Metabolism of N-methyl-amide by cytochrome P450s
Lionel Perrin, Nicolas Loiseau, François André, Marcel Delaforge

To cite this version:

HAL Id: hal-01137083
https://hal.archives-ouvertes.fr/hal-01137083
Submitted on 30 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Metabolism of N-methyl-amide by cytochrome P450s
Formation and characterization of highly stable carbinol-amide intermediate

Lionel Perrin1,2,3,4, Nicolas Loiseau5, François André3,4 and Marcel Delaforge3,4

1 Université de Toulouse, Toulouse, France
2 CNRS-UMR 5215, Toulouse, France
3 CEA, IBiTecs, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, France
4 CNRS-URA 2096, Gif-Sur-Yvette, France
5 Département de Pharmacologie, Laboratoire de Pharmacologie-Toxicologie INRA, Toulouse, France

Keywords
carbinol-amide; carbinol-amine; cytochrome P450; metabolism; tentoxin

Correspondence
M. Delaforge, CEA, IBiTecs-URA 2096 du CNRS, Service de Bioénergétique, Biologie Structurale et Mécanismes, CEA Saclay, F91191 Gif-sur-Yvette Cedex, France
Fax: +33 1 69 08 87 17
Tel: +33 1 69 08 44 32/68 39
E-mail: marcel.delaforge@cea.fr
L. Perrin, INSA, LPCNO, UMR 5215; 135 avenue de Rangueil, F-31077 Toulouse, France
Fax: +33 5 61 55 96 97
Tel: +33 5 61 55 96 64
E-mail: lionel.perrin@insa-toulouse.fr

(Received 29 March 2010, revised 4 April 2011, accepted 19 April 2011)

We report unambiguous proof of the stability of a carbinol intermediate in the case of P450 metabolism of an N-methylated natural cyclo-peptide, namely tentoxin. Under mild acidic or neutral conditions, the lifetime of carbinol-amide is long enough to be fully characterized. This metabolite has been characterized using specifically labeled 14C-methyl tentoxin isotopomers, HPLC, HPLC-MS, MS-MS and NMR. Under stronger acidic conditions, the stability of this metabolite vanishes through deformylation. A theoretical mechanistic investigation reveals that the stability is governed by the accessibility of the nitrogen lone pair and its protonation state. For carbinol-amines, even in neutral conditions, the energy barrier for deformylation is low enough to allow rapid deformylation. Carbinol-amine behaves differently. Under neutral conditions, delocalization of the nitrogen lone pair increases the energy barrier of deformylation that is a slow process under such conditions. After protonation, we were able to optimize a deformylation transition that is lower in energy and thus accounts for the lower stability of carbinol-amides observed experimentally in acidic conditions. Finally, by considering the protocol usually used for extraction and analysis of this type of metabolite, carbinol-amide may thus be frequently ignored in drug metabolism pathways.

Introduction

Numerous alkyl amines are present in our environment either as natural compounds or as chemically synthesized drugs. By contrast to secondary and, to a lesser extent, primary amines, tertiary amines are less polar, exhibit lower basicity and thus migrate more easily through cell membranes. Oxidative dealkylation is among the main metabolic pathways of such compounds. A large number of mechanistic studies deals with dealkylation processes catalyzed by enzymatic systems such as peroxidases or cytochrome P450s [1–4]. It is now accepted that N-dealkylation involves a multistep mechanism based on either proton or electron abstraction, followed by fixation of one activated oxygen atom [4–6], leading to a carbinol-amine intermediate.

In a metabolic scheme, this intermediate eliminates a molecule of aldehyde to produce a secondary amine. Identification and characterization of N-hydroxymethyl

Abbreviation
TTX, tentoxin.

2167
intermediates remains scarce and frequently speculative, in both in vivo and in vitro studies. Interestingly, N-hydroxymethyl derivatives have been reported as prodrug candidates, the active compound being the demethylated metabolite [7]. However, carbinol-amines or carbinol-amides P450 metabolites have been reported in the case of benzylic tertiary amine (clebopride 1 [8]), aromatic amines (N-methylcarbazole 2 [9-14] or nicergoline 3 [15-19]), dialkylated-aliphatic amides [20-22], cotinine 4 [23], dialkylated-aromatic amides (benzamide derivatives [24,25] or triazolyl-benzophenone derivatives 5 [26]), N-methyl-imide (N-methylphthalimide 6 [7]) or N-substituted urea derivatives (ritonavir 7 [27]). The chemical structures of these molecules are given in Scheme 1. For these compounds except compound 1, the N-hydroxymethyl function seems to be stabilized by delocalization of the nitrogen lone pair to an adjacent carbonyl or aromatic groups.

To date, carbinol-amide intermediates have not been identified in the metabolism of N-methylated peptides or cyclo-peptides. There is only one suggestion concerning the formation of an N-hydroxymethyl intermediate during fish metabolism of cyclosporine A [28].

Here, we show, through the example of tentoxin (TTX), that such intermediates may occur more regularly than reported in the metabolism of natural N-methylated cyclopeptides. TTX [cyclo-(L-N-MeAla1-L-Leu2-N-Me(ΔZ)Phe3-Gly4)] (Scheme 2) is a natural hydrophobic cyclo tetrapeptide which acts in certain plant species as a noncompetitive inhibitor of chloroplast ATP-synthase [29-31], provoking chlorosis. We have previously shown that TTX is efficiently metabolized through N-demethylation by mammal cytochrome P450 [32]. In order to gain insight into the P450 metabolism mechanism of N-Me-cyclo-peptides, the metabolism of a set of molecules composed of TTX (8a), iso-TTX (8b) and dihydrotentoxin (9) was studied in detail. Because the two N-Me groups of TTX may be implied in the metabolic scheme, and a filial relationship may exist between metabolites, we implemented the following strategy: (a) numeration, quantification and isolation of metabolites starting with both natural and 14C-radiolabeled substrates using HPLC; (b) structural identification of metabolites by HPLC/MS and MS-MS, and NMR spectroscopy; (c) demonstration of the relationship between metabolites via a stability study involving 14C-isotopomers of metabolites; and (d) investigation of the chemical mechanism involved in the metabolite cascade. This mechanistic study was carried out on a series of model compounds that share functional similarities with known N-methylated substrates undergoing deformylation through P450s metabolism (Scheme 1).

Scheme 1. Example of known compounds whose carbinol-amine (1-3) or carbinol-amide (4-7) type of metabolites has been identified. Stars label sites of hydroxylation. 1, clebopride; 2, N-methyl-carbazole; 3, nicergoline; 4, cotinine; 5, (2-aminoacetamidomethyl)-1-[4-chloro-2-(α-chlorobenzoyl)phenyl]-N,N-dimethyl-1H-1,2,4-triazole-3-carboxamide; 6, N-methyl-phtalimide; 7, ritonavir.

Scheme 2. Chemical structure of tentoxin cyclo-(L-N-MeAla1-L-Leu2-N-Me(ΔZ)Phe3-Gly4) and its used analogs.
Results

In vitro experiments and analysis

The metabolism of TTX yields two main metabolites, M1 and M2, which are characterized by two distinct HPLC retention times (Fig. 1A). Metabolite M1 forms predominantly at short incubation times and is characterized, on reverse-phase columns, by a higher retention time than M2. Incubation of TTX with different liver mammalian microsomes including rat, mice, rabbit, cow, sheep or human, produces a mixture of these two metabolites. Table 1 shows the data obtained in rat liver microsomes. It appears that dexamethasone-pretreated rat liver microsomes are the most active in metabolizing TTX [32]. In all conditions, 10 min of incubation selectively produces M1 over M2 with M1/M2 ratios > 1. These M1/M2 ratios decrease significantly, as shown by comparison of the incubation extracts when analyzed after at least 24 h preparation in the absence of proteins. In 30 min or 1 h incubations, M1 disappears in favor of M2 (dexamethasone-pretreated rat microsomes). The M1/M2 ratio was also found to be pH dependent, decreasing from 2.0 to 1.6 and 0.18 for pH values of 6.8, 7.4 and 8.2, respectively.

Preliminary attempts to determine the structure of M1 and M2 using routine protocols revealed that: (a) isolated M1 and M2 both displayed apparent molecular masses of 400 Da and identical MS fragmentation schemes; (b) HPLC analysis of the separated and purified metabolites M1 and M2 led to a single peak corresponding to M2 that fits with the HPLC retention time and MS cleavage of Ala1-TTX; and (c) the relative amounts of M1 and M2 were different depending on the acidity of the HPLC eluent or on the time elapsed between incubation and analysis. In order to delineate the structural differences between these two metabolites, 14C labeling was used at the two sites of the molecule that are potentially N-demethylated.

Radiolabeling experiments

1-N-Me and 3-N-Me 14C-labeled isotopomers were synthesized and used independently. For both isotopomers, M1 is labeled in all incubations, which demonstrates that the 14C methyl group is not eliminated (Fig. 1B,C). When the N-Me of residue Ala1 is 14C-labeled, M2 is not apparent on the radiochromatogram (Fig. 1B). This proves that N-demethylation occurred on residue 1. By contrast, when the N-Me of residue 3 [Δ(Z)Phe] is 14C-labeled, M2 radioactivity is detectable (Fig. 1C). This demonstrates that [Δ(Z)Phe] is not involved in the biotransformation process. Finally, after fraction collection, concentration under heating and analysis by HPLC, the sample that initially contained M1 exhibits the same features as M2. This validates the filial relationship between M1 and M2, and shows that M2 originates from M1.
Table 1. Amounts of metabolites M1 and M2 recovered after 10 min incubations of 100 μM tentoxin using 1 μM of rat microsomal preparations and an NADPH-generating system. Analyses were performed at room temperature either in < 6 h or 1 day after incubation time.

<table>
<thead>
<tr>
<th>Microsomal preparation</th>
<th>M1 (μM)</th>
<th>M2 (μM)</th>
<th>M1/M2</th>
<th>M1 (μM)</th>
<th>M2 (μM)</th>
<th>M1/M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated rat</td>
<td>16.0</td>
<td>6.8</td>
<td>2.35</td>
<td>10.5</td>
<td>12.0</td>
<td>0.86</td>
</tr>
<tr>
<td>Rat DEX</td>
<td>23.0</td>
<td>14.0</td>
<td>1.64</td>
<td>15.0</td>
<td>25.0</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Stability study

Storage and stability of M1

Table 1 shows analysis of the samples after incubation and after 1 day storage at room temperature in a mixture of 50% phosphate buffer/50% acetonitrile, in the absence of microsomal proteins. The total amount of metabolites M1 + M2 appears constant, indicating that M1 decreases in favor of M2. M1 was collected after HPLC analysis performed using a water/acetonitrile linear gradient and was subjected to various storage conditions at 4 °C. In a 50/50 (v/v) water/acetonitrile mixture or in acidic conditions (50/50 v/v water/acetonitrile plus 0.1% formic acid, or 50/50 v/v phosphate buffer pH 5.6/acetonitrile), the amount of M1 decreases slowly, with a half-life > 50 h, as shown by the radioactive decay of 1-14N-Me-14C-TTX (Fig. 1D). M1 displays the same stability after removal of acetonitrile under nitrogen gas. Reversely, addition of phosphate or Tris buffer (pH 7.4 or 8.2), with or without acetonitrile as a solvent, leads to a complete transformation of M1 into M2 in ~ 20 h (Fig. 2A,B). The conversion is complete in < 20 min at pH 10. By contrast, lyophilized M1 is stable for a few months at ~80 °C.

Radioactive isotopomers breakdown

Ther metabolism of both radioactive isotopomers yields similar results and gives additional information concerning M1 radioactive decay. Metabolism of 14C-TTX labeled on the N-Me of residue ΔZ-Phe3 contain mainly radioactive M2 (Fig. 1C) and no significant amounts of radioactive compounds in the front solvent peak. During storage, the radioactivity signal of M1 decreases, whereas that of M2 increases, without formation of new radioactive peak (Fig. 1E). In this case, the total radioactivity of the M1 + M2 peaks remains constant for 6 days at 4 °C.

Structural identification of metabolites

Mass spectrometry

The MS spectrum under a water/acetonitrile gradient of the M1 molecular peak in positive and negative mode almost corresponds to that of M2 (m/z 399 in the negative mode and m/z 401 in the positive mode), and exhibits the same mass spectrum as the authentic Ala1-TTX (spectra not shown). The highest MS signals are obtained in the presence of acetic acid and allow the detection of different adducts of M1, in negative or positive modes (Table 2 and Fig. 3). In the negative mode, m/z at 399, 411, 429, 465, 467 and 489 are observed (Fig. 3A). The MS-MS spectrum of m/z 429 leads to fragments at m/z 411 (loss of H2O), 381 (loss...
of H₂O and CH₂O) and 311 (Table 2), whereas fragmentation of m/z 465 and 467, which are in a ratio of 3:1, led to 30 amu loss. The signal at m/z 489 leads to fragments at m/z 459 (loss of CH₂O), 441 (loss of CH₂O and H₂O), 429 (loss of AcOH) and 399 (loss of AcOH and CH₂O). This fragmentation scheme corresponds to an hydroxy metabolite of TTX with a molecular peak at m/z 429 (TTX + ‘O’–’H’) that forms a chlorine (m/z at 465 and 467 in a ratio of 3:1) or an acetic acid adduct (m/z at 489) in the MS source. The MS signal at m/z 399 and the fragments observed under collision (losses of 30 amu) agree with cleavage of the CH₂O fragment. Under the same HPLC conditions, using the positive ionization mode (see Fig. 3B and Table 2), the mass spectrum shows fragments at 413, 431, 453 and 469. Both m/z at 453 (M + Na)+ and m/z at 469 (M + K)+ conducted under collision lead to 30 amu losses, whereas the 413 collision leads predominantly to fragments at m/z 356 (–C₂H₃NO), 342 (M-Ala) and 217 (M-N-Me-DPhe-Gly).

Carbinol-amide formation is not restricted to TTX and is also observed in the metabolism of TTX analogs such as iso-TTX and dihydro-TTX (Scheme 2), which differ from TTX by isomerization or saturation of the α,β-dehydrogenated bond of residue Δ(Z)Phe³, respectively (data not shown).

NMR analysis

A proton NMR spectrum was recorded in CDCl₃ at room temperature on a mixture of M1 and M2, and was analyzed in the 3 p.p.m. region characteristic of N-methyl proton resonances of the cyclo-peptide (Fig. 4). The spectrum of pure intermediate M1 cannot be obtained because of the continuous conversion to M2. At room temperature in CDCl₃, TTX is in fast

![Fig. 3. Mass spectrometry of the M1 TTX metabolite obtained either in negative (A) or positive (B) ESI mode realized upon addition of 0.1% acetic acid to eluent A (see Materials and methods). The M1 TTX metabolite was obtained from a 10 min incubation of TTX using dexamethasone-treated rat microsomes in the presence of an NADPH-generating system.](image)

![Fig. 4. N-Me protons region of 500.13 MHz proton NMR spectrum of metabolite M1 partially converted into metabolite M2 recorded in CDCl₃ at 300 K, TMS was used as an internal reference of chemical shift. No pH or temperature correction was used. The inset shows the entire spectrum.](image)

<table>
<thead>
<tr>
<th>Negative ionization mode</th>
<th>Positive ionization mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS⁻</td>
<td>MS-MS⁻</td>
</tr>
<tr>
<td>399</td>
<td>381 (–18)</td>
</tr>
<tr>
<td>M – H (–30)</td>
<td>H₂O</td>
</tr>
<tr>
<td>–CH₂O</td>
<td>355 (–44)</td>
</tr>
<tr>
<td>289 (–110)</td>
<td>–Ala</td>
</tr>
<tr>
<td>271 (–128)</td>
<td>(NMe-ΔPhe-Gly)⁺</td>
</tr>
<tr>
<td>429</td>
<td>411 (–18)</td>
</tr>
<tr>
<td>M – H</td>
<td>381 (–30, –18)</td>
</tr>
<tr>
<td>311 (–118)</td>
<td>318 (–113)-Leu</td>
</tr>
<tr>
<td>465, 467</td>
<td>435, 437 (–30)</td>
</tr>
<tr>
<td>M – H + HCl</td>
<td>399 (–30, –36)</td>
</tr>
<tr>
<td>489</td>
<td>459 (–30)</td>
</tr>
<tr>
<td>M – H</td>
<td>441 (–30, –18)</td>
</tr>
<tr>
<td>CH₂CO₂H</td>
<td>429 (–60)</td>
</tr>
<tr>
<td>399 (–60, –30)</td>
<td></td>
</tr>
</tbody>
</table>
exchange between the two main conformers A and B [33,34], and shows two \(N \)-methyl peaks (\(s, 3H \)), one around 3.2 p.p.m. for \(N\text{-Me}-\Delta \text{Phe} \) protons, and one around 2.9 p.p.m. for \(N\text{-Me-Ala} \) protons. As expected, the \(N \)-methyl peak at 2.9 p.p.m. is absent in authentic Ala-TTX (M2) (spectra not shown). In the spectrum of TTX metabolites, a mixture of \(N \)-methyl peaks is observable. This corresponds to a mixture of demethylated metabolite (M2, Ala-TTX) and carbinol-amide intermediate (M1). The latter should exhibit a (\(s, 2H \)) peak instead of a (\(s, 3H \)) peak in the 2.9 p.p.m. region. The area ratio of resonances matches the following final assignment. The major peak at 3.22 p.p.m. is assigned to \(N\text{-Me} \) protons of \(\Delta \text{Phe} \) residue in the \(N \)-demethylated compound (M2). The other peaks (3.19, 2.95, 2.87 p.p.m) belong to metabolite M1 and are found in a consistent ratio after integration: \((2.87 + 2.95 \text{ p.p.m}) = 2/3 \times 3.19 \text{ p.p.m.} \) The peak at 3.19 p.p.m (\(s, 3H \)) corresponds to the \(N\text{-Me} \) on residue 3, whereas peaks at 2.87 and 2.95 p.p.m belong to the methylene protons of residue 1 NCH\(_2\text{OH} \) group, in two different conformers. Conformational analysis performed, as previously published [35], suggests two possible stable conformations of the \(N \)-hydroxymethyl group (above the average plane of the ring, or under), which give rise to two different conformers of M2 in a 75\% (2.87 p.p.m)/25\% (2.95 p.p.m) ratio. Taken together, these data converge to denote the assignment of the carbinol-amide function on residue 1 to metabolite M1.

Computational study

In order to determine a plausible mechanism connecting M1 to M2 and to assess the factors that govern the stability of carbinol-amide and carbinol-amine, we initially computed the thermodynamics of the formation of the hydroxy metabolite via Equation (1). This was carried out for a set of model compounds (Scheme 3) that share most of the structural diversity observed in the P450s \(N \)-methylated substrates presented in Scheme 1. Because Equation (1) is a model transformation, its absolute free enthalpy is not relevant, whereas the trend in thermodynamics might point out differential effects. The free enthalpy of reaction of the subsequent formaldehyde elimination (Equation 2) has been also computed. The data are shown in Table 3.

\[
R^1R^2\text{NCH}_3 + H_2O_2 \rightarrow R^1R^2\text{NCH}_2\text{OH} + H_2O \tag{1}
\]

\[
R^1R^2\text{NCH}_2\text{OH} \rightarrow R^1R^2\text{NH} + HCHO \tag{2}
\]

Table 3 reveals that the structure of the substrate has almost no influence on the energetics of the reactions shown in Equations (1) and (2). The presence or absence of an intramolecular hydrogen bond in the carbinol-amide derivatives does not modify the results, these two configurations (with or without hydrogen bond) are isoenergetic. Finally, \(\text{C-hydroxylation} \) is more favorable than \(\text{N-oxidation} \); for \(N,N\text{-dimethylethanamine} \) (a) and \(N,N\text{-dimethylacetamide} \) (d), \(\text{C-hydroxylated compounds are more stable by 43} \) and 63 kcal/mol\(^{-1}\), respectively.

As the thermodynamics of the reactions in Equations (1) and (2) does not allow us to distinguish between the stability of carbinol-amines and carbinol-amides, this difference in behavior might originate from the relative height of the transition states involved in the elimination reaction. Based on reaction conditions, three types of mechanism can be considered: neutral, cationic and anionic. Because highly basic conditions are not realistic experimentally (pH buffered at 7.4), a mechanism involving deprotonation of the hydroxyl group of carbinol-amines or carbinol-amides cannot operate.
Under neutral conditions, a one-step concerted mechanism of formaldehyde elimination can be drawn. The relative free enthalpy of activation (ΔrΔH°) for this reaction has been computed for the entire set of modeled compounds (Table 3). In the amide series, no transition state of elimination involving the carbonyl function can be found on the potential energy surface. Two groups of values from Table 3 should be highlighted: the barriers for the deformation of carbinal-amines are ~ 30 kcal·mol⁻¹, whereas the reaction requires 53 kcal·mol⁻¹ to proceed for carbinal-amides and N-hydroxymethylcarbazole. Although the barriers are high, this trend is not surprising because this mechanism implies the participation of the nitrogen lone pair, which is free in carbinal-amines and partially delocalized in the peptide bond in carbinal-amides or in the vicinal aromatic rings in N-hydroxymethylcarbazole. Finally, cyclic constraints have marginal effects on the kinetics of the elimination reaction. In order to obtain more realistic energy barriers, assistance by a water molecule has been considered. In this case, the reaction relies on a six-membered ring in which the water molecule acts as a proton relay [36,37]. For carbinal-amine a and carbinal-amide b, the barriers decrease to 16 and 29 kcal·mol⁻¹, respectively. These results show that, under neutral conditions, carbinal-amines can easily undergo deformation, whereas the high barrier significantly slows deformation of carbinal-amides.

Under acidic conditions, a cationic mechanism in which the first step corresponds to the protonation of carbinal-amines or carbinal-amides has been considered. Because the carbinal-amines and carbinal-amides modeled to date behave similarly, the mechanism has only been computed for N,N-dimethylethanamine (a) (Scheme 4A) and N,N-dimethylacetamide (d) (Scheme 4B). Protonated molecules are used as references in energy profiles.

The most favorable protonation of N-methyl-N-hydroxymethyl-ethanamine takes place on the nitrogen. Oxonium a² and iminium a³ are less favorable by 6 and 18 kcal·mol⁻¹, respectively. a¹ eliminates protonated formaldehyde through transition state a⁴. A free enthalpy barrier of 53 kcal·mol⁻¹ is required to reach this transition state. This transition state directly yields EtMeNH₂⁺ (a⁵) and formaldehyde. The free enthalpy of reaction for this elimination reaction is 23 kcal·mol⁻¹. This thermodynamic balance originates from the higher basicity of tertiary amine than secondary amine in the gas phase. This trend in basicity is reversed in solution; and the reaction should be favorable in solution. Finally, the increase in the energy barrier between the neutral and the cationic cases is explained by loss of the amine lone pair that plays a major role in the elimination process. Despite our efforts, no deformylation transition state assisted by a water molecule could be optimized in this case.

The mechanism computed for the deformation of N-methyl-N-hydroxymethyl-acetamide is reported in Scheme 4B. The most favorable protonation site of the carbinal-amide is the O-carbonyl atom (d⁴). This O-carbonyl protonated intermediate can evolve through a deformation transition state (d⁶) leading to O-protonated N-methyl-acetamide (d⁷) and formaldehyde via a of barrier of 53 kcal·mol⁻¹ and a free enthalpy balance of 24 kcal·mol⁻¹ with respect to intermediate d⁴. It is noteworthy that this barrier and the thermodynamic balance are reduced to 21 and 8 kcal·mol⁻¹, respectively, thanks to the assistance of a water molecule, and make the reaction possible under mild conditions.

Alternative routes that involve N-amide protonation (d¹) undergo deformylation through transitions states d⁵ or d⁵⁺. From d⁴, the free enthalpy barriers to reach d⁵ and d⁵⁺ are 44 and 33 kcal·mol⁻¹, respectively. Structurally, transition state d⁵⁺ is the analog of transition state a⁴ and, as mentioned for the later, we failed to decrease the barrier by adding explicit water molecules. Interestingly, transition state d⁵ shows reasonable cyclic constraints without the assistance of a water molecule. In a nonaqueous media, deformylation should slowly occur via this transition state.

Discussion

In vitro incubations of TTX and some of its analogs, using microsomal liver preparations of rat pretreated with dexamethasone, mainly produce two metabolites, M1 and M2. The nature and structure of these metabolites have been unambiguously assigned using HPLC-MS, MS-MS and NMR. Because a methyl or hydroxymethyl transposition during incubation, storage or MS analysis cannot explain the identical molecular masses and fragmentation scheme of M1 and M2, the N-Me groups of TTX have to be distinguished. ¹⁴C-specific radioactive isotopomers have been fruitfully used for this purpose. This set of experiments shows that metabolism occurs specifically on the N-Me groups of TTX residue 1 and conducts to a carbinal-amide intermediate. Direct observation of stable N-hydroxyalkyl metabolites is noteworthy because their report remains scarce in the case of secondary or tertiary amine or N,N-dialkylated amide. A possible carbinal-amide metabolite was suggested in the case of fish cyclosporin A metabolism, but its identification remained speculative [28]. Our data give, for the first
time, the precise identification of a stable carbinol-amide metabolite on a N-methylated peptide. This result is even more interesting because N-methyl amides are widely used as drugs (e.g. benzodiazepine derivatives) and eventually in peptide structures (e.g. cyclosporins or pristinamycins).

We demonstrated that N-carbinol-amide decomposes slowly through deformylation under neutral or mild acidic conditions. The rate of this deformylation reaction is drastically increased under strong acidic or basic conditions, heating or in presence of Lewis base such as a phosphate. Our stability study of carbinol-amide intermediates demonstrates that their lack of detection does not mean that this reactive metabolite is not present in the biological extract. Commonly, incubations are performed in phosphate buffer (pH 7.4) and the analytical protocols involve organic extractions and concentrations, followed by HPLC separation in the presence of acids or bases. In the case of metabolism of TTX and its analogs, we have shown that under such conditions rapid cleavage of the formyl moiety of the carbinol-amide group occurs.

The theoretical study reveals that the stability of carbinol intermediates is governed by the accessibility of the nitrogen lone pair and the pH conditions. Other structural features like cyclic strength have no impact on the stability of such intermediates.

Under neutral conditions, carbinol-amines and carbinol-amides are stable in nonaqueous solution because the energy barriers that need to be reached for deformylation are > 30 kcal·mol⁻¹. If water is present, under neutral or mild basic conditions, energy barriers to deformylation strongly decrease, making deformylation of carbinol-amines an easy transformation. Under
such conditions, deformylation of carbinol-amides occurs more slowly than deformylation of their amino analogs. The increased stability of carbinol-amides compared with carbinol-amines is because of the nitrogen lone pair delocalization in the peptide bond which is active in the deformylation reaction. Under acidic conditions, we were not able to explain the unstability of carbinol-amines; computationally under such conditions, the nitrogen lone pair is protonated and hence prevented deformylation. A more complex scenario involving several protons may be at work in this case. Conversely, for carbinol-amides, among several deformation pathways, we identified a transition state in which a water molecule assists deformylation. This transition state is lower in energy than that computed under neutral aqueous conditions. Interestingly, the difference in behavior between carbinol-amines and carbinol-amides relies on the accessibility of the nitrogen lone pair, hence the planar NCH₂OH group located between two aromatic groups (carbazole) or between one aromatic and one carbonyl group (nicergoline) should be stable and observable under neutral conditions. In this situation, numerous of conjugated N-methylated drugs/prodrugs should yield a stable carbinol intermediate from which biological activities and/or toxicity different from parental NCH₃ or filial NH compounds may arise.

Material and methods

Chemicals

Standard TTX, NADPH, NADP, Glc6P, Glc6P dehydrogenase and dexamethasone were from Sigma Chemicals (St. Louis, MO, USA). TTX, iso-TTX and dihydrotetoxin were kindly provided by B. Liebermann (Iena, Germany). TTX, ¹⁴C(Me)-TTX isotopomers and Ala¹-TTX were synthesized as described previously [33,35]. All other chemicals were of the highest quality commercially available.

Preparation of microsomes

Animals were housed and treated according to French legislation in a facility authorized by the Ministry of Agriculture. Male Sprague-Dawley rats (200–220 g; Iffa Credo, St Germain l’Arbresle, France) were treated with dexamethasone (100 mg/kg i.p. in corn oil for 3 days). Control rats received only corn oil (0.5 mL-day⁻¹ for 3 days). Rats were killed 1 day after the last treatment. Microsomes were prepared from a pool of four to six livers, frozen in liquid nitrogen and stored at ~80 °C until use [38]. Human liver samples were kindly provided by the Pharmacology Department of the Besançon University (Besançon, France) and microsomes were prepared as previously described [38].

Quantification of the different enzymes in the microsomal fractions

Protein content in microsomal suspensions was determined by the method of Lowry [39] using BSA as standard. The P450 concentration was measured as described by Omura and Sato [40].

Metabolism

Metabolism of TTX derivatives was studied at 37 °C in 0.1 M phosphate buffer (pH 7.4) with 1.0 μM P450 from liver microsomes of human or rat treated with various inducers using 100.0 μM substrate and an NADPH-generating system (1.0 mM NADP, 10.0 mM Glc6P and 2.0 IU Glc6P dehydrogenase). The incubation was stopped at the indicated times by addition of the same volume of cold acetonitrile. The mixture was centrifuged at 6000 g for 10 min and either analyzed after various treatments or stored.

HPLC analysis

Usual HPLC analysis was performed with a linear gradient of eluent on a reverse-phase column (Kromasil 5C₁₈, 150 × 4.6 mm). Eluent A, 10% acetonitrile in water; eluent B, 90% acetonitrile in water; gradient, t = 0.0 min 100% A, t = 35.0 min 80% B; flow rate, 1 mL·min⁻¹. In order to specifically improve the HPLC separation of the two metabolites, a gradient of elution was optimized: flow rate, 0.9 mL·min⁻¹; increase in B from 10% at t = 0 to 27% at t = 2 min, then a plateau at 27% to 17 min followed by a linear increase to 29% B to 25 min. In such conditions, M1 and M2 retention times differ by 2 min. We noticed that the presence of acids in the eluent could cause erroneous quantification, and thus their suppression from the eluent was mandatory for a quantitative UV analysis of samples. Indeed, in the presence of acids such as 0.05% trifluoroacetic acid or 0.1% acetic acid in water, the relative amount of M1 decreased dramatically in favor of M2. Metabolites of TTX or iso-TTX were detected at 280 nm, those of dihydrotetoxin at 220 nm. Radioactivity was determined by a liquid cell containing a ratio of 50% HPLC eluent to 50% liquid scintillant cocktail (Packard SuperMix™) on a Packard online scintillator. A computer running Waters Milenium software was used to integrate and calculate the separated peak areas and to plot metabolite patterns.

MS analysis

The HPLC-MS instrument used was an LCQ DUO Ion Trap coupled with an HPLC system from Thermo-Finnigan.
HPLC was performed on a reverse-phase column 150 × 2.1 mm Kromasil 5C18 column with a linear gradient of eluent at a flow rate of 250 μL min⁻¹. Eluent A, 10% acetonitrile in water; eluent B, 90% acetonitrile in water. Twenty microliters of a 50% solution of buffer in CH₃CN (Serva) was directly injected into the LC system. In a few cases, 0.1% acetic acid was added to eluent A. The program started with 100% of eluent A, then eluent B was increased from 0 to 80% over 25 min and held constant during the next 3 min before returning to initial conditions over 2 min. LC-MS measurements were performed using ESI. ESI was performed at room temperature in negative or positive mode, the voltage was maintained at 4.5 kV and the capillary temperature at 250 °C. It is noteworthy that HPLC-MS performed at high temperature, using APCl or ESI sources, led to degradation of M1 into M2, therefore biasing the analysis. The MS analyzer parameters and collision energy (set at 35%) were optimized on TTX.

NMR analysis

For conformational analysis in CDCl₃, proton NMR spectra were recorded using a Bruker Advance 500 spectrometer operating at 500.13 MHz. Spectra were recorded at 300 K, a temperature at which the chemical exchange regime in TTX and its derivatives is either intermediate or fast at the NMR timescale. TMS was used as an internal reference of chemical shift in CDCl₃ samples. No pH or temperature correction was used. Spectral processing was done using xwinnmr. 1D spectra were acquired over 32 K data points, using a spectral width of 5 kHz. The relaxation delay was generally 5 s, based on spin-lattice relaxation times measured at low temperature in slow chemical exchange regime.

Computational details

Quantum mechanics calculations were carried out at the DFT-B3PW91 [41,42] level of theory. All atoms were represented by an all-electron, augmented and polarized, triple-ζ quality basis sets 6-311G [43,44]. All the calculations were achieved using the Gaussian 98 suite of programs [45]. Geometries of minima and transition states were fully optimized without any symmetry restriction. Zero point energy and entropic contributions were computed in agreement with the harmonic approximation. Free enthalpies, G, were estimated at 298.15 K and 1.0 atm. The connectivity of each transition state was checked while following their intrinsic reaction coordinates. For each molecule, all major conformers were optimized and compared. Only the most stable conformers of the configuration of interest were considered. The nature of the extrema (minima or transition states) were checked using an analytical calculation of the frequencies. Implicit water-solvent corrections were been made according to the CPCM model implemented in Gaussian 98, using Pauling radii and solvent accessible surface.

Acknowledgements

The authors gratefully acknowledge Jean-Marie Gomis (Service de Chimie Bio-Organique et de Marquage, iBiTec-S, CEA-Saclay, France) who achieved the synthesis of radiolabelled tentoxin and their analogs.

References

Supporting information

The following supplementary material is available: Doc. S1. Cartesian coordinates, energy, enthalpy, free enthalpy and free enthalpy in solution of each compound optimized together with 3D representations of key transition states and their main distances.

This supplementary material can be found in the online version of this article.

Please note: As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.