M. Adams, J. Luo, D. Rayward, S. King, R. Gibson et al., Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves, Animal Feed Science and Technology, vol.145, issue.1-4, pp.41-52, 2008.
DOI : 10.1016/j.anifeedsci.2007.05.035

P. Aikman, P. Henning, D. Humphries, and C. Horn, Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation, Journal of Dairy Science, vol.94, issue.6, pp.2840-2849, 2011.
DOI : 10.3168/jds.2010-3783

A. Alaboudi and G. Jones, EFFECT OF ACCLIMATION TO HIGH NITRATE INTAKES ON SOME RUMEN FERMENTATION PARAMETERS IN SHEEP, Canadian Journal of Animal Science, vol.65, issue.4, pp.841-849, 1985.
DOI : 10.4141/cjas85-099

R. Anderson and M. Rasmussen, Use of a novel nitrotoxin-metabolizing bacterium to reduce ruminal methane production, Bioresource Technology, vol.64, issue.2, pp.89-95, 1998.
DOI : 10.1016/S0960-8524(97)00184-3

R. Ao, The potentail of feeding nitrate to reduce enteric methane production in ruminants. A report to the department of climate change, 2008.

R. Asa, A. Tanaka, A. Uehara, I. Shinzato, Y. Toride et al., Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis, Asian-Australasian Journal of Animal Sciences, vol.23, issue.6, pp.700-707, 2010.
DOI : 10.5713/ajas.2010.90444

N. Asanuma, T. Yoshii, and T. Hino, Isolation of new nitrite-reducing bacteria, and augmentation of nitrite reduction in the rumen by introducing one of the isolated bacteria, Bulletin of the Faculty of Agriculture-Meiji University, vol.137, pp.1-17, 2003.

N. Asanuma, K. Kanagawa, M. Iwamoto, and T. Hino, Formate Metabolism by Ruminal Microorganisms in Relation to Methanogenesis, Nihon Chikusan Gakkaiho, vol.69, issue.6, pp.576-584, 1998.
DOI : 10.2508/chikusan.69.576

N. Asanuma, M. Iwamoto, M. Kawato, and T. Hino, Numbers of nitrate-reducing bacteria in the rumen as estimated by competitive polymerase chain reaction, Animal Science Journal, vol.81, issue.3, pp.199-205, 2002.
DOI : 10.1016/S0378-1097(00)00233-0

R. Baldwin, W. Wood, and R. Emery, Conversion of glucose-C14 to propionate by the rumen microbiota, Journal of Bacteriology, vol.85, pp.1346-1349, 1963.

P. Boccazzi and J. Patterson, Potential for functional replacement of methanogenic bacteria by acetogenic bacteria in the rumen environment, Annales de Zootechnie, vol.45, issue.Suppl. 1, p.321, 1996.
DOI : 10.1051/animres:19960661

URL : https://hal.archives-ouvertes.fr/hal-00889643

P. Boccazzi and J. Patterson, Using hydrogen-limited anaerobic continuous culture to isolate low hydrogen threshhold ruminal acetogenic bacteria, Agriculture , Food and Analytical Bacteriology, vol.1, pp.33-44, 2011.

J. Breznak and J. Switzer, Acetate synthesis from H(2) plus CO(2) by termite gut microbes, Applied and Environmental Microbiology, vol.52, pp.623-630, 1986.

M. Bryant, Nutritional requirements of the predominant rumen cellulolytic bacteria, Federation Proceedings, vol.32, pp.1809-1813, 1973.

M. Bryant, L. Campbell, C. Reddy, and M. Crabill, Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H 2 -utilizing methanogenic bacteria, Applied and Environmental Microbiology, vol.33, pp.1162-1169, 1977.

B. Buddle, M. Denis, G. Attwood, E. Altermann, P. Janssen et al., Strategies to reduce methane emissions from farmed ruminants grazing on pasture, The Veterinary Journal, vol.188, issue.1, pp.11-17, 2011.
DOI : 10.1016/j.tvjl.2010.02.019

T. Callaway, A. Demelo, and J. Russell, The Effect of Nisin and Monensin on Ruminal Fermentations In Vitro, Current Microbiology, vol.35, issue.2, pp.90-96, 1997.
DOI : 10.1007/s002849900218

L. Campbell and J. Postgate, Classification of the spore-forming sulfatereducing bacteria, Bacteriological Reviews, vol.29, pp.359-363, 1965.

M. Carro, P. Lebzien, and K. Rohr, Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates, Animal Feed Science and Technology, vol.37, issue.3-4, pp.209-220, 1992.
DOI : 10.1016/0377-8401(92)90005-Q

F. Chaucheyras-durand, N. Walker, and A. Bach, Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future, Animal Feed Science and Technology, vol.145, issue.1-4, pp.5-26, 2008.
DOI : 10.1016/j.anifeedsci.2007.04.019

G. Gibson, G. Macfariane, and J. Cummings, Sulphate reducing bacteria and hydrogen metabolism in the human large intestine., Gut, vol.34, issue.4, pp.437-439, 1993.
DOI : 10.1136/gut.34.4.437

F. Godoy-vitorino, K. Goldfarb, U. Karaoz, S. Leal, M. Garcia-amado et al., Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows, The ISME Journal, vol.40, issue.3, pp.531-541, 2012.
DOI : 10.1099/ijs.0.02362-0

S. Hallam, P. Girguis, C. Preston, P. Richardson, and E. Delong, Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane-Oxidizing Archaea, Applied and Environmental Microbiology, vol.69, issue.9, pp.5483-5491, 2003.
DOI : 10.1128/AEM.69.9.5483-5491.2003

P. Henning, C. Horn, K. Leeuw, H. Meissner, and F. Hagg, Effect of ruminal administration of the lactate-utilizing strain Megasphaera elsdenii (Me) NCIMB 41125 on abrupt or gradual transition from forage to concentrate diets, Animal Feed Science and Technology, vol.157, issue.1-2, pp.20-29, 2010.
DOI : 10.1016/j.anifeedsci.2010.02.002

T. Hino, K. Shimada, and T. Maruyama, Substrate preference in a strain of Megasphaera elsdenii, a ruminal bacterium, and its implications in propionate production and growth competition, Applied and Environmental Microbiology, vol.60, pp.1827-1831, 1994.

S. Hou, K. Makarova, J. Saw, P. Senin, B. Ly et al., Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia, Biology Direct, vol.3, issue.1, pp.26-51, 2008.
DOI : 10.1186/1745-6150-3-26

C. Hubert and G. Voordouw, Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors, Applied and Environmental Microbiology, vol.73, issue.8, pp.2644-2652, 2007.
DOI : 10.1128/AEM.02332-06

J. Huisingh, J. Mcneill, and G. Matrone, Sulfate reduction by a Desulfovibrio species isolated from sheep rumen, Applied Microbiology, vol.28, pp.489-497, 1974.

R. Hulshof, A. Berndt, W. Gerrits, J. Dijkstra, S. Van-zijderveld et al., Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets, Journal of Animal Science, vol.90, issue.7, pp.2317-2323
DOI : 10.2527/jas.2011-4209

R. Hungate, W. Smith, T. Bauchop, I. Yu, and J. Rabinowitz, Formate as an intermediate in the bovine rumen fermentation, Journal of Bacteriology, vol.102, pp.389-397, 1970.

M. Iwamoto, N. Asanuma, and T. Hino, Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to Reduce Nitrate and Nitrite with Special Reference to the Suppression of Ruminal Methanogenesis, Anaerobe, vol.8, issue.4, pp.209-215, 2002.
DOI : 10.1006/anae.2002.0428

P. Janssen and M. Kirs, Structure of the Archaeal Community of the Rumen, Applied and Environmental Microbiology, vol.74, issue.12, pp.3619-3625, 2008.
DOI : 10.1128/AEM.02812-07

G. Jarvis, C. Strompl, D. Burgess, L. Skillman, E. Moore et al., Isolation and Identification of Ruminal Methanogens from Grazing Cattle, Current Microbiology, vol.40, issue.5, pp.327-332, 2000.
DOI : 10.1007/s002849910065

J. Jeyanathan, M. Kirs, R. Ronimus, S. Hoskin, and P. Janssen, Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets, FEMS Microbiology Ecology, vol.76, issue.2, pp.311-326, 2011.
DOI : 10.1111/j.1574-6941.2011.01056.x

Q. Jiang and L. Bakken, Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria, Applied and Environmental Microbiology, vol.65, pp.2679-2684, 1999.

H. Kajikawa, C. Valdes, K. Hillman, R. Wallace, and C. Newbold, Methane oxidation and its coupled electron-sink reactions in ruminal fluid, Letters in Applied Microbiology, vol.137, issue.6, pp.354-357, 2003.
DOI : 10.1046/j.1472-765X.2003.01317.x

H. Kaspar, Nitrite reduction to nitrous oxide by propionibacteria: Detoxication mechanism, Archives of Microbiology, vol.111, issue.2, pp.126-130, 1982.
DOI : 10.1007/BF00413525

H. Kaspar and J. Tiedje, Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene, Applied and Environmental Microbiology, vol.41, pp.705-709, 1981.

T. Kempton, R. Murray, and R. Leng, Methane Production and Digestibility Measurements in the Grey Kangaroo and Sheep, Australian Journal of Biological Sciences, vol.29, issue.3, pp.209-214, 1976.
DOI : 10.1071/BI9760209

A. Klieve, D. Ouwerkerk, and A. Maguire, Archaea in the foregut of macropod marsupials: PCR and amplicon sequence-based observations, Journal of Applied Microbiology, vol.56, issue.5, pp.1065-1075
DOI : 10.1111/j.1365-2672.2012.05428.x

A. Klieve, D. Hennessy, D. Ouwerkerk, R. Forster, R. Mackie et al., Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets, Journal of Applied Microbiology, vol.46, issue.3, pp.621-630, 2003.
DOI : 10.1053/rvsc.1998.0284

K. Knittel, T. Losekann, A. Boetius, R. Kort, and R. Amann, Diversity and Distribution of Methanotrophic Archaea at Cold Seeps, Applied and Environmental Microbiology, vol.71, issue.1, pp.467-479, 2005.
DOI : 10.1128/AEM.71.1.467-479.2005

D. Krause, R. Bunch, L. Conlan, P. Kennedy, W. Smith et al., Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes, Microbiology, vol.147, issue.7, pp.1719-1729, 2001.
DOI : 10.1099/00221287-147-7-1719

C. Krehbiel, S. Rust, G. Zhang, and S. Gilliland, Bacterial direct-fed microbials in ruminant diets: performance response and mode of action, Journal of Animal Science, vol.81, pp.120-132, 2003.

S. Lee, H. Mantovani, and J. Russell, The binding and degradation of nisin by mixed ruminal bacteria, FEMS Microbiology Ecology, vol.42, issue.3, pp.339-345
DOI : 10.1016/S0168-6496(02)00321-5

S. Lee, J. Hsu, H. Mantovani, and J. Russell, The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro, FEMS Microbiology Letters, vol.217, issue.1, pp.51-55
DOI : 10.1016/S0378-1097(02)01044-3

J. Leedle and R. Greening, Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-forage or low-forage diets once daily, Applied and Environmental Microbiology, vol.54, pp.502-506, 1988.

A. Lettat, P. Noziere, C. Berger, and C. Martin, Method for reducing methane production in a ruminant animal, World Intellectual Property Organization. Retrieved, 2012.

A. Lettat, P. Noziere, M. Silberberg, D. Morgavi, C. Berger et al., Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep, BMC Microbiology, vol.12, issue.1, pp.142-154
DOI : 10.1186/1471-2180-12-142

L. Li, J. Davis, J. Nolan, and R. Hegarty, An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source, Animal Production Science, vol.52, pp.653-658
DOI : 10.1071/AN11254

M. Li, M. Zhou, E. Adamowicz, J. Basarab, and L. Guan, Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis, Veterinary Microbiology, vol.155, issue.1, pp.72-80, 2011.
DOI : 10.1016/j.vetmic.2011.08.007

Z. Lila, N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda et al., Effects of a twin strain of live cells on mixed ruminal microorganism fermentation in vitro, Journal of Animal Science, vol.82, issue.6, pp.1847-1854, 2004.
DOI : 10.2527/2004.8261847x

S. Lopez, E. Mcintosh, R. Wallace, and C. Newbold, Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms, Animal Feed Science and Technology, vol.78, issue.1-2, pp.1-9, 1999.
DOI : 10.1016/S0377-8401(98)00273-9

H. Lynch and M. Sa, Effects of Saccharomyces cerevisiae Culture and Saccharomyces cerevisiae Live Cells on In Vitro Mixed Ruminal Microorganism Fermentation, Journal of Dairy Science, vol.85, issue.10, pp.2603-2608, 2002.
DOI : 10.3168/jds.S0022-0302(02)74345-2

J. Macy, L. Ljungdahl, and G. Gottschalk, Pathway of succinate and propionate formation in Bacteroides fragilis, Journal of Bacteriology, vol.134, pp.84-91, 1978.

C. Martin, D. Morgavi, and M. Doreau, Methane mitigation in ruminants: from microbe to the farm scale, animal, vol.88, issue.03, pp.351-365, 2010.
DOI : 10.3168/jds.S0022-0302(05)73126-X

F. Mathieu, J. Jouany, J. Senaud, J. Bohatier, G. Bertin et al., The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions, Reproduction Nutrition Development, vol.36, issue.3, pp.271-287, 1996.
DOI : 10.1051/rnd:19960305

URL : https://hal.archives-ouvertes.fr/hal-00899838

T. Mcallister, K. Beauchemin, A. Alazzeh, J. Baah, R. Teather et al., Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle, Canadian Journal of Animal Science, vol.91, issue.2, pp.193-211, 2011.
DOI : 10.4141/cjas10047

S. Mcginn, K. Beauchemin, T. Coates, and D. Colombatto, Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid, Journal of Animal Science, vol.82, issue.11, pp.3346-3356, 2004.
DOI : 10.2527/2004.82113346x

D. Mckenney, K. Shuttleworth, J. Vriesacker, and W. Findlay, Production and loss of nitric oxide from denitrification in anaerobic brookston clay, Applied and Environmental Microbiology, vol.43, pp.534-541, 1982.

T. Miller and M. Wolin, Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen, Archives of Microbiology, vol.149, issue.2, pp.116-122, 1985.
DOI : 10.1007/BF00423270

M. Mitsumori, N. Ajisaka, K. Tajima, H. Kajikawa, and M. Kurihara, Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers, Letters in Applied Microbiology, vol.65, issue.3, pp.251-255, 2002.
DOI : 10.1128/AEM.66.10.4532-4535.2000

M. Morris, B. Cancel, and A. González-más, Toxicity of Nitrates and Nitrites to Dairy Cattle, Journal of Dairy Science, vol.41, issue.5, pp.694-696, 1958.
DOI : 10.3168/jds.S0022-0302(58)90987-1

B. Morvan, F. Rieulesme, G. Fonty, and P. Gouet, In vitroInteractions between Rumen H2-Producing Cellulolytic Microorganisms and H2-Utilizing Acetogenic and Sulfate-Reducing Bacteria, Anaerobe, vol.2, issue.3, pp.175-180, 1996.
DOI : 10.1006/anae.1996.0023

B. Morvan, J. Dore, F. Rieulesme, L. Foucat, G. Fonty et al., Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb, FEMS Microbiology Letters, vol.117, issue.3, pp.249-256, 1994.
DOI : 10.1111/j.1574-6968.1994.tb06775.x

T. Mutsvangwa, I. Edwards, J. Topps, and G. Paterson, Abstract, Animal Production, vol.71, issue.01, pp.35-40, 1992.
DOI : 10.3168/jds.S0022-0302(87)80254-0

B. Mwenya, B. Santoso, C. Sar, Y. Gamo, T. Kobayashi et al., Effects of including ??1???4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep, Animal Feed Science and Technology, vol.115, issue.3-4, pp.313-326, 2004.
DOI : 10.1016/j.anifeedsci.2004.03.007

T. Nagaraja, C. Newbold, V. Nevel, C. , D. Died et al., Manipulation of ruminal fermentation RJ and McIntoth FM 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants, The rumen microbial ecosystem, pp.523-632, 1997.

L. Nollet, D. Demeyer, and W. Verstraete, Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis, Applied and Environmental Microbiology, vol.63, pp.194-200, 1997.

L. Nollet, L. Mbanzamihigo, D. Demeyer, and W. Verstraete, Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80, Animal Feed Science and Technology, vol.71, issue.1-2, pp.49-66, 1998.
DOI : 10.1016/S0377-8401(97)00135-1

K. Paul, J. Nonoh, L. Mikulski, and A. Brune, "Methanoplasmatales," Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens, Applied and Environmental Microbiology, vol.78, issue.23, pp.8245-8253
DOI : 10.1128/AEM.02193-12

S. Paul, S. Deb, and D. Singh, Isolation and characterization of novel sulphate-reducing Fusobacterium sp. and their effects on in vitro methane emission and digestion of wheat straw by rumen fluid from Indian riverine buffaloes, Animal Feed Science and Technology, vol.166, issue.167, pp.132-140, 2011.
DOI : 10.1016/j.anifeedsci.2011.04.062

H. Perdok, V. Zijderveld, S. Newbold, J. Hulshof, R. Deswysen et al., Compositions for reducing gastro-intestinal methanogenesis in ruminants, 2011.

P. Pope, W. Smith, S. Denman, S. Tringe, K. Barry et al., Isolation of Succinivibrionaceae Implicated in Low Methane Emissions from Tammar Wallabies, Science, vol.333, issue.6042, pp.646-648, 2011.
DOI : 10.1126/science.1205760

S. Raciti, A. Burgin, P. Groffman, D. Lewis, and T. Fahey, Denitrification in Suburban Lawn Soils, Journal of Environment Quality, vol.40, issue.6, pp.1932-1940, 2011.
DOI : 10.2134/jeq2011.0107

S. Ragsdale and E. Pierce, Acetogenesis and the Wood???Ljungdahl pathway of CO2 fixation, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1784, issue.12, pp.1873-1898, 2008.
DOI : 10.1016/j.bbapap.2008.08.012

T. Rehberger and C. Hibberd, Bacterial composition to reduce the toxic effects of high nitrate consumption in livestock, p.810, 2000.

G. Romero-perez, K. Ominski, T. Mcallister, and D. Krause, Effect of Environmental Factors and Influence of Rumen and Hindgut Biogeography on Bacterial Communities in Steers, Applied and Environmental Microbiology, vol.77, issue.1, pp.258-268, 2011.
DOI : 10.1128/AEM.01289-09

J. Russell, R. Wallace, . Hobson, . Pn, and C. Stewart, Energy-yielding and energy-consuming reactions, The rumen microbial ecosystem, pp.246-282, 1997.
DOI : 10.1007/978-94-009-1453-7_6

S. Sadet-bourgeteau, C. Martin, and D. Morgavi, Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets, Veterinary Microbiology, vol.146, issue.1-2, pp.98-104, 2010.
DOI : 10.1016/j.vetmic.2010.04.029

P. Sakthivel, D. Kamra, N. Agarwal, and L. Chaudhry, Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor, Asian-Australasian Journal of Animal Sciences, vol.25, issue.6, pp.812-817
DOI : 10.5713/ajas.2011.11383

C. Sar, B. Mwenya, B. Santoso, K. Takaura, R. Morikawa et al., Effect of wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction, Journal of Animal Science, vol.83, issue.3, pp.644-652, 2005.
DOI : 10.2527/2005.833644x

C. Sar, B. Mwenya, B. Pen, K. Takaura, R. Morikawa et al., Effect of ruminal administration of Escherichia coli wild type or a genetically modified strain with enhanced high nitrite reductase activity on methane emission and nitrate toxicity in nitrate-infused sheep, British Journal of Nutrition, vol.52, issue.05, pp.691-697, 2005.
DOI : 10.1016/j.anifeedsci.2004.10.004

J. Seo, S. Kim, M. Kim, S. Upadhaya, D. Kam et al., Direct-fed Microbials for Ruminant Animals, Asian-Australasian Journal of Animal Sciences, vol.23, issue.12, pp.1657-1667, 2010.
DOI : 10.5713/ajas.2010.r.08

J. Simon, Enzymology and bioenergetics of respiratory nitrite ammonification, FEMS Microbiology Reviews, vol.26, issue.3, pp.285-309, 2002.
DOI : 10.1111/j.1574-6976.2002.tb00616.x

W. Sprenger, M. Van-belzen, J. Rosenberg, J. Hackstein, and J. Keltjens, Methanomicrococcus blatticola gen. nov., sp. nov., a methanoland methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana, International Journal of Systematic and Evolutionary Microbiology, vol.50, 1989.

B. St-pierre and A. Wright, Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos), BMC Microbiology, vol.12, issue.1
DOI : 10.1128/AEM.02812-07

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, and M. Rosales, Livestock's long shadow: environmental issues and options, 2006.

H. Sullivan and S. Martin, Effects of a Saccharomyces cerevisiae Culture on In Vitro Mixed Ruminal Microorganism Fermentation, Journal of Dairy Science, vol.82, issue.9, pp.2011-2016, 1999.
DOI : 10.3168/jds.S0022-0302(99)75438-X

M. Sundset, J. Edwards, Y. Cheng, R. Senosiain, M. Fraile et al., Molecular Diversity of the Rumen Microbiome of Norwegian Reindeer on Natural Summer Pasture, Microbial Ecology, vol.64, issue.2, pp.335-348, 2009.
DOI : 10.1007/s00248-008-9414-7

J. Takahashi and Y. Ba, Prophylactic effect of l-cysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep, Animal Feed Science and Technology, vol.35, issue.1-2, pp.105-113, 1991.
DOI : 10.1016/0377-8401(91)90103-Y

J. Takahashi, M. Ikeda, S. Matsuoka, and H. Fujita, Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep, Animal Feed Science and Technology, vol.74, issue.3, pp.273-280, 1998.
DOI : 10.1016/S0377-8401(98)00176-X

R. Thauer, K. Jungermann, and K. Decker, Energy-conservation in chemotropic anaerobic bacteria, Bacteriological Reviews, vol.41, pp.100-180, 1977.

J. Tiedje, A. Sexstone, D. Myrold, and J. Robinson, Denitrification: ecological niches, competition and survival, Antonie van Leeuwenhoek, vol.5, issue.6, pp.569-583, 1982.
DOI : 10.1007/BF00399542

S. Van-zijderveld, W. Gerrits, J. Dijkstra, J. Newbold, R. Hulshof et al., Persistency of methane mitigation by dietary nitrate supplementation in dairy cows, Journal of Dairy Science, vol.94, issue.8, pp.4028-4038, 2011.
DOI : 10.3168/jds.2011-4236

S. Van-zijderveld, W. Gerrits, J. Apajalahti, J. Newbold, J. Dijkstra et al., Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep, Journal of Dairy Science, vol.93, issue.12, pp.5856-5866, 2010.
DOI : 10.3168/jds.2010-3281

P. Wallnofer and R. Baldwin, Pathway of propionate formation in Bacteroides ruminicola, Journal of Bacteriology, vol.93, pp.504-505, 1967.

M. Whitford, R. Teather, and R. Forster, Phylogenetic analysis of methanogens from the bovine rumen, BMC Microbiology, vol.1, issue.5, 2001.

A. Wright, A. Toovey, and C. Pimm, Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea, Anaerobe, vol.12, issue.3, pp.134-139, 2006.
DOI : 10.1016/j.anaerobe.2006.02.002

T. Yoshii, N. Asanuma, and T. Hino, Number of nitrate- and nitrite-reducing Selenomonas ruminantium in the rumen, and possible factors affecting its growth, Animal Science Journal, vol.52, issue.6, pp.483-491, 2003.
DOI : 10.1007/s002849900058