
HAL Id: hal-01136783
https://hal.science/hal-01136783

Submitted on 28 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gap filling of solar wind data by singular spectrum
analysis

D. Kondrashov, Y. Shprits, M. Ghil

To cite this version:
D. Kondrashov, Y. Shprits, M. Ghil. Gap filling of solar wind data by singular spectrum analysis.
Geophysical Research Letters, 2010, 37 (15), pp.L15101. �10.1029/2010GL044138�. �hal-01136783�

https://hal.science/hal-01136783
https://hal.archives-ouvertes.fr


Gap filling of solar wind data by singular spectrum analysis

D. Kondrashov,1 Y. Shprits,1 and M. Ghil1,2

Received 28 May 2010; accepted 17 June 2010; published 4 August 2010.

[1] Observational data sets in space physics often contain
instrumental and sampling errors, as well as large gaps. This
is both an obstacle and an incentive for research, since con-
tinuous data sets are typically needed for model formulation
and validation. For example, the latest global empirical
models of Earth’s magnetic field are crucial for many space
weather applications, and require time‐continuous solar
wind and interplanetary magnetic field (IMF) data; both of
these data sets have large gaps before 1994. Singular spec-
trum analysis (SSA) reconstructs missing data by using an
iteratively inferred, smooth “signal” that captures coherent
modes, while “noise” is discarded. In this study, we apply
SSA to fill in large gaps in solar wind and IMF data, by com-
bining it with geomagnetic indices that are time‐continuous,
and generalizing it to multivariate geophysical data consisting
of gappy “driver” and continuous “response” records. The
reconstruction error estimates provide information on the
physics of co‐variability between particular solar‐wind para-
meters and geomagnetic indices. Citation: Kondrashov, D.,
Y. Shprits, and M. Ghil (2010), Gap filling of solar wind data by
singular spectrum analysis, Geophys. Res. Lett., 37, L15101,
doi:10.1029/2010GL044138.

1. Introduction

[2] The main historical—i.e., pre‐1994—solar‐wind and
interplanetary magnetic field (IMF) observations come from
measurements taken on board of the IMP‐8 spacecraft.
While the spacecraft crossed the magnetosheath and mag-
netosphere, it was not immersed in the solar wind, and so
large continuous gaps exist in the collected data.
[3] Qin et al. [2007] developed a decorrelation‐time‐based

approach to interpolate the solar‐wind characteristics across
data gaps, and to evaluate parameters needed for global
empirical magnetic models, like that of Tsyganenko and
Sitnov [2005]. For very large gaps, however—such as those
in 1990–1991, whose lengths far exceed typical decorrelation
times—this method only yields the mean values of solar‐
wind parameters, with scantly any variability.
[4] The behavior of Earth’s magnetosphere is strongly

influenced by the solar wind. Various geomagnetic indices—
such as Kp, Dst or AE—are inferred from ground‐measured,
and hence time‐lagged magnetic disturbances that are caused
by the magnetosphere’s interaction with the solar wind and
the embedded IMF; these indices are typically available
continuously in time, even when solar‐wind data are not.

Broadly speaking, these indices can be considered as a proxy
for the overall time‐lagged magnetospheric response to the
solar driver, i.e., to the solar wind and IMF.
[5] The purpose of this paper is to reconstruct data in the

gaps of the solar driver by using smooth spatio‐temporal
modes of co‐variability inferred by singular spectrum anal-
ysis (SSA) from time‐lagged correlations in multivariate
data—the data sets consisting of various geomagnetic
indices, solar wind and IMF—while discarding the noise.
Kondrashov and Ghil [2006] developed an SSA‐based
gap‐filling method with applications that rely, so far, mainly
on the presence of significant oscillatory modes in the time
series [see Kondrashov et al., 2005]. We show here that
this method can also be successfully applied to multivariate
geophysical data sets that consist, broadly speaking, of
gappy‐driver and continuous‐response records, by relying
on analogous episodes of co‐variability which is not nec-
essarily periodic.
[6] Regression based techniques [Vassiliadis et al., 1995;

Chen and Sharma, 2006] can be used to derive predictive
filter that relate time series of lagged input from the past, i.e.,
solar wind parameters, to the current values of magneto-
spheric output, such as geomagnetic indices. This work
differs in two key aspects: (i) by inferring the gappy driver
from a continuous response, (ii) strictly speaking, it is not
a prediction; SSA finite‐impulse response filter (FIR, see
section 2) is two‐sided symmetric and thus uses information
from both the “past” and the “future” of dominant modes of
driver‐response co‐variability, derived by extending prin-
cipal component analysis to the time domain.
[7] In section 2, we briefly review the SSA formulation for

a continuous time series and the gap‐filling methodology. In
section 3, we show very promising results in applying SSA
to fill synthetic gaps in hourly solar‐wind and IMF data. The
paper concludes with a summary of the results in section 4.

2. Data and Methods

2.1. Data

[8] In this study we used publicly available solar‐wind and
IMF data from the OMNIWEB database at http://omniweb.
gsfc.nasa.gov/. This data set combines observations from
multiple spacecraft and is appropriately time‐shifted to take
into account their spatial separation with respect to Earth;
Kp and Dst indices were obtained from the World Data
Center (WDC) for Geomagnetism, WDC‐Kyoto. The plan-
etary 3‐hour Kp index is a magnetic‐activity measure aver-
aged from several geomagnetic observatories worldwide; it
is given on a quasi‐logarithmic scale from 0 to 9. The dis-
turbance storm time index Dst is used to assess the severity
of magnetic storms; it is based on the average value of
the horizontal component of the Earth’s magnetic field
measured hourly at four near‐equatorial geomagnetic
observatories. Even though Kp is a 3‐hour index, it was
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given an hourly resolution to match the sampling of solar‐
wind, IMF and Dst.

2.2. Gap Filling Methodology

[9] Classical SSA [Vautard and Ghil, 1989; Ghil et al.,
2002] is a data‐adaptive, nonparametric method for spec-
tral estimation based on embedding multivariate time series
{X(t,l): t = 1,…,N; l = 1,…, L} in a vector space of
dimension M < N, and for a given window width M, the
orthonormal set {Ek: k = 1,…, LM} of eigenvectors of CX—
called empirical orthogonal functions (EOFs) — is the
optimal data‐adaptive set that spans the given time series, i.
e., for any 1 ≤ K ≤ LM, the set of K leading EOFs captures
the maximum variance. Projecting X(t,l) onto each EOF
yields the corresponding principal component (PC) Ak; the
entire time series or parts thereof can be reconstructed by
using linear combinations of PCs and EOFs, which yield
the reconstructed components (RCs) Rk.
[10] The SSA gap‐filling procedure of Kondrashov and

Ghil [2006] uses temporal correlations in the data—or
spatio‐temporal ones in the multivariate case, as used in this
study,—to reconstruct the missing points with coherent
signal modes, while discarding the noise; it also estimates
the power spectrum of a gappy time series.
[11] The procedure consists of two main steps: (i) obtain

iteratively estimates of missing values X̂ (t) by using the
leading subset of RCs, which are then applied to update a
self‐consistent lag‐covariance matrix CX, EOFs Ek and PCs
Ak; and (ii) use cross‐validation to optimize the window
width M* and number of “signal” modes K* to fill the gaps
(see below).
[12] First, the original data set is centered by computing

the unbiased value of the mean and setting the missing‐data
values to zero. The inner‐loop iteration starts by computing
the leading EOF E1 of the centered, zero‐padded record.
The corresponding RC R1 is used next to obtain nonzero
values in place of the missing points; the new record’s
mean, covariance matrix and EOFs are then recomputed
by SSA. The reconstruction of the missing data is repeated
with a new estimate of R1 until a convergence test has been
satisfied; in the present application we use 2.5% of nor-
malized root‐mean‐square (rms) error as a criterion.
[13] The objective of the outer‐loop iteration is to separate

the signal from the noise. To start it, we add E2 to the
reconstruction, by using the solution with data filled in by
R1, and repeat the inner iteration with two EOFs until it
converges; then another EOF is added and so on. We stop
the outer iteration once K* modes attributed to signal, have
been processed, and higher ranked modes are assumed to
be noise.
[14] A useful way to look at SSA gap‐filling is in terms of

applying iteratively data‐adaptive finite‐impulse response
filters (FIR); each reconstruction filter f = ( f−M+1, f−M,…f−1,
f0, f1,….fM−1) is symmetric, has a length of 2M − 1, and
represents the combined influence of the EOFs used so far in
the outer‐loop iteration [Kondrashov and Ghil, 2006;
Varadi et al., 1999]. For the multivariate data in this study,
the gaps of the driver are filled‐in mainly by the filtered time
series of the continuous response channel, representing smooth
modes of co‐variability captured by the multidimensional
EOFs.
[15] The optimal SSA parameters for gap filling are found

by cross‐validation experiments: for each experiment, a

fixed but randomly chosen fraction of available (i.e.,
excluding missing) data is left out, and the rms error in
reconstruction is computed as a function of the number K of
EOFs retained and of the SSA window size M. The global
minimum in error, averaged over all experiments, corre-
sponds to the required optima K* and M*, and provides an
estimate of the actual error in the reconstructed data set X̂ (t).

3. Results and Interpretation

3.1. Choice of Time Interval

[16] As a proof‐of‐concept, we copy data gaps from
441 days in 1990–1991 to create synthetic gaps in the time
series of hourly Bz and P during 441 days in 2000–2001; in
the new data set there is a total of 10 584 data points, but
roughly 58% of the data set is missing. We apply our SSA
gap‐filling methodology to this gappy data set, combined
with the hourly sampled Kp, the hourly Dst index or both;
the latter are available continuously during 2000–2001 and
we use them to help reconstruct Bz and P in the artificially
created gaps. The results of the reconstructed data for syn-
thetic data gaps will be compared to actual values.

3.2. Gap‐Filling Results

[17] During the SSA gap‐filling iterations, the time series
are normalized by their standard deviations to bring different
types of data within the same range of values, and the RCs
are then renormalized. Since SSA gap‐filling is a purely
statistical method, a threshold was imposed on minimum
values during iterations, to avoid physically unrealistic
negative values for the dynamic pressure P.
[18] The reconstructed data set X̂ (t) is then compared

with known values X(t) in the gaps only (excluding available
data) by using correlations Corr and normalized rms dif-
ferences RMS. Perfect reconstruction corresponds toCorr = 1
and RMS = 0, respectively. Since SSA gap‐filling, how-
ever, discards the noise modes, the skill is less then perfect,
at best.
[19] These metrics are shown in Figures 1a–1d as a func-

tion of the number of SSA modes included in the recon-
struction. The best results—i.e., highest correlation and
smallest rms—are obtained with the same number of SSA
modes, K* = 25, but different window widths: M* = 15 hr
for the IMF component Bz and M* = 20 hr for the dynamic
pressure P; other window sizes gave inferior results (not
shown). The skill metrics are quite good for both Bz and
P when using optimal parameter values K* and M*, with an
edge for dynamic pressure, with Corr = 0.87 and RMS =
0.47. Making use of the two indices Kp and Dst together
yields a noticeable improvement for the reconstruction of
P, while it makes but little difference in Bz, since most of
the skill for the latter comes from the Dst index.
[20] Optimal SSA parameter valuesM* and K* are obtained

empirically; since SSA is based on optimal decomposition
of variance within a sliding time window, the resulting M*
of 15 and 20 hours roughly correspond to the timsescale of
the main phase of a storm when geomagnetic indices vary
the most. The K* leading modes capture “useful variance”
for gap‐filling (see section 2.2) from maximum of M · L
modes, where L is number of channels in dataset; in this
study L = 3 when both Kp and Dst are used to fill‐in either
Bz or P; L = 1 for univariate SSA case. Relatively large
value of K* indicates that there is no strong separation
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between coherent modes of variability and noise; detailed
analysis of leading SSA modes is beyond the scope of this
paper.
[21] When univariate SSA gap‐filling is applied to P and

Bz using the same M*, reconstruction skill is much worse,
see dashed black line in Figures 1a–1d (similar result is
obtained for other window sizes, not shown). In this case
successful reconstruction relies on presence of statistically
significant coherent modes inferred by SSA [Kondrashov
and Ghil, 2006], which are less prominent in Bz then in P.
These results confirm that SSA gap‐filling can be substan-
tially improved by combining gappy‐driver and continuous‐
response records, and relying on analogous episodes of
co‐variability which are not necessarily periodic, see more
discussion in section 4.
[22] Our results suggest that optimal reconstruction for

other solar‐wind and IMF data may thus be achieved with
different geomagnetic indices and SSA windows, while it

may be necessary to systematically search for optimal SSA
parameters and combinations of geomagnetic indices for
other temporal resolutions.
[23] The time series of filled‐in Bz and P (blue line) and

original data (red line) for the optimal SSA parameters are
shown in Figure 2. When Bz is southward, it is successfully
reconstructed, which is consistent with it’s predominant con-
trol of geomagnetic activity and Dst in particular [Gonzalez
and Echer, 2005; O’Brien and McPherron, 2000]; the
dynamic pressure, on the other hand, is reconstructed con-
sistently well over the entire testing interval.
[24] Dependence of reconstruction skill to the gap size is

demonstrated in Figures 1e and 1f, where it is computed for
data combined in gaps of similar length. For very large gaps
(>1 day), there are typically very few independent gap sam-
ples (one or two) available for averaging. Such gaps have
been combined to ensure that there are at least 15 independent
samples to compute the skill for effective average gap size.

Figure 1. (a–d) Reconstruction skill (correlations Corr and rms errors RMS) with M* = 15 hr for Bz and M* = 20 hr for P,
computed over all gaps as the number of M‐SSA modes increases: using Kp only (green), Dst only (black), both indices
(red), univariate data without indices (dashed black), and estimated skill from cross‐validation (dotted black). (e and f ) Skill
computed for data in gaps of the same size, using both Kp and Dst with K* = 25 modes.
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As expected, SSA gap‐filling works best for smaller gap
sizes (<10 hours). The dynamic pressure shows more con-
sistent skill then Bz over all gap sizes, with the relatively
high skill scores attained for gaps as large as 5 days.

[25] When applied to historical gappy data, the optimal
parameters for gap‐filling have to be found through cross‐
validation (see section 2.2). For our synthetic gaps, these
parameters were inferred correctly, and the estimated skill by

Figure 2. Optimal M‐SSA reconstruction (blue curve) in the synthetic gaps (heavy black segments on the time axis)
removed from the continuous, hourly 2000–2001 solar‐wind data set: (a) Bz, and (b) P; original data in red, see text for
details.
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cross‐validation is fairly close to the actual values (compare
dashed black and red in Figures 1a–1d). In order to obtain
such a smooth estimate of the cross‐validation curve and
accurate estimates of the skill, we selected randomly 80%
of the available data (i.e., excluding synthetic gaps) in solar
driver for each experiment, and averaged results over 10 such
experiments. Such a large fraction of data via random selection
was needed to obtain large contiguous gaps similar to Figure 2,
and thus realistic estimates of the reconstruction skill.
[26] SSA gap‐filling works well for a wide range of con-

ditions, as shown in Figure 3 for two selected events during
the test period: a very strong geomagnetic storm (Kp ≈ 9,
and Dst < −300 during days 246–247 (Figure 3a)), and
quiet‐time magnetosphere (near zero Kp and Dst during
days 188–192 (Figure 3b)). The impressively high quality
of the reconstruction inside these selected gaps is due to
the ability of SSA to infer smooth temporal modes of co‐
variability between the solar driver and the response from
the existing data. In particular, it is the presence of similar
episodes of geomagnetic activity with solar driver data
available, that allows SSA to capture such modes via a
windowed data‐adaptive filter within a leading subset of
EOFs of co‐variability.

4. Concluding Remarks

[27] We showed here that SSA can be used to fill in large
gaps in past solar‐wind and IMF data. The novel feature
with respect to previous gap‐filling applications of SSA is
that we considered a gappy driver—the solar wind, rep-
resented by the IMF component Bz and dynamic pressure

P—and a continuously available response; in the present
case, the latter was given by the geomagnetic indices Kp
and Dst.
[28] Gaps in the solar‐wind and IMF data were filled in by

the coherent temporal modes of the solar driver, combined
with the geomagnetic response. As a result, we obtained
realistic variability in large gaps (see Figure 2)—a consid-
erable improvement over currently available interpolation
procedures [e.g., Qin et al., 2007]. The method was shown
to work well for both strong geomagnetic storms and quiet
conditions (see Figures 3a and 3b). Our estimates of recon-
struction error (see Figure 1) provide insight into the physics
of covariability between particular solar‐wind parameters
and geomagnetic indices. In particular, Kp, which is a
general indicator of geomagnetic activity, is much less suc-
cessful than Dst, which mostly shows the ring current inten-
sity, in reconstructing the IMF’s Bz. Both indices however
contribute significantly to the successful reconstruction of
dynamic pressure P.
[29] In previous applications to Nile River floods or sea

surface temperatures [e.g., Kondrashov and Ghil, 2006],
successful reconstruction was largely due to the presence of
significant oscillatory modes in the univariate or multivariate
time series in which the gaps were being filled in. While there
is a well‐known ≈27‐day recurrence in geomagnetic activity
due to so‐called corrotating interaction regions (CIRs), such
periodicity is most prominent during the declining phase of
the solar cycle or near its minimum [Tsurutani et al., 2006]. In
order for SSA to realistically reconstruct the solar driver in
2000–2001, near the maximum of the solar cycle, one has to
rely mainly on analogous episodes of geomagnetic variability
during time intervals when solar wind data are available. It
is the covariation in driver and response at times when both
are present that allows us to reconstruct the former when
only the latter is recorded in the data set. We thus expect that
SSA gap filling can be applied to other heliospheric, iono-
spheric and magnetospheric data sets where there is a gappy
record of the driver but a continuous record of the response.

[30] Acknowledgments. The basic SSA gap‐filling algorithm is
available in the SSA‐MTM Toolkit (http://www.atmos.ucla.edu/tcd/ssa/).
This work is supported by the Lab Research Fee grant, 09‐LR‐04‐116720‐
SHPY.
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