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SUPERDIFFUSIVE HEAT CONDUCTION IN SEMICONDUCTOR ALLOYS

II. Truncated Lévy formalism for experimental analysis
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Nearly all experimental observations of quasi-ballistic heat flow are interpreted using Fourier
theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) anal-
ysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is
no longer Brownian but instead exhibits Lévy dynamics with fractal dimension α < 2. Here, we
present a framework that enables full 3D experimental analysis by retaining all essential physics
of the quasi-ballistic BTE dynamics phenomenologically. A stochastic process with just two fitting
parameters describes the transition from pure Lévy superdiffusion as short length and time scales
to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw
experimental data over the full modulation frequency range without requiring any ‘effective’ ther-
mal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms.
Identified α values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our
results provide experimental evidence of fractal Lévy heat conduction in semiconductor alloys. The
formalism additionally indicates that the transient temperature inside the material differs signifi-
cantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices
and material interfaces.

PACS numbers: 65.40.-b , 63.20.-e , 05.40.Fb

Introduction

Heat in non-metallic solids is predominantly conducted
by random motion of energy carriers called phonons [1].
The spectrum of phonon mean free paths (MFPs), i.e.
the distribution of the average distance phonons travel
ballistically between consecutive scattering events, gov-
erns key aspects of the thermal behavior. Even at room
temperature, a significant portion of heat in commonly
used semiconductors is found to be carried by phonons
with MFPs well into the micron range [2, 3]. Thermal
transport over these length scales is of crucial importance
for nanoscale devices [4].

The macroscopic net result of the phonon dynamics is
observed as redistribution of thermal energy typically de-
scribed by the Fourier diffusion equation. However, when
the dimensions of the thermal gradient become compa-
rable to phonon MFPs, this classical model begins to fail
[5]. Several hyperbolic heat conduction [6] and ballistic-
diffusive [7] theories were proposed but many charac-
teristic features they predicted have not been observed
experimentally. Measurements in which the physical di-
mensions [8]–[10] or penetration depth [11, 12] of the heat
source overlap with phonon MFPs exhibit an apparent re-
duction of effective thermal conductivity [9]–[12] keff, or
equivalently, an additional ballistic thermal resistance [8].
Despite showing clear evidence of nondiffusive thermal
transport, most experiments are interpreted with mod-
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ified Fourier theory, i.e. a regular diffusion model but
with adjusted thermal parameters.

Boltzmann transport equation (BTE) analysis with
ab initio phonon dispersions and scattering rates, doc-
umented in part I of this paper [13], shows that quasi-
ballistic transport in semiconductor alloys is no longer
Brownian, but instead governed by a Lévy process with
fractal dimension α < 2. The associated energy den-
sity distribution is non-Gaussian, and a new approach
beyond modified Fourier theory is needed to accurately
represent the quasi-ballistic transport dynamics. BTE
solutions themselves, unfortunately, are not easily suit-
able for direct comparison with experiments. Analytical
BTE modeling is typically limited to 1D analysis of the
dominant cross-plane heat flow, leaving the method un-
able to account for lateral heat spreading and Gaussian
shape of the heat source encountered in actual measure-
ments. In addition, non-idealities in real world samples
such as crystal impurities or grain boundaries cause the
phonon spectra and resulting thermal properties to in-
variably deviate to some extent from ab initio predic-
tions.

Here, we provide a phenomenological approach that
preserves the essential dynamics contained within BTE
solutions yet at the same time offers sufficient flexibility
to achieve full 3D analysis of experimental measurements.
We stress that the BTE analysis performed in Part I only
serves to provide physical support for a Lévy-based ap-
proach, but is not directly involved in any way in the
actual processing of measurement data. The formalism
we present below is a fully autonomous model, indepen-
dent of the relaxation time approximation, in which key
properties of Lévy dynamics act as free fitting parame-
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ters. The method is widely applicable to heat conduc-
tion dominated by mass impurity (or other high order)
phonon scattering, without requiring ab initio simula-
tions or any other prior knowledge about the phonon
properties of the specific material at hand. Our formal-
ism provides superior fittings of raw thermoreflectance
(TR) experimental data without the need for any ‘effec-
tive’ thermal parameters varying with laser modulation
frequency. Identified Lévy fractal dimensions in InGaAs
and SiGe match ab initio BTE predictions within a few
percent. In addition, the formalism offers great poten-
tial for improved thermal performance characterization
of nanoscale devices and metal/semiconductor interfaces.

Methodology

Our formalism is based on a probabilistic framework:
the motion of thermal energy inside the semiconductor is
described in terms of a stochastic process. The method
relies on the duality T (x, t) ↔ P (x, t)/C between the
temperature response T to a unit energy impulse and
probability P to find a random walking energy carrier
in position x at time t. C denotes the volumetric heat
capacity of the medium. Continuous time random walk
(CTRW) processes essentially consist of a series of tran-
sition events [14]. Each transition increments the po-
sition of the energy carrier by an amount u randomly
chosen from a distribution pU (u), while the time be-
tween consecutive transitions is governed by a distribu-
tion pT (t). In our context, the process is Poissonian in
time, pT (t) = Θ exp(−Θt) with Θ the average number of
transitions per second, while pU is always an even func-
tion. The latter expresses equal probability for left and
right transitions in accordance with thermal isotropy.

The mathematical description of the process simpli-
fies considerably when pU and pT are stochastically in-
dependent. Physically, this decoupling of space and time
results in a situation in which the transition velocity
can sporadically become arbitrarily large. Although this
is not a rigorous representation of actual phonon dy-
namics, an unbounded velocity approximation is phys-
ically adequate for our purposes. Justification follows by
comparing the extent of the thermal gradient ∆x ' `
to the energy containment |x| ≤ xmax imposed by fi-

nite phonon velocities. Here, ` =
√

2Dt is the Fourier
thermal penetration depth with D = κ/C the thermal
diffusivity of the medium, and xmax = vt with v the
sound velocity. Time domain TR observations utilise
data taken at pump-probe delays tpp ≥ 50 ps for ther-
mal characterization. Even at such short times, we
find that xmax/` > 10 in typical semiconductor alloys
(D ≈ 5 mm2/s, v ≈ 5000 m/s). The finite velocity thus
hardly imposes restrictions on the development of the
thermal gradient at time scales probed by the experi-
ments, and can be safely considered as effectively un-
bounded. The transitions in the resulting stochastic pro-
cess with uncoupled space and time are typically called

‘flights’ with ‘jump lengths’ governed by pU .

Regular Fourier diffusion is stochastically equivalent to
Brownian motion [15]. This process obeys a jump length
probability distribution pU(u) ∝ |u|−3 and induces the
familiar Gaussian energy density with mean square dis-
placement (MSD) `2(t) = 2Dt. During the quasi-ballistic
regime, however, BTE solutions of the energy density are
governed by a Lévy process with fractal dimension α be-
tween 1 and 2 [13]. These dynamics correspond to jump
length distributions pU(u) ∝ |u|−(1+α) and induce char-
acteristic fractal patterns [16] consisting of medium range
motion clusters separated by occasional long jumps (Fig.
1a). Lévy behavior has been observed in travel patterns
of foraging animals [17], protein movements along DNA
chains [18], turbulence in fluids [19], and financial market
fluctuations [20]. Similar effects were observed in the con-
text of anomalous heat conduction in theoretical studies
of 1D atomic chains between reservoirs at constant tem-
perature [21]. The latter is still quite different from real-
istic experimental and technological configurations. The
model we develop here describes 3D quasi-ballistic heat
flow in thermally semi-infinite structures subjected to a
transient surface heat flux.

The inherent fractal nature of pure Lévy flights main-
tains the quasi-ballistic regime indefinitely. In real-
ity, however, the thermal transport recovers to regu-
lar Fourier diffusion at sufficiently long length and time
scales. This gradual transition between the two regimes
is naturally embedded in the BTE framework. The same
can be achieved here by considering a truncated Lévy
(TL) process, in which the likelihood of very long jumps
is suppressed [22, 23]. The main principle is to force
the tail of pU to drop equally or more steeply than |u|−3

such that Brownian dynamics are recovered at sufficiently
large distances. For mathematical convenience, we use
exponential truncation of the form

pU(u) =
A exp (−|u|/uBD)

|u|(1+α)
(1)

with A a normalizing constant determined below and
α, uBD two fitting parameters. As demonstrated later,
uBD and associated tBD = u2

BD/2D regulate respectively
the length and time scales over which the transition from
quasi-ballistic to diffusive transport occurs. We note here
that certain subtypes of exponentially truncated Lévy
flight processes can be described in terms of general-
ized fractional diffusion equations [24]. This may of-
fer prospects for future development of a universal heat
equation for microscale thermal transport in closed form.

The generalized CTRW master equation [14] provides
the single pulse energy density in Fourier-Laplace do-
main, P(ξ, s), for given jump length and wait time distri-
butions in transformed variables pU (ξ) and pT (s). For a
Poissonian process with jump frequency Θ and stochas-
tically independent jump length distribution pU (u), the
solution can be inverted analytically to the time domain,
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FIG. 1. Stochastic energy transport in solid media. (a), Exemplary random walk trajectories with 10,000 steps each.
(b), Normalized source response for 1D truncated Lévy heat flow in infinite medium. The regime transition from pure Lévy
superdiffusion to regular Fourier diffusion is clearly visible. (c), Dimensionless energy pulse response for 3D heat flow in
semi-infinite medium. Each square shows a thermal map over a region measuring 10`(t) × 10`(t) centered around the point

heat source, with `(t) =
√

2Dt the Fourier thermal penetration length. (d), Ratio of truncated Lévy and Fourier 3D single
pulse responses on semi-infinite InGaAs at room temperature. Listed parameters were determined from TDTR experiments
presented below.

and we obtain:

lnP(ξ, t) = −Θt

∞∫
−∞

[1− exp(−jξu)] pU(u)du (2)

in which j denotes the complex unit. For the truncated
Lévy jump length distribution described by (1) this can
be evaluated analytically:

1 < α < 2 : lnP(ξ, t) = (−2t)
πAΘ

Γ(α)α sin(απ)
×[

(ξ2 + ξ2
BD)α/2 cos

(
α arctan

[
ξBD

|ξ|

]
− απ

2

)
− ξαBD

]
(3)

with ξBD = u−1
BD. The energy density in real space-

time domain then directly follows from numerical inverse
Fourier transform:

P1D(x, t) =
1

π

∞∫
0

P(ξ, t) cos(ξx)dξ (4)

where we used that P(ξ, t) is even in ξ. At long times
t� tBD, P is strongly exponentially dampened, and the
integral (4) is completely dominated by small wavenum-
bers ξ � ξBD. Series expansion of (3) for this regime
yields

ξ � ξBD : lnP(ξ, t)→ −ξ2t

[
πAξα−2

BD (1− α)

Γ(α) sin(απ)

]
(5)

The proportionality to ξ2 signals recovery of regular
Fourier diffusion lnPF = −Dξ2t. Comparison of the lat-
ter to (5) sets the prefactor in (3):

πAΘ

Γ(α)α sin(απ)
=

ξ2−α
BD D

α(1− α)
(6)

such that we finally have

1 < α < 2 : lnP(ξ, t) = − 2ξ2
BDDt

α(1− α)
×[

(ξ̃2 + 1)α/2 cos
(
α arctan(|ξ̃|−1)− απ

2

)
− 1
]

(7)

with ξ̃ = ξ/ξBD. For the sake of completeness, we note
that the solution for special case α = 1 does not simply
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follow by taking the α→ 1 limit of (7) but instead must
be derived directly from (2) which eventually yields

α = 1 : lnP(ξ, t) = −ξ2
BDDt×

[
πξ̃H(ξ − 1)

− ln(1 + ξ̃2)− ξ̃ arctan

(
2ξ̃

ξ̃2 − 1

)]
(8)

At short times t� tBD, the behavior of the TL process is
dominated by large spatial frequencies ξ̃ � 1. According
series expansion of (7) or (8) shows this corresponds to
a pure Lévy regime lnPL = −Dα|ξ|αt with fractional
diffusivity

1 < α < 2 : Dα =
2D cos [(1− α/2)π]

α(α− 1)u2−α
BD

(9)

α = 1 : Dα =
πD

uBD
(10)

This expression lends a deeper, microscopic meaning to
uBD that goes beyond the intuitive macroscopic notion
of characteristic transition length scale.

Once numerical evaluation of P1D(x, t) is performed,
the formalism can be easily extended to 3D heat flows
based on isotropy and symmetry arguments. The single
pulse temperature response for a point source on a semi-
infinite medium becomes

T3D(r, t) =
2

C
P 3

1D(x = r/
√

3, t) (11)

with r the distance from the source. From this we then
obtain the Green’s function G(h, f) of the semiconduc-
tor surface for truncated Lévy transport in the Fourier-
Hankel domain:

G(h, f) =

∞∫
0

∞∫
0

T3D(r, t) exp(−j2πft)J0(hr)rdrdt (12)

These operations must be performed numerically since
T3D(r, t) is not known in closed form. A simple quadra-
ture scheme

G(h, t) ≈ 1

2h

∑
n

[T3D(rn, t) + T3D(rn+1, t)]K(rn, rn+1)

K(a, b) = bJ1(hb)− aJ1(ha) (13)

suffices for the Hankel transform. For the subsequent
transform to the frequency domain we use a collocation
scheme [25] with logarithmic time grid. The resulting
G(h, f) then simply replaces the conventional Fourier

diffusion kernel GF(h, f) = (2πκ
√

j2πf
D + h2)−1 in stan-

dard models [26, 27] that account for the heat diffusion in
the metal transducer, thermal contact resistivity rms of
the metal/semiconductor interface and Gaussian shape
of the laser beams for analysis of the sample structures
employed in pulsed laser experiments.

We have validated the stability and accuracy of the var-
ious numerical operations employed in the formalism by

running our truncated Lévy simulator in quasi-diffusive
regime (setting α = 1.999 and uBD = 10 nm) for a semi-
infinte InGaAs substrate with 50 nm Al transducer. Both
magnitude and phase of the numerically obtained sin-
gle pulse responses at the transducer top surface stayed
within ±0.3% of analytical Fourier solutions anywhere
over the 100 kHz–1 THz frequency band.

Single pulse response characteristics

As could be expected, pure Lévy behavior dominates
truncated Lévy flights at early times t � tBD. One-
dimensional single pulse responses exhibit an elevated
energy density at the heat source that drops as t−1/α

(Fig 1b). This corresponds to the quasi-ballistic regime
in the BTE solutions, which exhibit the same t−1/α trend
at the heat source and superdiffusive thermal energy dis-
placement σ2(t) ∼ t3−α inside the medium. Both anoma-
lous fractional time exponents signal a complex interplay
between ballistic jumps and random scatterings. This
offers a perspective that is quite different from recent
literature. In some experimental configurations, quasi-
ballistic transport can be interpreted as a lack of scat-
tering at short distances followed by regular Fourier dif-
fusion from a heat source whose effective dimension is
inflated by the dominant phonon MFP [8]. For the prob-
lem studied here this is clearly not the case: the transport
dynamics gradually evolve in space and time from frac-
tal Lévy superdiffusion to regular Fourier diffusion. The
transition is virtually complete at t = tBD (Fig. 1b).
Similar evolutions are visible in 3D heat flow configura-
tions (Fig. 1c).

Quasi-ballistic effects can be mostly attributed to
phonon modes whose mean free paths extend beyond
the charactersistic dimension of the thermal gradient
[11, 12, 28]. We therefore expect uBD to be situated some-
where between the median and upper regions of the MFP
spectrum. The fractal dimension α, on the other hand,
is directly associated with the order n of the dominant
phonon scattering mechanism τ ∼ ω−n as demonstrated
by our BTE analysis [13].

Figure 1d shows the calculated 3D impulse resonse in-
side semi-infinite InGaAs. The temperature at and near
the heat source is significantly larger than Fourier pre-
dictions while at intermediate depths in the material the
truncated Lévy thermal field is substantially smaller than
the diffusive counterpart. Deviations persist over 1µs
time and 10µm length scales and can therefore have in-
teresting implications for the thermal performance and
monitoring of nanoscale devices. Details will be investi-
gated elsewhere. The formalism provides valuable pre-
dictions about how the Lévy dynamics of the quasi-
ballistic transport influence the internal heat flow inside
the medium. Currently, there are no measurement re-
sults available with sufficient resolution to enable direct
comparison with Fig. 1d, but these and related effects
may be further verified with future experiments.
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Results

We apply our formalism to TDTR observations of
quasi-ballistic effects in semiconductor alloys. This
measurement technique employs modulated femtosecond
laser pulse trains to perform thermal characterization
[11, 27]. A pump beam, modulated at frequency fmod,
heats a metal transducer deposited on the semiconduc-
tor sample. Lock-in detection at fmod of the reflected
probe beam records the thermal decay of the transducer
surface. A mechanical delay line allows to vary the rel-
ative arrival times of the pump and probe pulses at the
sample surface with picosecond resolution. Additional
details and a schematic drawing of our measurement sys-
tem are available elsewhere [29]. Standard mathematical
manipulations of the single pulse response [27, 30] provide
theoretical model expressions for the in-phase Vin(tpp)
and out-of-phase Vout(tpp) lock-in signal components at a
given modulation frequency as a function of pump-probe
delay tpp. These are then fitted to the measured coun-
terparts to identify the thermal properties of the sample.
The actual identification process is typically performed
on the ratio −Vin/Vout. This acts as signal normalization
and reduces the influence of experimental artifacts [11].
Conventional Fourier analysis first extracts the thermal
resistivity rms of the metal-semiconductor interface from
data at high modulation frequency, where the sensitivity
to rms is highest, and then identifies effective themal con-
ductivities keff(fmod) [11]. Our truncated Lévy approach
collectively identifies two quasi-ballistic parameters (α,
uBD) and bulk thermal properties (κbulk, rms) by min-
imizing the cumulative fitting error between measured
and theoretical ratio curves over full pump-probe delay
and all modulation frequencies. Results of the TDTR
analysis of several semiconductor films at room temper-
ature are presented in Fig. 2.

The effective conductivity of SiGe and InGaAs drops
strongly with modulation frequency (Fig. 2a), consistent
with earlier reports [11]. Single crystal semiconductors
such as Si and GaAs and amorphous materials like SiO2,
by contrast, exhibit an essentially constant conductiv-
ity. The distinction can be understood by noting that
in alloys, Rayleigh scattering increases the relative im-
portance of long wavelength phonons [11]. Theoretical
calculations indicate the median MFP to be ≈ 5µm in
SiGe [2] versus ≈ 500 nm in Si and GaAs [2, 3]. The
combination of low diffusivity and long MFPs in alloys
facilitates overlap of the dominant experimental thermal
penetration depth ` =

√
D/(πfmod) with the phonon

spectrum over the achievable fmod range, inducing no-
table quasi-ballistic effects.

Crucially, the truncated Lévy model provides an accu-
rate match with raw measurement data (Fig. 2b), and
outperforms the best fitting modified Fourier approaches
in which both κeff and rms,eff are suitably varied with
modulation frequency (Fig. 3). Note that the improved
fitting performance is achieved with fewer fitting param-
eters. The TL model collectively fits the raw measure-

ment data across all modulation frequencies with just
4 numbers (α, uBD, κbulk, rms) while a modified Fourier
analysis requires 2 parameters (κeff, rms,eff) per modula-
tion frequency. Our experiments on InGaAs, for exam-
ple, consist of 7 ratio curves. The best fitting Fourier
interpretation (in which both effective conductivity and
interface resistance must drop by over 40% from lowest
to highest modulation frequency) requires 14 parameters
to describe the data yet provides an inferior fit compared
to TL at every single frequency. We validated the Lévy
parameter extraction, listed in Fig. 2c, by verifying that
the cumulative fitting error attains a global minimum for
a well defined (α, uBD) combination. The experimentally
identified fractal dimensions, α = 1.67 for InGaAs and
α = 1.69 for SiGe, are in near perfect agreement with
ab initio BTE predictions (1.67 and 1.65 respectively).
Meanwhile, uBD values around a few microns are found,
on the order of the median MFPs.

Conventional analysis with modified Fourier theory
leaves some discrepancies at short and long pump-probe
delays (Fig. 2b) but achieves an otherwise reasonable
fit of the thermal response at the transducer surface.
This has lead to the notion that this approach provides
an adequate characterization of the quasi-ballistic trans-
port. Recent analysis of thermal transient grating experi-
ments has shown that most of such measurements probe a
weakly quasi-ballistic regime in which the use of modified
Fourier theory is formally justified by the BTE [31]. In
thermoreflectance configurations considered here, how-
ever, this is not the case. Fourier theory with adjusted
conductivity still maintains the Gaussian shape of the
energy density and underlying Brownian energy motion,
which inherently differ from Lévy superdiffusion. As a
result, this approach provides a poor representation of
the quasi-ballistic dynamics at the semiconductor surface
(Fig. 2d).

Probing fractal Lévy dynamics

The superior fitting performance observed above indi-
cates that the truncated Lévy formalism incorporates all
essential physics required to gain a good understanding of
non-diffusive heat flow in thermoreflectance experiments.
In addition, the obtained results offer experimental val-
idation for the fractal Lévy nature of the quasi-ballistic
thermal dynamics in semiconductor alloys, as theoreti-
cally predicted by our BTE analysis.

Interestingly, the frequency dependence of effective
thermal conductivity as observed by conventional Fourier
analysis offers another direct manifestation of Lévy su-
perdiffusion. Simple 1D relations suggest that κeff ∼
D

2/α
α f

1−2/α
mod , and the experimental results shown in Fig.

2a can indeed be fitted quite well with a power law [13].
The resulting α and Dα values, together with those ob-
tained independently through full 3D TL fitting of the
raw measurement data and 1D ab initio BTE model-
ing, are summarized in Table I. The good agreement be-
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tween the values is testament to the capabilities of the TL
formalism, and demonstrates that the presence of frac-
tal Lévy superdiffusion offers a consistent explanation of
quasi-ballistic heat effects in semiconductor alloys.

Further applications

The presence of quasi-ballistic effects raises challenges
for the metrology of thermal boundary (Kapitza) resis-
tances. It is striking that truncated Lévy identification
results for rms are up to three times smaller than those
obtained through conventional Fourier characterization
(Fig. 2c). This suggests that metal/semiconductor in-
terfaces could be far more conductive than currently be-
lieved. Intuitively, we can argue that Fourier models will
mistakenly interpret part of the quasi-ballistic heat flux
suppression in the upper regions of the semiconductor as
a poorer performance of the nearby metal/semiconductor
interface. Closer inspection shows that the best fitting
Fourier models depicted in Fig. 3 exhibit rms,eff values
that vary monotonically with fmod by almost a factor

of 2. This itself hints at a problematic aspect of modi-
fied Fourier theory, as physically the thermal boundary
resistance should remain constant over the considered
modulation frequency range [9, 12]. Frequency by fre-
quency truncated Lévy identification of the measurement
data, on the other hand, produces rms values that re-
main virtually stable. Detailed results are available else-
where [32]. Despite seven decades of extensive research
since Kapitza’s pioneering work [33], comprehensive un-
derstanding of heat flow across interfaces has remained
a mostly open problem [34]. We believe the framework
presented here offers interesting potential in this context,
given its ability to properly distinguish between intrinsic
interface phenomena (rms) and adjacent quasi-ballistic
effects (α and uBD).

Conclusions

In this work, we introduced a novel formalism for ex-
perimental analysis of quasi-ballistic heat flow. The ap-
proach describes the thermal energy motion in terms of
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TABLE I. Identified fractal properties of quasi-ballistic thermal transport in semiconductor alloys.

In0.53Ga0.47As Si0.82Ge0.18

α Dα [×10−4mα/s] α Dα [×10−4mα/s]
3D TL fit of raw meas. data∗ 1.67 3.92 1.69 2.17
power law fit of κeff(fmod) [13] 1.67 5.98 1.71 2.17

ab initio 1D BTE prediction [13] 1.67 4.28 1.65 4.00

∗ Dα values can be identified through TL raw data fitting by inserting the measured α, uBD and D = κbulk/C into Eq. (9).

0.070 / 0.054 / 0.054
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FIG. 3. Raw measurement data fitting performance over full
pump-probe delay for several theoretical models. The dashed
lines indicate the overall average fitting error across all mod-
ulation frequencies.

a truncated Lévy stochastic process. This way, the for-
malism captures all essential physics of the transition
between quasi-ballistic and regular diffusive transport
contained within the 1D BTE framework while enabling
full 3D analysis of experimental observations. Excellent
agreement with raw thermoreflectance data is observed,
and corresponding experimental values of the fractal di-
mension of the Lévy process match ab initio BTE pre-
dictions within a few percent. Our findings confirm that
quasi-ballistic thermal transport in semiconductor alloys
is distinctly different from conventional Brownian mo-
tion, and will lead to a better understanding of heat flow
in nanoscale devices and across metal/semiconductor in-
terfaces.
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