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Abstract

Sign Language (SL) linguistics is dependent on the expensive task of annotation. Some automation is already available for low-level

information (eg. body part tracking) and the lexical level has shown significant progresses. The syntactic level lacks annotated corpora as

well as complete and consistent models. This article presents a solution for the automatic annotation of SL syntactic elements. It exposes

a formalism able to represent both constituency-based and dependency-based models. The first enables the representation of structures

one may want to annotate, the second aims at fulfilling the holes of the first. A parser is presented and used to conduct two experiments

to test the solution. One experiment is on a real corpus, the other is on a synthetic corpus.

1. Introduction

To study Sign Languages (SLs), linguists need annota-

tions. Currently, corpus annotation is done manually, it is

time-consuming and suffers difficulties with inter and intra-

annotator reliability. For this reason, efforts are carried out

to automatize the annotation process. Early efforts focused

on the very low-level non-linguistic information: body part

tracking, activity detection. They finally reached the base

of the linguistic level: detection of sign phases (Gonzalez

and Collet, 2011), sub-lexical (Cooper et al., 2012) and lex-

ical units (Curiel and Collet, 2013). Work on this last level

has focused on manual gestures. The only exceptions were

attempts to remove ambiguity on some lexical signs with

the help of Non-Manual Gestures (NMGs) (Paulraj et al.,

2008) or detection of NMG (Yang and Lee, 2011; Neidle

et al., 2009). Now is the time to address the annotation of

supra-lexical features. But when it comes to syntactic fea-

tures, it is not possible to ignore the NMGs anymore.

The syntax SLs is complex and different from vocal lan-

guages(Cuxac, 2000; Dubuisson et al., 1999; Bouchard and

Dubuisson, 1995; Bouchard, 1996). They use the multi-

plicity and the spatial abilities of the available articulators.

It results non-sequential productions with complex tempo-

ral, spacial and articulatory synchronizations. The syntactic

models developed for the processing of vocal languages are

deeply based on the sequentiality of lexical units. Conse-

quently, the processing of SL syntax requires the invention

of new models or, at least, to deeply rethink and adapt the

existing ones.

A recognition system always has an internal representation

of the phenomena to recognize. However, there are mul-

tiple manners to obtain such a representation. From one

extreme to another, it can be expert knowledge formalized

into a model or it can be results of uninformed automatic

learning on real data. The first requires experts to formal-

ize a complete and consistent model from their knowledge.

The second requires massive data and computer calcula-

tion. For the syntax of SLs, neither is available. The expert

knowledge is sparse and sometimes inconsistent. Anno-

tated SL corpora are too small and too heterogeneous for

uninformed learning.

Our goal is to develop tools for the semi-automatic anno-

tation. The general approach we adopt is to use supra-

lexical/syntactic models for the annotation. It targets two

objectives. First, it aims at producing annotations for all

the structures of the model. Second, it aims to enhance

the lower levels. Indeed, such models can improve two as-

pects of the quality of the lexical recognition: the results,

by re-scoring the lexical candidates, and the efficiency, by

informing the lexical layer and thereby reducing the search

space. The models are used to propagate the information of

the low-level detections.

This article exposes elements in favor of a hybrid parsing of

SLs. It presents a formalism able to represent constituency-

based structures as well as dependency-based structures.

This formalism has been created to represent models com-

bining transfered linguistic knowledge and automatically

learned dependencies. The feasibility is demonstrated with

a parser in two experiments. First, the parser is run on ex-

cerpts of the Dicta-Sign Corpus with a model composed

of five structures. Second, synthetic dependency grammars

are used to parse synthetic corpora.

Such a hybrid formalism is the solution we found for the

lack of annotated corpora and the incompleteness of the

available models. We aim at enabling the use of incom-

plete models transfered from the linguistic knowledge with

learned data.

This work tries to avoid hypotheses that would simplify SL

processing by making SLs closer of vocal languages but

would be unrealistic. In particular, it makes no assump-

tions such as the predominance of the hands over the other

articulators or the existence of a sequential skeleton of the

SL locutions. It is based on the ideas introduced by Fil-

hol (Filhol, 2009) to represent structures with the minimal

constraints that make them recognizable. This approach

enable to naturally represent the complex temporal syn-

chronization mechanisms (Filhol, 2012) of SL simultane-

ity (Vermeerbergen et al., 2007).

This document is structured as follow. It starts with the pre-

sentation of the example used all along the article. The for-

malism is described jointly with its usage for constituency-

based structures. The representation of dependency struc-



tures comes next. After the formalism, the parsing is pre-

sented with its general characteristics but without details on

its internal algorithm. The last part presents the two exper-

iments, their results and an analysis.

2. Formalism description

The first step toward the automatic annotation is the formal

representation of a model. The representation we propose

is similar to Context-Free Grammars (CFGs) in that it is a

derivational grammar. But it differs from CFGs on three

fundamental points. First, the right-hand side of a produc-

tion rule is not a string of units but a set of units. Second, it

introduces the possibility to express constraints between all

the units of a production rule. Third, in CFGs, the left-hand

side of a production rule is non-terminal symbol. We have

no such thing as non-terminal and terminal symbols. We

have instead detectable and non-detectable units, and both

can be atomic (terminal) or not.

We target the representation of two types of models. In the

first, a production rule represents a relation of constituency.

It comes from the Phrase Structure Grammars (PSGs) of

Chomsky (Chomsky, 1957). In the second, a production

rule represents a relation of dependency. It comes from the

dependency grammars of Tesnière.

2.1. Constituency structures

2.1.1. Example presentation

We illustrate the description of the formalism with the con-

struction of a constituency-based model from an excerpt of

a real corpus.

The excerpt comes from the French Sign Language (LSF)

part of the Dicta-Sign corpus (Efthimiou et al., 2010) which

is composed of spontaneous dialogs performed by deaf

signers. In this excerpt, the informant relates a memory of a

journey in Paris visiting the Louvre museum with a friend.

In the studied part, he explains to his interlocutor the pur-

pose of the journey –to visit the Louvre– and checks that

they share the same sign for Louvre. Figure 1 summarizes

the excerpt with a sequence of pictures.

2.1.2. Pattern decomposition

We call pattern a rule representing how a unit comes with

others. It is similar to the production rules of CFGs. We

usually draw these patterns as trees as shown in figure 2. In

the present formalism, we make each pattern correspond to

a unit (the inverse is false, it is not an equivalence relation).

Consequently, a unit can be the root of at most one pattern

for a given model. An atomic unit can be associated to a

pattern with only a root. It is the single assumption make

about units and patterns in a model. Aside from this, ev-

erything is possible. Units can appear several times in the

same pattern. Patterns can be recursive, mutually recursive,

etc.

The model we are about to introduce contains four patterns

observed in the excerpt: a buoy pattern, a “sign check” pat-

tern, a question pattern, and an acknowledgment pattern.

These patterns are examples and do not rely on a strong lin-

guistic basis. Stronger models remain to be developed with

linguists.

The patterns are described in terms of constituents as shown

in figure 2. Their internal arrangement is then described

with constraints (section 2.1.4.).

The first described pattern is a buoy (Liddell, 2003). It is

visible in figure 1, the left hand of the bi-manual sign TO-

VISIT (fig. 1(a)) is maintained all along the excerpt. The

pattern is decomposed into three sub-elements: two signs

and one locution. The second pattern is an acknowledg-

ment. It happens in figure 1 (g). It is decomposed into two

sub-elements: a head node and a sign. The third pattern is

a question. It also happens in figure 1 (g), but is less clear

on this snapshot. It is decomposed as a marker (eyebrows

up) and a locution. The “sign check” is a question and an

acknowledgment.

As shown in figure 2, the pattern decomposition can be eas-

ily represented as a tree. The sub-elements are patterns

which can be decomposed themselves or can be consid-

ered atomic in the model. Edges represent a relation of

constituency. In a decomposition, multiple elements can be

instances of a same pattern. When defining a model, one

may need to introduce the same pattern multiple times in a

same decomposition. This fact is of particular importance

as it highlights that an element, in a decomposition, does

not represent a pattern but an instance. As a consequence,

the name of a pattern is not sufficient to designate elements

without ambiguity. It is therefore necessary to associate

each instance with a role name.

2.1.3. Alternatives

Patterns do not allow generalization as all their internal el-

ements are mandatory. As patterns describe compositions,

we define an other type of rule to explicitly express alterna-

tives. The same restriction as for patterns applies to the use

of a unit as root for an alternative. In the example model,

we define a node Locution as an alternative between the

four patterns (figure 2a). Alternatives appear as rectangle

nodes in figures 2 and 4.

2.1.4. Constraints

Patterns and alternatives represent invariants in the compo-

sition. Invariants in the internal organization of the patterns

are expressed with constraints.

To come back to the example, we can extract several kinds

of invariants. One may hypothesize that the sign beginning

a buoy structure must be bi-manual (figure 2b). Another

may want to describe the temporal structure of the patterns

(Buoy finishes BuoyStruct, in figure 2b). It could also be

useful to express global constraints, for instance constraints

between one unit and all its descendants. All these invari-

ants should be expressible formally.

We represent temporal, spatial and articulatory invariants

as constraints. The constraints restrain the possible values

for the attributes of pattern instances. The attributes, their

encoding, and the logic formalisms – used to express the

constraints – are a whole. Their choice strongly impacts

the model. This is the reason why the formalism has to be

independent of the logics and attributes.

Representing a complete model requires multiple logics,

each addressing a different aspect: temporal, spatial, ar-

ticulatory, etc. We showed examples of the temporal (fin-

ishes) and articulatory (bi-manual) aspects. In this article,



(a) VISIT (b) MUSEUM (c) L (d) FORGET (e) pointer (f) LOUVRE (g) LOUVRE

Figure 1: Decomposition of the excerpt

(a) Locution (b) Buoy
(c) Ack (d) Question (e) ”Sign Check”

Figure 2: Example of model with 4 patterns (b, c, d & e)

we focus on the formalism to describe the model. For this

demonstration, only temporal constraints are used.

2.2. Edges of the models

Developing a complete model is, at best, very hard. We

consider two solutions to work with incomplete models. As

this work is developed for semi-automatic annotation, the

first solution is to transfer the charge to the human operator.

Such a system would ask something like “There might be

a ‘Question’ there, is there an ‘unmodeled-loc’? and which

are its characteristics (attributes)?”. This solution requires

from the operator precisely what makes annotation difficult

for humans: he/she is supposed to fulfill many attributes

that are hard to measure for a human being. This problem

leads to the second solution: coarse-grained models. Such

models are not meant for the analysis of their results, they

intend to produce a block with attribute values similar to

what could have produced a complete model. Our solution

combines these two approaches.

When a model is incomplete, edge nodes appear which are

used but not modeled. Such an edge is present in the exam-

ple model as “unmodeled-loc”. The “unmodeled-loc” rep-

resents locutions built using non-modeled structures. We

have built an experimental coarse model based on the se-

quence of lexical signs (because the annotation was already

existing). The results, as expected, are not good. Depend-

ing on how constrained we make the model, we have far

too much false-negatives or false-positives. The sequence

model does not work well with the overlapping units: it in-

cludes units we don’t want included and vice-versa. We ex-

pect dependency-based models to constitute better coarse-

grained models.

2.3. Dependency structures

For the dependency grammar part, we present the for-

malism with a model which makes several simplistic hy-

potheses. The example model divides the units in two

types: Manual Gestures (MGs) and NMGs, each one with

its proper behavior. The units can represent a variety of

forms: standard signs, other MGs (e.g. pointing MGs), fa-

cial gestures (e.g. qualifiers, quantifiers, modality mark-

ers), gaze gestures (e.g. references), etc. In SLs, articu-

Figure 3: Representation of a dependency

latory constraints impact the syntactic level. Some units

interact and some others are incompatible. In this exam-

ple, the model emulates simplified articulatory interactions

between its units:

• MGs never overlap. This is a simplification as it

excludes the representation of yet described phe-

nomenons (e.g. buoy structures, Cuxac’s situational-

transfers (Cuxac, 2000)).

• All NMGs can overlap. This is a simplification as

some NMGs are articulatory impossible to produce si-

multaneously.

These simplifications allowed us to work with a slightly ex-

tended version of the Hays’ formalism. Hays defines rules

of the form X(Y
−n, ..., Y−1, ∗, Y1, ..., Ym) where X and Yk

are categories of units. Such a rule expresses that a unit of

category X takes the place of the star in a sequence of de-

pendents of categories Y
−n to Ym. This formalism is suf-

ficient to represent MGs (assuming the sequence simplifi-

cation). But the NMGs requires to extend it, which is done

with rules of the form X(Y ).
We have represented such dependency structures with the

formalism with the construction shown in figure 3. The

categories are described as alternatives between rules. The

rules are described as patterns. The constraints work ex-

actly as for constituency-based structures.

3. Parsing

The purpose of this work is the semi-automatic annotation

of structures of models. The first step toward this objective

was to formalize the model to recognize. The next step

is the recognition itself. We give here an outline only of



the developed system. The detailed description will be the

subject of a dedicated article.

In addition to the formalized model, the parser needs an in-

put to parse. This input is an annotation of a subset of the

units of the model. Units of this subset (they can be ei-

ther pattern or alternatives) are said to be detectable. Their

annotation can originate from manual annotation or third

party detectors. These detectable units appear in red in fig-

ures 4 and 3. The parser is able to command the external

detectors as it runs. In this mode, it does not receive the

input annotation a priori, but works interactively with the

detectors. This allows to inform the detectors of the context

and therefore to reduce their search spaces. On the exam-

ple, the parser asks to the “Buoy-Marker” detector “is there

something between 201 and 212?”. This allows to reduce

the time interval the detector will process.

The internal representation of the model in the parser is an

AND/OR graph. This representation is called the implicit

graph. Our work extends the ideas of Mahanti (Mahanti

et al., 2003) for the parsing. A unit identifying a pattern

gives an AND node and one identifying an alternative gives

an OR node. In the implicit graph, nodes represent pat-

terns or alternatives but not instances. Figure 4 gives an

example of an implicit graph for the example model. The

implicit graph is used to generate an explicit graph. In this

last graph, nodes represent instances.

The parsing operation results in a set of graphs. Each graph

is a solution. The figure 5 shows an example of graph out-

put by the parser. The nodes represent occurrences either

externally detected or internally inferred. The arcs corre-

spond to constituency or dependency relations of the model.

In a solution graph, each node has attributes. As the model

can be under-constrained, there may be more than one so-

lution. In particular, the resolution can find more than one

acceptable value for attributes.

The parser is currently top-down. It builds the solution

graphs starting from a set of given roots. This set can be,

for example, a set of pre-detected lexical unit occurrences

resulting of a first pass of lexical recognition. It is how

the parser process dependency-based models. It then builds

trees top-down from each root and merges the trees when

possible. It is therefore obvious than solution graphs can

have multiple connected components. This occurs, for ex-

ample, when a signer is interrupted by a question, answers

quickly and then continues his/her speech. In the case of

constituency-based models, the top-down parsing requires

to introduce a detectable root. It is the function of the

”Signing” unit in figure 4 which is detected with an activity

detector.

In the models we developed, the set of attributes contains

time-start and time-end. Their values make it easy to trans-

form a solution graph into an annotation.

4. Results

The parser has been evaluated for constituency-based and

dependency-based structures: the first on real annotations,

the second on synthetic data. The results of the parser can

be directly observed, quantitatively and qualitatively. The

evaluation of the formalism itself is harder to produce. We

propose an interpretation of the parser’s results to under-

stand what they say about the formalism.

The parser has been run on several occurrences of the

constituency-based structures. The external detectors were

simulated with a manual annotation of the detectable units.

But the small number of occurrences does not allow a quan-

titative evaluation. In particular, the evaluation corpus con-

tains only one occurrence of a combination of the struc-

tures.

We still produce a qualitative analysis of the results. The

parser outputs numerous solutions: many false-positives

and partial solutions. A simple ranking by the size of the

solutions is efficient against the partial solutions.

The false-positives can be classified in two categories:

wrong hierarchical order and bad modeling of the lower

levels of the syntax (discussed above, in section 2.2.). The

first could be addressed with recursive constraints on the

compositions. For example constraints like “the locution

constituting a question cannot contain a question”. Such a

feature could be interesting for experiments on models. But

in a context of semi-automatic annotation, we rather think

that this type of false-positives must be resolved by a hu-

man expert. A system requiring this type of intervention of

the operator is still of good help: it reduces the work in the

task of selecting the right hierarchical organization. This

uses the expertise of the operator for high-level problems.

The second type of false-positives comes from the difficulty

we met in modeling the syntactic structures of low-level. It

is the reason why we developed the dependency part of our

formalism.

To evaluate the parser on dependency grammars, we have

built a synthetic corpus. The idea behind this is to test the

parser against bigger inputs. To generate this corpus, we

used the model presented in the section 2.3.

Our generator starts with the random generation of depen-

dency grammars. It then generates random phrases follow-

ing the grammars. In the absence of measures on annota-

tions, the models were parametrized arbitrarily. The cor-

pus has 5000 grammars with 1 phrase each. All grammars

have 20 categories. Every category has 3 to 4 rules each.

Rules for non-manual categories have exactly one depen-

dent. For manual categories, sizes have a uniform distribu-

tion on [0, 4].
The results of the parsing on the synthetic corpus are visi-

ble in figure 6. The results are classed by phrase size. We

have an average of 1 to 4 false-positives per phrase. It gives

a precision of 52% to 5%. It is hard to draw conclusion

from this result as it depends on the parameters chosen at

the grammar generation. The recall of 83% to 23% is much

more interesting. It validates the computability of the pars-

ing.

5. Conclusion

The formalism of this article showed its ability to represent

structures based on constituency as well as dependency re-

lations. It has been done without assumptions on the se-

quentiality of lexical units nor on the predominance of the

manual gestures. Instead, it uses constraints to describe in-

variants on the composition of the structures and on their

temporal organization. We showed that these descriptions



Figure 4: Schematic view of the implicit graph associated to the example model

Figure 5: Example of solution graph

Figure 6: Evaluation on dependency grammars

allow the detection of the structures. The dependency pars-

ing shows promising results as a coarse model. This should

ease the use of constituency-based structures by disassoci-

ating them from the complete model requirement. How-

ever, the articulation between the two paradigms in one

model remains to be developed. For now, the solution

is to have two separated models, one per paradigm. The

dependency-based model is used when a non-modeled pat-

tern is reached. At this time, the human operator decides if

the pattern is present and what solution of the dependency

parsing will act as the occurrence of the non-modeled pat-

tern.

This work, in its current state, is restricted by some limi-

tations of the generative grammars. But it already avoids

the problem of designing a model with a unique root for

dependency grammars. This is critical in our context of

semi-automatic annotation, as our goal is to enable the de-

tection of structure occurrences, not to produce an inter-

pretable syntactic tree. Unfortunately, the parser is still

top-down, and consequently, the constituency-based gram-

mars still need a root. There are plans to modify the current

parser to drop the top-down mechanism. This will enable

the parser to accept non-rooted models.

To go further in the direction of automatic annotation, sev-

eral points need to be worked on. First, one will have to

build (manually or automatically) a dependency grammar

compliant with a real SL. The formalism and the parser

can manage models of dependency grammars much more

complex than one presented above.

The formalism and the parser do not represent uncertainty.

But there are good candidates to introduce uncertainty rep-

resentation in the existing parser such as fuzzy-CSPs. This

extension will certainly improve greatly the results but will

also have a computational cost.
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