Geometric Numerical Methods and Results in the Control Imaging Problem in Nuclear Magnetic Resonance

Abstract : The purpose of this paper is to present numerical methods and results about the contrast imaging problem in nuclear magnetic resonance which corresponds to a Mayer problem in optimal control. The candidates as minimizers are selected among a set of extremals, solutions of a Hamiltonian system given by the Pontryagin Maximum Principle and sufficient second order conditions are described. They form the geometric foundations of the HAMPATH code which combines shooting and continuation methods, see Ref. 9. The main contribution of this paper is to present a numerical analysis of the contrast imaging problem in NMR in the case of deoxygenated/oxygenated blood samples as an application of the aforementioned techniques.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2014, vol. 24 (n° 1), pp. 187-212. <10.1142/S0218202513500504>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01136896
Contributeur : Open Archive Toulouse Archive Ouverte (oatao) <>
Soumis le : lundi 30 mars 2015 - 08:24:45
Dernière modification le : mardi 26 janvier 2016 - 10:30:49
Document(s) archivé(s) le : jeudi 2 juillet 2015 - 09:06:53

Fichier

Bonnard_12317.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Bernard Bonnard, Olivier Cots. Geometric Numerical Methods and Results in the Control Imaging Problem in Nuclear Magnetic Resonance. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2014, vol. 24 (n° 1), pp. 187-212. <10.1142/S0218202513500504>. <hal-01136896>

Partager

Métriques

Consultations de
la notice

126

Téléchargements du document

98