SUR LA TORSION DANS LA COHOMOLOGIE DES VARI ETES DE SHIMURA DE KOTTWITZ-HARRIS-TAYLOR

Abstract : When the level at $l$ of a Shimura variety of Kottwitz-Harris-Taylor is not maximal, its cohomology with coefficients in a $\overline{\mathbb Z}_l$-local system isn't in general torsion free. In order to prove torsion freeness results of the cohomology, we localize at a maximal ideal $\mathfrak m$ of the Hecke algebra. We then prove a result of torsion freeness resting either on $\mathfrak m$ itself or on the Galois representation $\overline \rho_{\mathfrak m}$ associated to it. Concerning the torsion, in a rather restricted case than \cite{scholze-cara}, we prove that the torsion doesn't give new Satake parameters systems by showing that each torsion cohomology class can be raised in the free part of the cohomology of a Igusa variety.
Liste complète des métadonnées

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01137273
Contributor : Pascal Boyer <>
Submitted on : Monday, October 31, 2016 - 6:28:16 PM
Last modification on : Thursday, February 7, 2019 - 5:48:40 PM

File

torsion-localise3.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01137273, version 2
  • ARXIV : 1503.03303

Collections

Citation

Pascal Boyer. SUR LA TORSION DANS LA COHOMOLOGIE DES VARI ETES DE SHIMURA DE KOTTWITZ-HARRIS-TAYLOR. Journal de l'Institut de Mathématiques de Jussieu, 2016. ⟨hal-01137273v2⟩

Share

Metrics

Record views

104

Files downloads

55