In-mouth salt release measurement during food chewing using sensors
Marion Emorine, Patrick Mielle, Jacques Maratray, Thierry Thomas-Danguin, Christian Salles

To cite this version:

HAL Id: hal-01137040
https://hal.archives-ouvertes.fr/hal-01137040
Submitted on 30 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In-mouth salt release measurement during food chewing using sensors

Marion Emorinea, Patrick Miellea, Jacques Maratraya,
Thierry Thomas-Danguina and Christian Sallesa

aCentre des Sciences du Goût et de l'Alimentation, UMR- 6265 CNRS, UMR-1324 INRA,
Université de Bourgogne, AgroSup, Dijon, France

Abstract. In most countries, health authorities recommend a 20 \% reduction of the salt content in manufactured food products. Understanding the release of taste compounds from food is essential to better known the mechanism of flavour perception, in order to develop low salt products that are acceptable to the consumers. In this aim, two sensors have been designed to allow the in-mouth monitoring of conductivity from 0.34 to 340 mM NaCl and temperature during mastication of hot snacks as conductivity is highly dependant on the temperature.

Keywords: NaCl monitoring, food chewing, salt, sensory.

PACS: 06.60.Ei, 07.05.Kf, 07.07.Df

INTRODUCTION

Salt (NaCl) consumption is recognized as an important factor in the rise of hypertension in industrialized countries. Therefore, health authorities recommend a 20 \% reduction of the salt content (salt generally is present about 0.5 to 2g per 100g of food) in food products. Understanding the release of taste compounds from food is essential to better known the mechanism of flavour perception, in order to develop low salt products that are acceptable to the consumers. Some sensors have been designed up to now [1], [2], but no measure of release of sodium has been measured and correlated to the measurement of temperature for hot food taste.

In this aim, two sensors have been designed to allow the in-mouth monitoring of conductivity and temperature during mastication. The size and the in-mouth location of this sensors have been optimized to reduce disturbance by either the mastication or the salivation of the assessors. The tiniest sensors are rice-grain sized.

RESULTS AND DISCUSSION

The novel device uses a four-electrode Wenner array, gold-plated design, which enables to get rid of particles and clogging effects on the measurement. Different electrodes design have been evaluated, that are driven by a clamped bipolar voltage to avoid polarization effects, with a safe and non-prickling value. As most of the time, meals of snacks are served either hot or chilled, but rarely at ambient temperature, and conductivity is highly dependant on the temperature, a tiny temperature sensor is also
implemented together with the sensor, allowing software compensation. It doesn't
embed any electronic part to remain compliant with experimentation rules on humans
and to allow sterilization.

Different electrode design have been evaluated for the in-mouth sensor, and the
most widely accepted by panellists is the tiniest one (5 x 2 mm, Fig. 1), and the two
outboard wires are so thin (21 µm) that they can easily pass thru the interdental gap,
keeping the mouth its tightness. One set of sensors were made for each of the
panellists, and were independently calibrated for temp, ranging from 20 to 50 °C and
for conductivity using the panellist’s training saline solutions, ranging from 0.34 to
340 mM NaCl (Fig. 2). The day-to-day standard deviation is quite fair (less than 5 %).

This device, together with the software temperature compensation provides in real-
time the weighted salt concentration in saliva during chewing. Comparison can be
made with the human perception of saltiness during mastication, and the device is also
compatible with our Artificial Mouth, with will allow comparison between in-vivo and
in-vitro data.

FIGURE 1. Left part: the in-mouth conductivity sensor;
Right part: the in-mouth temperature sensor. Size is given by the molar.

FIGURE 2. Left part: calibration curve of the conductivity sensor;
right part: calibration curve of the temperature sensor.

REFERENCES

1. E. Neyraud, J. Prinz, E. Dransfield, “NaCl and sugar release, salivation and taste during mastication

103