)

ρd

]

dZ

dt

}

(15)

Finally, for a given density gradient profile ρ(Z), Eq. (15) totally defines a differential equation

of Lagrangian coordinate Z, which is the exact position of shock front.

Knowing that the particle velocity of the mass behind the shock front is zero, the dynamic

crushing stress σd (spatially constant in the compacted portion) can be evaluated by the mo-

mentum conservation of the entire system.

− σdA0dt = d[(M −m)V ] (16)

By substituting Eqs. (10 , 12 and 13) into the above equation, we get

σd =
V

A0

dm

dt
− (M −m)

dV

dt

= ρ(Z)

[

1− ρ(Z)

ρd

](

dZ

dt

)2

+ σp(Z)

(17)

The derived governing equation of shock front in the graded cellular materials is quite general

without conditions on the gradient profile. In particular, if the density function ρ(Z) is replaced

by constant density ρ0, the locking strain will be derived with the Eq. (9) and it equals well to

those given in the classical RPPL model (Reid and Peng, 1997; Harrigan et al., 2010).

εd =
Z − x

Z
= 1− ρ0

ρd
(18)

In the same way, the expression of dynamic crushing stress σd in this case will also be reduced

to the classic expression in Eq. (1).

In order further simplify the expression, the non-dimensional parameters can be introduced.

Indeed, the Lagrangien coordinate becomes ζ = Z/l0. By introducing ρ̄(ζ) defined as ρ(ζ)/ρ0

for brevity hereinafter, the plastic plateau stress is then expressed as

σp(ζ) = Cρ̄(ζ)3/2σys (19)

where C = B(ρ0

ρs

)3/2. We can also define following non-dimensional parameters :

α = ρ0/ρd, τ = C0t/l0 (20)
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Where C0 equals to
√

σys/ρ0. Thus, the governing equation, Eq. (15), is rewritten in a non-

dimensional way:

Cρ̄(ζ)3/2 = − [1− m̄(ζ)]
d

dτ

{

dζ

dτ
[1− αρ̄(ζ)]

}

(21)

where m̄(ζ) is

m̄(ζ) =

∫ ζ

0

ρ̄(l)dl (22)

Meanwhile, the dynamic crushing stress defined in Eq. (17) becomes

σd

σys
= ρ̄(ζ) [1− αρ̄(ζ)]

(

dζ

dτ

)2

+ Cρ̄(ζ)3/2 (23)

2.3. Analytical solutions for specific density gradient profiles

The non-dimensional governing equation of shock front, Eq. (21), can be analytically solved

for several specific density gradient profiles. The cases of uniform, linear, quadratic and square

root, are investigated in the present study.

Assuming that the density profile is a combination of uniform, linear, quadratic and square

root functions, it leads to the following expression:

ρ̄(ζ) =
1

A

(

1 + a1ζ + a2ζ
2 + a3

√

ζ
)

(24)

In order to keep the total mass of the rod unchanged and equal to ρ0A0l0, the parameter A

should be set to:

A = 1 +
a1
2

+
a2
3

+
2a3
3

(25)

Each specific density gradient profile can be obtained just by setting several parameters ai

equal to 0. The four aforementioned density profiles are shown in Eq. (26), and we can solve

corresponding form of governing equation (Eq. (21)) case by case.

ρ̄(ζ) =
ρ(ζ)

ρ0
=



















































1, a1 = a2 = a3 = 0, Uniform,

1 + a1ζ

1 + 1/2a1
, a1 6= 0 a2 = a3 = 0, Linear,

1 + a2ζ
2

1 + 1/3a2
, a2 6= 0 a1 = a3 = 0, Quadratic,

1 + a3
√
ζ

1 + 2/3a3
, a3 6= 0 a1 = a2 = 0, Square root.

(26)
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2.3.1. Uniform density

With a uniform rod, a1, a2 and a2 are equal to 0. Eq. (21) is therefore simplified as follows:

C

1− α
= − (1− ζ)

d2ζ

dτ2
(27)

The general solution of the differential equation above is:
(

dζ

dτ

)2

=
2C

1− α
ln (1− ζ) + Const (28)

The integral constant can be identified with the initial condition, that is:

dζ

dτ

∣

∣

∣

∣

τ=0

=
V̄

1− α
(29)

where V̄ is non-dimensional value, V0/C0. The solution for uniform density rod is thus:

dζ

dτ
=

V̄

1− α

√

1 +
2C(1− α)

V̄ 2
ln (1− ζ) (30)

This expression of dζ
dτ describes the shock front speed when it arrives at the position ζ. It is

noted that the same result is found as previous work by Lopatnikov et al. (2003).

The dynamic crushing stress when the shock front arrives at the position ζ is thus computed

by Eq. (23),

σd

σys
=

V̄ 2

1− α
+ 2C ln (1 − ζ) + C (31)

2.3.2. Linear density

For the linear density gradient rod, a2 and a3 are equal to 0. Eq. (21) is therefore transformed

to:

C

[

1

A
(1 + a1ζ)

]3/2

= −
[

1− 1

A

(

ζ +
a1
2
ζ2
)

]

d

dτ

{

dζ

dτ

[

1− α

A
(1 + a1ζ)

]

}

(32)

and then:

C

[

1

A
(1 + a1ζ)

]3/2

= −
[

1− 1

A

(

ζ +
a1
2
ζ2
)

]{

d2ζ

dτ2

[

1− α

A
(1 + a1ζ)

]

− a1α

A

(

dζ

dτ

)2 }

(33)

Furthermore,

2
d2ζ

dτ2
− 2a1α/A

1− α
A (1 + a1ζ)

(

dζ

dτ

)2

= −
2C

[

1
A (1 + a1ζ)

]3/2

[

1− 1
A

(

ζ + 1
2a1ζ

2
)] [

1− α
A (1 + a1ζ)

] (34)

To simplify the notations, two new functions g1(ζ) and f1(ζ) are introduced, they are sepa-

rately defined as

g1(ζ) =
2a1α/A

1− α
A (1 + a1ζ)

(35)

f1(ζ) =
2C

[

1
A (1 + a1ζ)

]3/2

[

1− 1
A

(

ζ + 1
2a1ζ

2
)] [

1− α
A (1 + a1ζ)

] (36)
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Thus, Eq. (34) is transformed as

2
d2ζ

dτ2
− g1(ζ)

(

dζ

dτ

)2

= −f1(ζ) (37)

By introducing a new variable ω, which is defined as:

ω =
dζ

dτ
(38)

Eq. (37) is finally transformed to:

dω2

dζ
− g1(ζ)ω

2 = −f1(ζ) (39)

Considering the initial condition, the solution is then given as (See the details in Appendix A)

dζ

dτ
=

√

h1(ζ)V̄ 2 + h1(ζ)

∫ ζ

0

− f1(x)

h1(x)
dx (40)

h1(ζ) =
1

[

1− α
A (1 + a1ζ)

]2 (41)

2.3.3. Quadratic density gradient

For the linear density gradient rod, a1 and a3 are equal to 0. Eq. (21) is therefore transformed

to

C

[

1

A

(

1 + a2ζ
2
)

]3/2

= −
[

1− 1

A

(

ζ +
a2
3
ζ3
)

]

d

dτ

{

dζ

dτ

[

1− α

A

(

1 + a2ζ
2
)

]

}

(42)

Following the same process for the linear density gradient and the specific initial condition, the

solution is given as

dζ

dτ
=

√

h2(ζ)V̄ 2 + h2(ζ)

∫ ζ

0

− f2(x)

h2(x)
dx (43)

where

h2(ζ) =
1

[

1− α
A (1 + a2ζ2)

]2 (44)

f2(ζ) =
2C

[

1
A

(

1 + a2ζ
2
)]3/2

[

1− 1
A

(

ζ + a2

3 ζ3
)] [

1− α
A (1 + a2ζ2)

] (45)

2.3.4. Square root density gradient

For the linear density gradient rod, a1 and a2 are equal to 0. Eq. (21) is therefore transformed

to

C

[

1

A

(

1 + a3
√

ζ
)

]3/2

= −
[

1− 1

A

(

ζ +
2a3
3

ζ3/2
)]

d

dτ

{

dζ

dτ

[

1− α

A

(

1 + a3
√

ζ
)]

}

(46)
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Following the same process for the linear density gradient and the specific initial condition, the

solution is given as

dζ

dτ
=

√

h3(ζ)V̄ 2 + h3(ζ)

∫ ζ

0

− f3(x)

h3(x)
dx (47)

where

h3(ζ) =
1

[

1− α
A

(

1 + a3
√
ζ
)]2 (48)

f3(ζ) =
2C

[

1
A

(

1 + a3
√
ζ
)]3/2

[

1− 1
A

(

ζ + 2a3

3 ζ3/2
)] [

1− α
A

(

1 + a3
√
ζ
)] (49)

2.4. Case with a backing mass

It is easy to add a backing mass at the rear of the rod as in the previous works (Reid and Peng,

1997; Harrigan et al., 2010; Shen et al., 2013a). A non-dimensional parameter γ is introduced to

denote the mass ratio between the rigid mass Mr and the mass of cellular rod.

γ =
Mr

ρ0A0l0
(50)

The rigid mass parameter doesn’t change the form of the governing equation. With the extra

mass item, Eq. (15) becomes:

σpA0 = −(Mr +M −m)
d

dt

{

dZ

dt

[

1− ρ(Z)

ρd

]}

(51)

and the specific non-dimensional form, Eq. (21), is thus:

Cρ̄(ζ)3/2 = − [1 + γ − m̄(ζ)]
d

dτ

{

dζ

dτ
[1− αρ̄(ζ)]

}

(52)

And the solutions for the different density gradients are:

• uniform density

dζ

dτ
=

V̄

1− α

√

1 +
2C(1− α)

V̄ 2
ln

1 + γ − ζ

1 + γ
(53)

• Linear density gradient The form of solution Eq. (40) doesn’t change, only the expression

of f1(ζ), Eq. (36), transforms to

f1(ζ) =
2C

[

1
A (1 + a1ζ)

]3/2

[

1 + γ − 1
A

(

ζ + 1
2a1ζ

2
)] [

1− α
A (1 + a1ζ)

] (54)

• Quadratic density gradient As the same, f2(ζ) changes to

f2(ζ) =
2C

[

1
A

(

1 + a2ζ
2
)]3/2

[

1 + γ − 1
A

(

ζ + a2

3 ζ3
)] [

1− α
A (1 + a2ζ2)

] (55)
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• Square root density gradient The same to the square root density gradient, f3(ζ) changes

to

f3(ζ) =
2C

[

1
A

(

1 + a3
√
ζ
)]3/2

[

1 + γ − 1
A

(

ζ + 2a3

3 ζ3/2
)] [

1− α
A

(

1 + a3
√
ζ
)] (56)

It is noted that the calculation of dynamic crushing stresses are from the same equations but

the density gradient parameters ai should be larger than 0. It means that the density is growing

from the striking end to the backing rigid mass end. Otherwise, two shock wave fronts will be

generated as indicated by Shen et al. (2013a).

This analytical solution of governing equations provides not only the shock front speed dζ
dτ

when the front arrives at a given position ζ but also the variation of dynamic crushing stress

at this moment (shock front at the position ζ). In particular, when the shock front speed dζ
dτ is

reduced to zero, it means the shock front stopped at this position.

3. Validation of theoretical analysis

In order to validate the presented analysis and to justify the existence of the shock front

propagation in density graded cellular rod, a numerical simulation with commercial FEM code

(Abaqus) are performed.

The present numerical model is a 3D full FEM Abaqus model. It is a 62 mm long rod of a 1

mm× 1 mm square cross section. This rod is divided equally into 31 portions of 2 mm in length.

Hourglass controlled, eight nodes linear brick, reduced integration solid element (C3D8R) with

the size 0.2mm× 0.2mm× 0.2mm is adopted to mesh this rod. A rigid plate is used to represent

the rigid wall in the model. Surface to surface kinematic contact without friction is applied to

the rigid plate and rod surfaces. The whole rod is predefined an initial velocity against the wall

which is fixed.

Isotropic crushable foam model (Deshpande and Fleck, 2000) is employed with zero plastic

Poisson ratio and the yield strength ratio k (initial yield strength in uniaxial compression, σc,

divided by initial yield strength in hydrostatic compression, pc ) is set to 1. The elastic-plastic

locking relationship is applied. Parameters of this isotropic crushable foam model are actually

determined in the way that the simulation of a uniform cellular bar will give a good agreement

with the known theoretical result. Therefore, the eventual 3D effect of the isotropic crushable

foam model is not really included in our analysis of density gradient. The case of a uniform bar

provides also an efficiency proof of this FEM analysis.
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Figure 2: Typical input stress-strain curves in numerical models and their corresponding RPPL model

Afterwards, a linear density profile is applied according to the location of each portion in

the longitudinal coordinate Z. The density in each portion varies with its central position. It

is emphasized that the stress-strain relations applied to each portion are also different. The key

parameters, the stress level and locking strain, are obtained with respect to the actual density

of each portion. For instance, the stress level is calculated by using the Eq. (14). Fig. 2 shows

the input stress-strain data in the two ends and the middle point of the rod as an example. The

solid lines in Fig. 2 are the corresponding theoretical RPPL models.

Fig. 3 shows logarithmic strain longitudinal direction of rod (LE33) in cellular rod with linear

density gradient (a1 = 0.3) where initial impact speed is set to be 100m/s. A distinct shock front

can be observed near the impact end and the shock front propagation speed decreases during its

propagation as predicted by the theoretic analysis. It proves that the shock wave is created in a

density graded cellular rod.

In addition, the dynamic crushing stresses σd can be extracted from the FEM analysis and

compared with analytical results. The case of linear density gradient (a1 = 0.3) as well as the

uniform case compared with the corresponding theoretical results are given in Fig. 4. Their

agreement exhibits the accuracy of theoretical formulas, especially at the propagating phase

where the perturbation due to initial shock front formation is less important.
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Figure 3: LE33 (logarithmic strain longitudinal direction of rod) at different time on the linear density graded

cellular rod where a1 = 0.3 and V0 = 100m/s
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Figure 4: Comparison of dynamic crushing stress between theoretical studies (same as Fig. 7) and numerical

simulations, where a1 = 0.3 and V0 = 100m/s
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4. Discussions on the effect of the gradient

With the validation of theoretic formulas presented above, the influence of the density gradient

can be now studied.

4.1. results with a cellular rod only

In order to illustrate the influence of density profiles, the shock front speed as well as dynamic

crushing stress as a function of the position reached by this shock front are calculated for the four

cases as examples. The default conditions are as follows: initial impact speed 100m/s, density

gradients a1=a2=a3=0.3, and the parameter C in Eq. (19) 0.0164, if not indicated specially.

Fig. 5 illustrates the default density profiles along the cellular rod, which are normalized by the

uniform one. Such a gradient is rather small but it is realistic for currently produced graded

foams. Of course, the sharper is the density gradient, the bigger will be its effect on the shock

propagation features.
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Figure 5: The typical density gradients along the cellular rod for the four different gradient functions normalized

Fig. 6 shows the non-dimensional shock front speeds of the four density profiles as a function

of the shock front position. The influence of the gradients seems not to be very important

because the final positions of shock front hardly changed. Nevertheless, the differences between

the dynamic crushing stresses shown in Fig. 7 are more noticeable.
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Figure 6: The four shock front velocity attenuating profiles with its position
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Figure 7: The four stress varying profiles with shock front position

The influence of the initial impact velocity is also studied. In Fig. 8, we can see that the

gaps between the final positions of shock front are nearly unaffected by the initial impact speeds.

However, the maximum dynamic stresses σd, normalized by the value obtained in the case of

uniform density at the corresponding initial impact speed, are attenuated between 10% and 20%
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(see Fig. 9).
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Figure 8: The final position reached by shock front for four density gradients
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Figure 9: Max crushing stresses for different density gradients, normalized by the one of uniform density.
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4.2. results with a backing mass

The influence of the backing mass is also considered here. The cellular rod with a rigid mass

equal to the mass of cellular rod impacts on the rigid wall at a speed 100m/s is taken as an

example. Fig. 10 shows that the shock front speed evolution is hardly affected by the density

profiles. The maximum dynamic crushing stress σd (see Fig. 11) follows however the same type

of reduction as the case of cellular rod only. Different initial impact speeds are investigated. The

cellular rods are completely crushed in this case. The maximum dynamic crushing stress ratio

given in Fig. 12 illustrates a stress reduction in the range of low impact velocity.
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Figure 10: The shock front velocity attenuating profiles with its position, backing mass ratio (γ = 1)

4.3. Discussion on the maximum stress reduction

From results shown above, it is quite clear that the energy absorption capacities is hardly

affected by the gradient profile because the gap of final position reached by the shock front for

the 4 cases is rather small. However, an interesting feature is the reduction of maximum dynamic

crushing stress with the density gradient. It could be very useful for energy absorption designer

because it could be a way to reduce the maximum force (to avoid the destruction of the protected

device) with the same energy absorption capacity and the same weight of course.

However, it was noticed that the use of density gradient may take a risk of enlarging the

maximum crushing stress at high impact velocity. A further investigation for this maximum
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Figure 11: The stress varying profiles with shock front position, backing mass ratio (γ = 1)
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Figure 12: Max crushing stresses for different density gradients, normalized by the one of uniform density.

stress reduction is made. For the linear gradient profiles, the influence of the importance of

gradient (parameter a1) as well as the backing mass ratio are shown in Fig. 13. The benefit of

gradient is clear for rather small value of gradient slope and the small backing mass ratio. For

high gradient slope as well as important mass ratio, the dynamic crushing stress could increase
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instead of a reduction. For the quadratic gradient profiles (Fig. 14), the same conclusion can be

made. While for the square root profiles (see Fig. 15), the advantage of the application of density

gradient is always true in the range of consideration. Nevertheless, this advantage weakens as

the backing mass ratio increases.
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Figure 13: Max stresses in linear density gradient cellular rod with different gradients a1, and backing mass ratio

γ

5. Summary

This paper investigated theoretically the shock front formation/propagation in graded cellular

materials for the case of more realistic (from industrial application viewpoint) property gradients

derived from density gradient. On the basis of assumption of a constant locking density (instead

of locking strain), the governing equations of shock front in a density graded cellular material

was derived. Analytical expressions of shock front speed as well as dynamic crushing stresses for

linear, quadratic and square root density profiles were obtained in the case of cellular rod with

a backing mass or not.

Numerical simulations showed that shock front formed in the cellular rod and the results

agreed well with the theoretical predictions. This study revealed that the density gradient had a

significant influence on the maximum impact stress transmitted to impacted structure with the
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Figure 14: Max dynamic crushing stresses in quadratic density gradient cellular rod with different gradients a2,

and backing mass ratio γ
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Figure 15: Max dynamic crushing stresses in square root density gradient cellular rod with different gradients a3,

and backing mass ratio γ

same weight and the same energy absorption capacity. A reduction of this maximum stress was

observed when the density gradients were rather small.
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Appendix A. Solution of the differential equation

For the first-order non-homogeneous differential equation, which is

dy(x)

dx
− g(x)y(x) = f(x) (A.1)

to obtain the solution, the homogeneous form of which is firstly resolved. It is

dh(x)

dx
− g(x)h(x) = 0 (A.2)

The general solution of the above equation is then

h(x) = exp
∫
g(t)dt (A.3)

Thus, the general solution of the non-homogeneous equation is

y(x) = K(x)h(x) (A.4)

Substituting the general solution into Eq. (A.1), it becomes

dK(x)

dx
h(x) +K(x)

[

dh(x)

dx
− g(x)h(x)

]

= f(x) (A.5)

dK(x)

dx
h(x) = f(x) (A.6)

As a result, K(x) is solved from Eq. (A.6)

K(x) =

∫

f(x)/h(x)dx (A.7)

At last, the solution of the non-homogeneous different equation is thus

y(x) = h(x)

∫ x

0

f(t)/h(t)dt+ C (A.8)

where C is an integral constant, which is determined by the initial condition.
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