P. Alberch, From genes to phenotype: dynamical systems and evolvability, Genetica, vol.237, issue.1, pp.5-11, 1991.
DOI : 10.1007/BF00123979

L. Altenberg, The evolution of evolvability in genetic programming, Advances in Genetic Programming, pp.47-74, 1994.

S. Aoi and K. Tsuchiya, Locomotion Control of a Biped Robot Using Nonlinear Oscillators, Autonomous Robots, vol.88, issue.6, pp.219-232, 2005.
DOI : 10.1007/s10514-005-4051-1

S. J. Arnold, Constraints on Phenotypic Evolution, The American Naturalist, vol.140, pp.85-107, 1992.
DOI : 10.1086/285398

F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti et al., Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain, The Journal of Comparative Neurology, vol.16, issue.5, pp.513532-541, 2009.
DOI : 10.1002/cne.21974

T. D. Barfoot, E. J. Earon, and G. M. , Experiments in learning distributed control for a hexapod robot, Robotics and Autonomous Systems, vol.54, issue.10, pp.864-872, 2006.
DOI : 10.1016/j.robot.2006.04.009

R. D. Beer and J. C. Gallagher, Evolving Dynamical Neural Networks for Adaptive Behavior, Adaptive Behavior, vol.1, issue.1, pp.91-122, 1992.
DOI : 10.1177/105971239200100105

P. Bentley and S. Kumar, Three ways to grow designs: A comparison of evolved embryogenies for a design problem, Proc. GECCO, pp.35-43, 1999.

J. Bongard, V. Zykov, and H. Lipson, Resilient Machines Through Continuous Self-Modeling, Science, vol.314, issue.5802, pp.314-1118, 2006.
DOI : 10.1126/science.1133687

J. C. Bongard, Evolutionary robotics, Communications of the ACM, vol.56, issue.8, pp.74-83, 2013.
DOI : 10.1145/2492007.2493883

J. C. Bongard and R. Pfeifer, Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny, Proc. GECCO, pp.829-836, 2001.

S. B. Carroll, Endless forms most beautiful: The new science of evo devo and the making of the animal kingdom. Number 54, 2005.

N. Cheney, R. Maccurdy, J. Clune, and H. Lipson, Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding, Proc. GECCO, pp.167-174, 2013.

J. Clune and H. Lipson, Evolving 3D objects with a generative encoding inspired by developmental biology, ACM SIGEVOlution, vol.5, issue.4, pp.2-12, 2011.
DOI : 10.1145/2078245.2078246

J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, Evolving coordinated quadruped gaits with the HyperNEAT generative encoding, 2009 IEEE Congress on Evolutionary Computation, pp.2764-2771, 2009.
DOI : 10.1109/CEC.2009.4983289

J. Clune, C. Ofria, and R. T. Pennock, The sensitivity of HyperNEAT to different geometric representations of a problem, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.675-682, 2009.
DOI : 10.1145/1569901.1569995

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria, On the Performance of Indirect Encoding Across the Continuum of Regularity, IEEE Transactions on Evolutionary Computation, vol.15, issue.3, pp.346-367, 2011.
DOI : 10.1109/TEVC.2010.2104157

J. Clune, J. Mouret, and H. Lipson, The evolutionary origins of modularity, Proceedings of the Royal Society B: Biological Sciences, vol.19, issue.2, p.20122863, 1755.
DOI : 10.1162/EVCO_a_00025

URL : https://hal.archives-ouvertes.fr/hal-01300705

T. M. Cover and J. A. Thomas, Elements of information theory, 1991.

A. Crespi, K. Karakasiliotis, A. Guignard, and A. Ijspeert, Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits, IEEE Transactions on Robotics, vol.29, issue.2, pp.308-320, 2013.
DOI : 10.1109/TRO.2012.2234311

A. Cully and J. Mouret, Behavioral repertoire learning in robotics, Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, GECCO '13, pp.175-182, 2013.
DOI : 10.1145/2463372.2463399

URL : https://hal.archives-ouvertes.fr/hal-00841958

R. Dawkins, The extended phenotype: The long reach of the gene, 1999.

K. Deb, Multi-objective optimization using evolutionary algorithms, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

A. Devert, N. Bredeche, and M. Schoenauer, Robustness and the Halting Problem for Multicellular Artificial Ontogeny, IEEE Transactions on Evolutionary Computation, vol.15, issue.3, pp.387-404, 2011.
DOI : 10.1109/TEVC.2011.2125969

URL : https://hal.archives-ouvertes.fr/inria-00566879

S. Doncieux and J. Mouret, Behavioral diversity with multiple behavioral distances, 2013 IEEE Congress on Evolutionary Computation, pp.1427-1434, 2013.
DOI : 10.1109/CEC.2013.6557731

URL : https://hal.archives-ouvertes.fr/hal-01300703

S. Doncieux and J. Mouret, Single step evolution of robot controllers for sequential tasks, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.1771-1772, 2009.
DOI : 10.1145/1569901.1570152

S. Doncieux and J. Mouret, Behavioral diversity measures for Evolutionary Robotics, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.
DOI : 10.1109/CEC.2010.5586100

URL : https://hal.archives-ouvertes.fr/hal-00687641

S. Doncieux and J. Mouret, Beyond black-box optimization: a review of selective pressures for evolutionary robotics, Evolutionary Intelligence, vol.50, issue.1, pp.71-93
DOI : 10.1007/s12065-014-0110-x

URL : https://hal.archives-ouvertes.fr/hal-01150254

M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella et al., The SWARM-BOTS Project, Proc. SAB (SAB-04 Workshop on Swarm Robotics), pp.31-44, 2005.
DOI : 10.1007/978-3-540-30552-1_4

A. Eiben, Grand Challenges for Evolutionary Robotics, Frontiers in Robotics and AI, vol.9, issue.4, p.2014
DOI : 10.1371/journal.pbio.1000615

S. J. Freeland and L. D. Hurst, The Genetic Code Is One in a Million, Journal of Molecular Evolution, vol.47, issue.3, pp.238-248, 1998.
DOI : 10.1007/PL00006381

R. M. Friedberg, A Learning Machine: Part II, IBM Journal of Research and Development, vol.3, issue.3, pp.183-191, 1959.
DOI : 10.1147/rd.33.0282

A. Frigon and S. Rossignol, Experiments and models of sensorimotor interactions during locomotion, Biological Cybernetics, vol.77, issue.Pt 1, pp.607-627, 2006.
DOI : 10.1007/s00422-006-0129-x

Y. Fukuoka, H. Kimura, and A. H. Cohen, Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts, The International Journal of Robotics Research, vol.22, issue.3-4, pp.3-4187, 2003.
DOI : 10.1177/0278364903022003004

C. Furusawa and K. Kaneko, Emergence of Multicellular Organisms with Dynamic Differentiation and Spatial Pattern, Artificial Life, vol.4, issue.1
DOI : 10.1016/S0022-5193(05)80391-1

J. Gauci and K. O. Stanley, Autonomous Evolution of Topographic Regularities in Artificial Neural Networks, Neural Computation, vol.7, issue.7, pp.1860-1898, 2010.
DOI : 10.1109/5.784219

S. Gavrilets, Evolution and speciation on holey adaptive landscapes, Trends in Ecology & Evolution, vol.12, issue.8, pp.307-312, 1997.
DOI : 10.1016/S0169-5347(97)01098-7

J. Gerhart and M. Kirschner, The theory of facilitated variation, Proc. Natl. Acad. Sci. USA, pp.8582-8589, 2007.
DOI : 10.1073/pnas.0701035104

A. D. Goldberg, C. D. Allis, and E. Bernstein, Epigenetics: A Landscape Takes Shape, Cell, vol.128, issue.4, pp.635-638, 2007.
DOI : 10.1016/j.cell.2007.02.006

R. K. Grosberg and R. R. Strathmann, The Evolution of Multicellularity: A Minor Major Transition?, Annual Review of Ecology, Evolution, and Systematics, vol.38, issue.1, pp.621-654, 2007.
DOI : 10.1146/annurev.ecolsys.36.102403.114735

F. Gruau, Automatic Definition of Modular Neural Networks, Adaptive Behavior, vol.3, issue.2, pp.151-183, 1994.
DOI : 10.1177/105971239400300202

B. Hayes, Undisciplined Science, American Scientist, vol.92, issue.4, pp.306-310, 2004.
DOI : 10.1511/2004.48.3432

G. S. Hornby, Functional Scalability through Generative Representations: The Evolution of Table Designs, Environment and Planning B: Planning and Design, vol.39, issue.1, pp.569-588, 2004.
DOI : 10.1068/b3015

G. S. Hornby, Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design, Proceedings of the 2005 conference on Genetic and evolutionary computation , GECCO '05
DOI : 10.1145/1068009.1068297

G. S. Hornby and J. B. Pollack, Creating High-Level Components with a Generative Representation for Body-Brain Evolution, Artificial Life, vol.27, issue.3, pp.223-246, 2002.
DOI : 10.1162/106454601300328034

G. S. Hornby, H. Lipson, and J. B. Pollack, Generative representations for the automated design of modular physical robots, IEEE Transactions on Robotics and Automation, vol.19, issue.4, pp.703-719, 2003.
DOI : 10.1109/TRA.2003.814502

G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, Autonomous evolution of dynamic gaits with two quadruped robots, IEEE Transactions on Robotics, vol.21, issue.3, pp.402-410, 2005.
DOI : 10.1109/TRO.2004.839222

G. S. Hornby, A. Globus, D. S. Linden, and J. D. Lohn, Automated Antenna Design with Evolutionary Algorithms, Space 2006, pp.1-8, 2006.
DOI : 10.2514/6.2006-7242

T. Hu and W. Banzhaf, Evolvability and Speed of Evolutionary Algorithms in Light of Recent Developments in Biology, Journal of Artificial Evolution and Applications, vol.128, issue.3, pp.1-1, 2010.
DOI : 10.1038/nature05874

E. Ibáibá?ibáñez-marcelo and T. Alarcónalarc´alarcón, The topology of robustness and evolvability in evolutionary systems with genotype???phenotype map, Journal of Theoretical Biology, vol.356, pp.144-162, 2014.
DOI : 10.1016/j.jtbi.2014.04.014

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.
DOI : 10.1016/j.neunet.2008.03.014

A. J. Ijspeert, A. Crespi, D. Ryczko, and J. Cabelguen, From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model, Science, vol.315, issue.5817, pp.3151416-1420, 2007.
DOI : 10.1126/science.1138353

A. Iscen, A. Agogino, V. Sunspiral, and K. Tumer, Controlling tensegrity robots through evolution, Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, GECCO '13, pp.1293-1300, 2013.
DOI : 10.1145/2463372.2463525

E. J. Javaux, C. P. Marshall, and A. Bekker, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits, Nature, vol.427, issue.7283, pp.463934-938, 2010.
DOI : 10.1038/nature08793

Y. Jin and J. Branke, Evolutionary Optimization in Uncertain Environments???A Survey, IEEE Transactions on Evolutionary Computation, vol.9, issue.3, pp.303-317, 2005.
DOI : 10.1109/TEVC.2005.846356

W. Johannsen, The Genotype Conception of Heredity, The American Naturalist, vol.45, issue.531, pp.129-159, 1911.
DOI : 10.1086/279202

S. Kajita and B. Espiau, Springer handbook of robotics handbook of robotics, chapter 16, 2008.

J. Kaplan, The end of the adaptive landscape metaphor?, Biology & Philosophy, vol.16, issue.5, pp.625-638, 2008.
DOI : 10.1007/s10539-008-9116-z

S. A. Kauffman, The origins of order: Self-organization and selection in evolution, 1993.

S. Kernbach, Handbook of Collective Robotics: Fundamentals and Challenges, Pan Stanford, 2013.
DOI : 10.1201/b14908

J. Kodjabachian and J. Meyer, Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects, IEEE Transactions on Neural Networks, vol.9, issue.5, pp.796-812, 1998.
DOI : 10.1109/72.712153

URL : https://hal.archives-ouvertes.fr/hal-01184992

M. Komosí-nski and A. Rotaru-varga, Comparison of Different Genotype Encodings for Simulated Three-Dimensional Agents, Artificial Life, vol.4, issue.4, pp.395-418, 2001.
DOI : 10.1162/106454601300328034

S. Koos, A. Cully, and J. Mouret, Fast damage recovery in robotics with the T-resilience algorithm, The International Journal of Robotics Research, vol.32, issue.14, pp.1700-1723, 2013.
DOI : 10.1177/0278364913499192

URL : https://hal.archives-ouvertes.fr/hal-00932862

J. R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, vol.4, issue.2, 1992.
DOI : 10.1007/BF00175355

A. Kraskov, H. Stögbauerst¨stögbauer, and P. Grassberger, Estimating mutual information, Physical Review E, vol.69, issue.6, p.66138, 2004.
DOI : 10.1103/PhysRevE.69.066138

N. Kubota, Computational intelligence for structured learning of a partner robot based on imitation, Information Sciences, vol.171, issue.4, pp.403-429, 2005.
DOI : 10.1016/j.ins.2004.09.012

S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune, Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation, LNCS, vol.7835, pp.540-549, 2013.
DOI : 10.1007/978-3-642-37192-9_54

J. Lehman and K. O. Stanley, Abandoning Objectives: Evolution Through the Search for Novelty Alone, Evolutionary Computation, vol.7, issue.3, pp.189-223, 2011.
DOI : 10.1016/0165-6074(93)90215-7

J. Lehman and K. O. Stanley, Improving evolvability through novelty search and self-adaptation, 2011 IEEE Congress of Evolutionary Computation (CEC), pp.2693-2700, 2011.
DOI : 10.1109/CEC.2011.5949955

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Lehman and K. O. Stanley, Evolvability Is Inevitable: Increasing Evolvability without the Pressure to Adapt, PLoS ONE, vol.10, issue.4, p.62186, 2013.
DOI : 10.1371/journal.pone.0062186.g013

M. A. Lewis, A. H. Fagg, and A. Solidum, Genetic programming approach to the construction of a neural network for control of a walking robot, Proceedings 1992 IEEE International Conference on Robotics and Automation, pp.2618-2623, 1992.
DOI : 10.1109/ROBOT.1992.220047

H. Lipson, Principles of modularity, regularity, and hierarchy for scalable systems, Journal of Biological Physics and Chemistry, vol.7, issue.4, pp.125-128, 2007.
DOI : 10.4024/40701.jbpc.07.04

H. Liu and H. Iba, A hierarchical approach for adaptive humanoid robot control, Proc. CEC, pp.1546-1553, 2004.

P. Marrow, M. Heath, and I. I. Re, Evolvability: Evolution, computation, biology, Proc. GECCO (GECCO-99 Workshop on Evolvability), pp.30-33, 1999.

D. M. Mccandlish, VISUALIZING FITNESS LANDSCAPES, Evolution, vol.39, issue.6, pp.1544-1558, 2011.
DOI : 10.1111/j.1558-5646.2011.01236.x

R. E. Michod and D. Roze, Cooperation and conflict in the evolution of multicellularity, Heredity, vol.6, issue.1, pp.1-7, 2001.
DOI : 10.1073/pnas.93.13.6759

E. Mjolsness, D. H. Sharp, and J. Reinitz, A connectionist model of development, Journal of Theoretical Biology, vol.152, issue.4, pp.429-453, 1991.
DOI : 10.1016/S0022-5193(05)80391-1

R. Morrison and K. Jong, A test problem generator for non-stationary environments, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pp.2047-2053, 1999.
DOI : 10.1109/CEC.1999.785526

G. Morse, S. Risi, C. R. Snyder, and K. O. Stanley, Singleunit pattern generators for quadruped locomotion, Proc. GECCO, pp.719-726, 2013.

J. Mouret and S. Doncieux, Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study, Evolutionary Computation, vol.341, issue.1, pp.91-133, 2012.
DOI : 10.1016/0020-0190(92)90136-J

URL : https://hal.archives-ouvertes.fr/hal-00687609

J. Mouret, Novelty-Based Multiobjectivization, New Horizons in Evolutionary Robotics, pp.139-154, 2011.
DOI : 10.1007/978-3-642-18272-3_10

URL : https://hal.archives-ouvertes.fr/hal-01300711

J. Mouret, S. Doncieux, and B. Girard, Importing the computational neuroscience toolbox into neuro-evolutionapplication to basal ganglia, Proc. GECCO, pp.587-594, 2010.

S. Nolfi and D. Floreano, Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-organizing Machines, 2001.

A. S. Novozhilov, Y. I. Wolf, and E. V. Koonin, Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape, Biology Direct, vol.2, issue.1, pp.1-24, 2007.
DOI : 10.1186/1745-6150-2-24

M. Pavlicev and G. P. Wagner, Coming to Grips with Evolvability, Evolution: Education and Outreach, vol.4, issue.Suppl 1, pp.231-244, 2012.
DOI : 10.1007/s12052-012-0430-1

M. Pigliucci, Is evolvability evolvable?, Nature Reviews Genetics, vol.49, issue.1, pp.75-82, 2008.
DOI : 10.1038/nrg2278

W. B. Provine, Sewall Wright and evolutionary biology, 1989.

M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, BigDog, the Rough-Terrain Quadruped Robot, Proc. IFAC, pp.10823-10825, 2008.
DOI : 10.3182/20080706-5-KR-1001.01833

J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations, Proceedings of the 9th annual conference on Genetic and evolutionary computation , GECCO '07, pp.1045-1052, 2007.
DOI : 10.1145/1276958.1277164

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Reisinger, K. O. Stanley, and R. Miikkulainen, Towards an empirical measure of evolvability, Proceedings of the 2005 workshops on Genetic and evolutionary computation , GECCO '05, pp.257-264, 2005.
DOI : 10.1145/1102256.1102315

G. Ren, W. Chen, S. Dasgupta, C. Kolodziejski, F. et al., Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation, Information Sciences, vol.294, 2014.
DOI : 10.1016/j.ins.2014.05.001

L. Righetti and A. J. Ijspeert, Design methodologies for central pattern generators: an application to crawling humanoids, Robotics: Science and Systems II, 2006.
DOI : 10.15607/RSS.2006.II.025

L. Righetti and A. J. Ijspeert, Pattern generators with sensory feedback for the control of quadruped locomotion, 2008 IEEE International Conference on Robotics and Automation, pp.819-824, 2008.
DOI : 10.1109/ROBOT.2008.4543306

S. Risi and K. O. Stanley, Confronting the challenge of learning a flexible neural controller for a diversity of morphologies, Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, GECCO '13, pp.255-262, 2013.
DOI : 10.1145/2463372.2463397

M. S. Roulston, Estimating the errors on measured entropy and mutual information, Physica D: Nonlinear Phenomena, vol.125, issue.3-4, pp.285-294, 1999.
DOI : 10.1016/S0167-2789(98)00269-3

J. Santos, R. Duro, J. Becerra, J. Crespo, and F. Bellas, Considerations in the application of evolution to the generation of robot controllers, Information Sciences, vol.133, issue.3-4, pp.133127-148, 2001.
DOI : 10.1016/S0020-0255(01)00081-0

D. W. Scott, Multivariate density estimation: theory, practice, and visualization, 2009.
DOI : 10.1002/9781118575574

C. W. Seys and R. D. Beer, Genotype Reuse More Important than Genotype Size in Evolvability of Embodied Neural Networks, Proc. ECAL, pp.915-924, 2007.
DOI : 10.1007/978-3-540-74913-4_92

A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization, The International Journal of Robotics Research, vol.27, issue.3-4, pp.3-4423, 2008.
DOI : 10.1177/0278364907088401

K. Stanley and R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies, Evolutionary Computation, vol.7, issue.2, pp.99-127, 2002.
DOI : 10.1016/S0096-3003(97)10005-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. O. Stanley, Compositional pattern producing networks: A novel abstraction of development, Genetic Programming and Evolvable Machines, vol.1143, issue.2, pp.131-162, 2007.
DOI : 10.1007/s10710-007-9028-8

K. O. Stanley and R. Miikkulainen, A Taxonomy for Artificial Embryogeny, Artificial Life, vol.13, issue.1, pp.93-130, 2003.
DOI : 10.1002/cne.902460104

K. O. Stanley, D. B. Ambrosio, and J. Gauci, A hypercubebased encoding for evolving large-scale neural networks
DOI : 10.1162/artl.2009.15.2.15202

G. Taga, Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment, Physica D: Nonlinear Phenomena, vol.75, issue.1-3, pp.190-208, 1994.
DOI : 10.1016/0167-2789(94)90283-6

D. Tarapore and J. Mouret, Comparing the evolvability of generative encoding schemes, Proc. ALife, pp.1-8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01300700

R. A. Téllez, C. Angulo, and D. E. Pardo, Evolving the Walking Behaviour of a 12 DOF Quadruped Using a Distributed Neural Architecture, Biologically Inspired Approaches to Advanced Information Technology, pp.5-19, 2006.
DOI : 10.1007/11613022_4

M. Tomassini, S. Verel, and G. Ochoa, landscape case, Physical Review E, vol.78, issue.6, p.66114, 2008.
DOI : 10.1103/PhysRevE.78.066114

URL : https://hal.archives-ouvertes.fr/hal-00354804

P. Tonelli and J. Mouret, On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks, PLoS ONE, vol.315, issue.11, p.79138, 2013.
DOI : 10.1371/journal.pone.0079138.s001

URL : https://hal.archives-ouvertes.fr/hal-01264752

V. K. Valsalam and R. Miikkulainen, Modular neuroevolution for multilegged locomotion, Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pp.265-272, 2008.
DOI : 10.1145/1389095.1389136

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. P. Wagner and L. Altenberg, Perspective: Complex Adaptations and the Evolution of Evolvability, Evolution, vol.50, issue.3, pp.967-976, 1996.
DOI : 10.2307/2410639

M. Waibel, L. Keller, and D. Floreano, Genetic Team Composition and Level of Selection in the Evolution of Cooperation, IEEE Transactions on Evolutionary Computation, vol.13, issue.3, pp.648-660, 2009.
DOI : 10.1109/TEVC.2008.2011741

K. Weicker, Performance Measures for Dynamic Environments, Parallel Problem Solving from Nature ? PPSN VII, pp.64-73, 2002.
DOI : 10.1007/3-540-45712-7_7

S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Proc. of the Sixth International Congress on Genetics, pp.355-366, 1932.

X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, vol.87, issue.9, pp.1423-1447, 1999.

J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. Zagal et al., Evolving robot gaits in hardware: the hyperneat generative encoding vs. parameter optimization, Proc. ECAL, pp.890-897, 2011.

V. Zykov, J. Bongard, and H. Lipson, Evolving dynamic gaits on a physical robot, Proc. GECCO, 2004.