
HAL Id: hal-01135588
https://hal.science/hal-01135588

Submitted on 25 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of an Automatic Sign Language Lexical
Annotation Framework based on Propositional Dynamic

Logic
Arturo Tlacaélel Curiel Diaz, Christophe Collet

To cite this version:
Arturo Tlacaélel Curiel Diaz, Christophe Collet. Implementation of an Automatic Sign Language
Lexical Annotation Framework based on Propositional Dynamic Logic. The 9th edition of the Lan-
guage Resources and Evaluation Conference - LREC 2014, May 2014, Reykjavik, Iceland. pp. 29-36.
�hal-01135588�

https://hal.science/hal-01135588
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13113

To cite this version : Curiel, Arturo and Collet, Christophe
Implementation of an Automatic Sign Language Lexical Annotation
Framework based on Propositional Dynamic Logic. (2014) In: The 9th
edition of the Language Resources and Evaluation Conference - LREC
2014, 26 May 2014 - 31 May 2014 (Reykjavik, Iceland).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13113/
http://oatao.univ-toulouse.fr/13113/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Implementation of an Automatic Sign Language Lexical Annotation

Framework based on Propositional Dynamic Logic

Arturo Curiel† , Christophe Collet
Université Paul Sabatier - Toulouse III

118 route de Narbonne, IRIT,

31062, Toulouse, France

E-mail: curiel@irit.fr, collet@irit.fr

Abstract

In this paper, we present the implementation of an automatic sign language (SL) sign annotation framework based on a formal logic,

the Propositional Dynamic Logic (PDL). Our system relies heavily on the use of a specific variant of PDL, the Propositional Dynamic

Logic for Sign Language (PDLSL), which lets us describe SL signs as formulae and corpora videos as labeled transition systems (LTSs).

Here, we intend to show how a generic annotation system can be constructed upon these underlying theoretical principles, regardless of

the tracking technologies available or the input format of corpora. With this in mind, we generated a development framework that adapts

the system to specific use cases. Furthermore, we present some results obtained by our application when adapted to one distinct case,

2D corpora analysis with pre-processed tracking information. We also present some insights on how such a technology can be used to

analyze 3D real-time data, captured with a depth device.

Keywords: sign language framework, automatic annotation, propositional dynamic logic

1. Introduction

Research in sign language (SL), both from the point of

view of linguistics and computer science, relies heavily on

video-corpora analysis (Dreuw et al., 2008). As such, sev-

eral methods have been developed over time for the auto-

matic processing of both video or other sensor-based cor-

pora (Ong and Ranganath, 2005). Even though these kind

of research efforts are usually geared toward recognition,

few work has been done in relation to the unification of

raw tracked data with high level descriptions (Cooper et

al., 2011; Bossard et al., 2004). This calls to a reflection on

how we represent SL computationally, from the most basic

level.

SL lexical representation research is focused on sign syn-

thesis before than recognition. Works like (Filhol, 2009;

Losson and Vannobel, 1998) present the use of geomet-

ric lexical descriptions to achieve animation of signing 3D

avatars. While their approach is well suited for synthesis,

it is not completely adapted for sign identification. Recog-

nition tasks in both natural language processing and com-

puter vision are well known to be error-prone. Also, they

are highly susceptible of bumping into incomplete informa-

tion scenarios which may require some kind of inference,

in order to effectively resolve ambiguities. In addition, SL

linguistic research has consistently shown the existence of

common patterns across different SLs (Aronoff et al., 2005;

Meir et al., 2006; Wittmann, 1991) that may be lost with

the use of purely geometrical characterizations, as the ones

needed in synthesis. This limits the application of these

kind of sign representations for automatic recognition, es-

pecially since we would want to exploit known linguistic

patterns by adding them as properties of our descriptions.

Works like (Kervajan et al., 2006; Dalle, 2006) have ac-

knowledged the necessity of introducing linguistic infor-

† Supported by CONACYT (Mexico) scholarship program.

mation to enrich interaction, in an effort to help automatic

systems bear with ambiguity. Moreover, the use of addi-

tional linguistic data could simplify connections between

lexical information and higher syntactic-semantic levels,

hence pushing us closer to automatic discourse analysis.

However, this has long been out of the scope of synthesis-

oriented description languages.

On the side, research in SL recognition has to deal with

other important drawbacks not present in synthesis, namely

the use of very specialized tools or very specific corpora.

This alone can severely impact the portability of a formal,

computer-ready, representation out of the original research

context, as it complicates the use of the same techniques

across different information sources and toughens integra-

tion with new tools.

The framework described here is based on previous work

presented by (Curiel and Collet, 2013) on the Propositional

Dynamic Logic for Sign Language (PDLSL). PDLSL is a

formal logic created with the main purpose of represent-

ing SL signs in a computer-friendly way, regardless of the

specific tools or corpora used in research. Such a repre-

sentation can potentially reduce the overhead of manually

describing SL signs to a computer, by establishing well-

known sets of rules that can be interpreted by both humans

and automatic systems. This could, incidentally, reduce de-

pendency on thoroughly geometrical descriptions. More-

over, the flexibility of PDLSL lets us combine any kind of

information in our descriptions; for example, we can in-

tegrate non-manual markers if we have sight and eyebrow

tracking, or we can add 3D movements if we are using a

depth camera.

In general, we propose an automatic SL lexical annotation

framework based in PDLSL descriptions. Ideally, the sys-

tem will:

• simplify the application of logical inference to recog-

nize PDLSL-described signs;

• characterize and analyze corpora in terms of PDLSL

models;

• represent SL with different degrees of granularity, so

as to adapt the formulae to the specific technical capa-

bilities available in each use case.

Our framework aims to ease the integration of PDLSL with

various corpora and tracking technologies, so as to improve

communication between different SL research teams. We

expect that this will, in turn, enable the construction of both

research and user-level applications in later stages.

The rest of the paper is divided as follows. In section 2., we

introduce the basic notions of our formal language, applied

to 2D SL video-corpora analysis. Section 3. shows how

we can describe SL lexical structures as verifiable PDLSL

formulae. Section 4. gives a detailed description of the sys-

tem’s architecture. Finally, sections 5. and 6. present some

preliminary results and conclusions, respectively.

2. Sign Language Formalization with Logic

The Propositional Dynamic Logic (PDL) is a multi-modal

logic first defined by (Fischer and Ladner, 1979) to charac-

terize computer languages. Originally, it provided a formal

framework for program descriptions, allowing them to be

interpreted as modal operators. PDLSL is an specific in-

stance of PDL, based on the ideas of sign decomposition

by (Liddell and Johnson, 1989) and (Filhol, 2008). In gen-

eral, PDLSL’s modal operators are movements executed by

articulators, while static postures are interpreted as propo-

sitional states reachable by chains of movements.

A propositional state will be none other than a set of dis-

tinct atomic propositions. These can be used to represent

articulators’ positions with respect to one another; specific

configurations; or even their spatial placement within a set

of places of articulation. Table 1 shows a brief summary of

the atomic propositions defined to analyze 2D corpus data.

Symbol Meaning

β1
δ
β2

articulator β1 is placed in relative direc-

tion δ with respect to articulator β2.

Fβ1

c articulator β1 holds configuration c.

Ξβ1

λ articulator β1 is located in articulation

place λ.

T β1

β2
articulator β1 and β2 touch.

Table 1: Atomic propositions for PDLSL

Basic movements can be described by atomic actions cod-

ifying either their direction, speed or even if they follow a

particular trajectory. This is exemplified by the definitions

on Table 2, which presents some of the operators used to

characterize 2D corpus movements.

Both atomic propositions and actions presented in this case

were chosen specifically to capture information that we are

able to detect with our tracking tools. Different sets of

atoms can be defined depending of the technical capabil-

ities available to assert their truth values (e.g. sight direc-

tion, eyebrow configuration, hand movement, etc).

Symbol Meaning

δβ1
articulator β1 moves in relative direction

δ.

!β1
articulator β1 trills, moves rapidly with-

out direction.

skip denotes the execution of any action

Table 2: Atomic actions for PDLSL

Atoms form the core of the PDLSL language, which is pre-

sented below in Backus–Naur Form (BNF) by way of defi-

nitions 1 and 2.

Definition 1 (Action Language for SL Body Articulators

ASL).

α ::= π | α ∩ α | α ∪ α | α;α | α∗

where π is an atomic action.

Definition 2 (Language PDLSL).

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ

where p denotes an atomic proposition and α ∈ ASL.

A more formal presentation of the model basis can be found

in (Curiel and Collet, 2013).

3. Extending PDLSL formulae to Describe

Sign Language Lexical Properties

The presented PDLSL language lets us easily codify indi-

vidual signs by way of our logic formulae. However, during

implementation, we noticed the need to extend the original

formalism in order to develop a better suited characteriza-

tion of more general properties. We wanted to represent

lexical structures common across multiple signs. With this

in mind, we extended PDLSL to include lambda expres-

sions, explained in (Barendsen, 1994), for variable binding.

The introduced syntax is presented in definition 3.

Definition 3 (Extended PDLSL).

var ::= 〈uniqueID〉 | var, var

ϕf ::= ϕ | var | ¬ϕf | ϕf ∧ ϕf | λ var.(ϕf) | var = ϕf

where ϕ ∈ PDLSL.

The rules of quantification and substitution remain the same

as in classic lambda calculus.

Lambdas let us describe properties over sets of PDLSL

atoms instead of one. For example, Figure 1 shows

two french sign language (FSL) signs, SCREENFSL and

DRIVEFSL. Both can be described as instances of the same

underlying common structure, characterized by both hands

holding the same morphological configuration while being

positioned opposite from one another.

Their common base can be described by way of a lambda

expression as shown in example 1.

Example 1 (opposition lambda expression).

hands config = λc.(F right
c ∧ F left

c)

opposition = λc.(right←left ∧ hands config(c))

SCREENFSL DRIVEFSL

COMMON STRUCTURE

Figure 1: Comparison of signs SCREENFSL and DRIVEFSL
sharing the same underlying structure

In example 1, F
right
c means that right holds configura-

tion c. AtomF left
c has the same meaning, but for the left

hand. Atom right←left means that right hand lies in direc-

tion← with respect to left, from the annotator’s point of

view. In this case we called our expression opposition, be-

cause both hands are in opposite horizontal positions from

one another.

Once we’ve defined the base structure, the SCREENFSL and

DRIVEFSL signs can be easily described in the database by

passing the missing arguments to our lambda expression (as

shown by example 2).

Example 2 (opposition-derived signs).

SCREENFSL = opposition(L FORM)

DRIVEFSL = opposition(FIST FORM)

In example 2, L FORM is a morphological configuration of

the hand where the thumb and the index fingers are held or-

thogonally. Similarly, FIST Form is a configuration where

hand is held as a closed fist. Here we just expressed that

opposition will substitute each apparition of its first ar-

gument with either form, so as to define two distinct signs.

We could also have described both signs as standalone, in-

dependent formulae. However, by describing the common

structures across different signs, we are able to cope bet-

ter with incomplete information in recognition. For exam-

ple, a generic opposition structure with free variables will

correctly hit in states where we can recognize hand posi-

tions but no hand configurations (as it’s often the case).

This immediately derives into a list of possible signs that

could be later reduced with either further processing or with

user interaction. In this scenario, standalone formulae for

SCREENFSL and DRIVEFSL wouldn’t be found, since only

using position information isn’t enough to tell them apart.

4. Detailed Framework Architecture

The objective of the system is to take an untreated SL video

input, either in real time or not, and return a set of satis-

fied PDLSL formulae. Moreover, the system has to return

a PDLSL model representing any relevant information con-

tained in the video as a labeled transition system (LTS).

This can only be fulfilled by adapting the modeling pro-

cess on-the-fly to the specific characteristics of our data. To

achieve this end, our framework generalizes the original ar-

chitecture proposed by (Curiel and Collet, 2013), shown in

Figure 2, so as to enable module swapping depending on

the technical needs presented by the inputs.

Corpus

Tracking
and Seg-
mentation

Module

Key pos-
tures &

transitions

PDLSL

Model
Extraction

Module

PDLSL

Verification
Module

PDLSL

Graph

PDLSL

Formulae
DB

Verified
Properties

Figure 2: Block diagram of a generic PDLSL-based SL

lexical structure recognition system

In the original version, a Tracking and Segmentation mod-

ule uses the raw data of an automatic hand-tracker on 2D

corpora, like the one presented by (Gonzalez and Collet,

2011), and returns a list of time-intervals classified either

as holds or movements. The aforementioned interval list is

passed to the Model Extraction Module, which translates

each hold and movement into a time-ordered LTS. In the

LTS, holds correspond to unique propositional states and

movements map to transitions between states. An example

of the resulting LTS is shown in Figure 3.

.

.

.

R
ր

L

Ξ
L

TORSE

Ξ
R

R SIDEOFBODY

¬FR

L CONFIG

.

.

.

.

.

.

R
←
L

Ξ
L

L SIDEOFBODY

Ξ
R

R SIDEOFBODY

FR

KEY CONFIG

.

.

.

րL

!D ∩!G

.

.

.

R
←
L

Ξ
L

CENTEROFBODY

Ξ
R

R SIDEOFHEAD

FR

BEAK CONFIG

.

.

.

ւL
.
.
.

R
←
L

Ξ
L

L SIDEOFBODY

Ξ
R

R SIDEOFBODY

FR

OPENPALM CONFIG

.

.

.

րL

Figure 3: Example of modeling over four automatically

identified frames as possible key postures

Finally, the Verification Module takes both the generated

LTS and a database of PDLSL formulae to determine which

of them are satisfied in the model. As each formula corre-

sponds to a formal description of a sign or property, the

module can use logical satisfaction to verify if the prop-

erty is present or not in the video. The complete process

is shown in Figure 4. Finally, the system maps each state

where a formula is satisfied to its corresponding frame in-

terval, so as to generate an annotation proposition.

Figure 4: Example of the different layers processed by an

automatic annotation system

4.1 Observer Architecture Design

In order to be able to adapt dynamically to the particular

needs of the input data, we devised the observer architec-

ture shown in Figure 5.

The main idea behind this design rests upon two axes:

• the possibility of using several tracking tools, adapted

to different kinds of corpora;

• the generation of PDLSL models consistent with the

information generated by the different trackers.

Moreover, not only do models have to be consistent with

every tracker but, as previously stated, not all trackers

will give the same information nor track the same fea-

tures. As such, the framework has to coordinate the load-

ing of the proper modules depending on the corpus and the

trackers. This process is entirely done by way of event-

triggering. The same mechanism enables communication

between modules by implementing multiple-reader/single-

writer (MRSW) buffers, which allow every module to read

their information but let only one of them write modifica-

tions. Each time a new modification is written in a MRSW

register, an event is issued system-wide to notify of the ex-

istence of new information. This event is then available to

every module listening to that register’s notifications. For

the sake of compatibility, modules are obliged to implement

an internal listening thread which can be subscribed to the

communication channels of any other module.

In general, the framework establishes development guide-

lines for the modules of the basic architecture, the one

shown on Figure 2, so we can adapt them to specific cases

without breaking compatibility. This is achieved by way

of generic templates that implement the most basic func-

tionalities of every module. These templates can later be

extended to cover the specific cases arising in research; a

developer can simply override the critical functionality in

each template with their own code. Additionally, modules

can register new events within the framework, so as to con-

vey further information (if needed) for particular cases. As

such, the system is capable of distributing self-contained,

interchangeable, modules that can adapt to different situa-

tions.

The execution process is also fairly straightforward. At

the beginning a Start event is fired-up, prompting to load

both a video stream and a tracker. This corresponds to the

Tracking and Segmentation Module on the basic architec-

ture (Figure 2). The system chooses between the compat-

ible video inputs and pairs the selection with the proper

tracker. This is done by reading the events sent out by the

loading functions. Likewise, the model construction rules

are loaded after a compatible set of video/tracking inputs

has been selected. In this way, we can assure that the mod-

eling algorithm will only take in account pertinent rules,

those relying on the specific features we are tracking. This

mechanism avoids generating models based on hand posi-

tions, for example, if our tracker is only capable of detect-

ing non-manuals. Once a compatible set of modules is acti-

vated, the process can continue as proposed by (Curiel and

Collet, 2013).

5. Experimental Results

We obtained some preliminary results on the proposed

framework by implementing the system’s core and a set of

minimal templates for each of the modules on Figure 2. The

core contains the necessary data structures to represent both

PDLSL models and formulae, alongside the semantic rules

necessary to acknowledge logical satisfaction.

For the creation of the module templates, we considered

two possible scenarios:

• the system is being used to annotate previously cap-

tured video corpora;

• a camera as going to be used as input for real-time sign

recognition.

Furthermore, we had to consider two distinct cases when

treating video; whether we had 2D or 3D information avail-

able for determining relationships between hands and body.

For simplicity, we worked only with hand-tracking data.

Nevertheless, the addition of non-manual trackers is also a

possibility, since introducing new modeling rules for non-

manuals follow the same principles of the 2D to 3D transi-

tion.

Once all the framework tools were in place, we created a

specific implementation for the 2D case, when tracking fea-

tures over existing corpora.

5.1 Automatic Annotation in 2D Corpora

To obtain some initial results over real-world data, we de-

veloped the first modules based on the atoms originally pre-

sented with the PDLSL language. Additionally, we created

a property database made of PDLSL formulae, adapted to

be used with our tracking device. The database position in

the architecture is shown in Figure 5, as the node Lexical

Formulae. The formulae were exclusively constructed for

the 2D case; this means that, for any other kind of tracking

information, we would need to define new PDLSL database

with different properties. For tracking, we used the tracker

developed by (Gonzalez and Collet, 2011), which is capa-

ble of finding 2D positions of the hands and head over SL

video corpora. As for the SL resources, we used an in-

stance of the DictaSign corpus (DictaSign, 2012) as video

input for our system.

Since the used tracking tool is not adapted for real-time pro-

cessing, the implemented tracking module just recuperates

the previously calculated information from an output file.

This is done sequentially, after each successful querying of

a new video frame, to simulate real-time.

To calculate the posture segmentation we used the method

proposed by (Gonzalez and Collet, 2012), which is based

on measuring speed-changes.

Our PDLSL description database contains four structures:

opposition. λc.(right←left ∧ hands config(c)). Hands

are opposite to each other, with the same configura-

tion.

tap. λs, w.(¬T s
w → [moves(s) ∪ moves(w)]T s

w →
[skip; skip]¬T s

w). Hand touches briefly the other

hand, only for a single state.

buoy. λs, posture.(posture ∧ [moves(s)∗]posture). The

state of one hand remains the same over several states,

regardless of the movements of the other hand.

head anchor. λs, w, posture.(buoy(s, posture)∧ T head
w).

One of the hands remains within the head region while

the other signs.

The posture variable denotes the propositional state of an

articulator. The moves(s) function can be interpreted as

any action executed by articulator s. We omit the complete,

formal definition of this operator for the sake of readability.

To measure the hit ratio of the system, we manually anno-

tated the apparition of the described properties in one video

within the corpora. Table 3 shows the quantity of observed

apparitions of each property over the chosen video.

ϕ oppos. buoy tap h. anch.

Total 76 40 33 74

Table 3: Manually annotated apparitions of property

formulae on one video

Figure 5: Information and control flow in the SL annotation framework

For each signer, the system creates a model based only on

the atoms specified by the modeling rules. It then uses the

created model to verify every formula on-the-fly. The ex-

ecution of our algorithm over the same video rendered the

results shown in Table 4.

ϕ oppos. buoy tap h. anch.

Total 164 248 79 138

Table 4: Total reported hits of property formulae on one

video

On Table 4 we can see the total number of times each of the

formulae were verified on the video, as returned by the sys-

tem. We compare the human annotations with these results

on Figure 6.

TOTAL OBSERVATIONS

ϕ oppos. buoy tap h. anch.

By hand 76 43 33 74

Automatic 164 245 79 138

Automatic

ϕ oppos. buoy tap h. anch.

H
u
m
a
n

oppos. 67 64 10 33

buoy 22 40 7 17

tap 15 24 25 11

h. anch. 23 50 13 44

False P. 37 67 24 33

Figure 6: Formulae verification results

Figure 6 shows data from both Tables 3 and 4, alongside a

matching table where, for each property formula, we count

the quantity of times it was verified on previously human-

annotated frames. Each row represents the total number

of human observed apparitions of one property, while each

column represents the quantity of positive verifications re-

ported by the system for each formula. For example, cell

(opposition, opposition) shows the total number of times

the opposition formula was correctly verified on human-

annotated opposition frames. The next cell, (opposition,

buoy), holds the number of times the buoy property was

verified on human-annotated opposition frames. Positive

verifications can overlap, i.e. the system could have verified

two or more formulae over the same states of the model.

Therefore, a single annotation could belong to different

classes. The cells on the last row of the table correspond to

false positives, reported detections that don’t overlap with

any human observation.

Further analysis on the matching table is represented on Ta-

ble 5, which shows the total number of correctly and incor-

rectly classified formulae, as well as the total mismatches.

The results show a high recognition rate for opposition,

buoy and tap, but also a high quantity of misclassification

hits and false positives. Most of the erroneous hits are due

to the definitions of the properties themselves. Take, for

example, opposition and buoy properties. In the video,

some of the states satisfying a buoy could easily be classi-

fied as opposition. When this happens, the only thing that

ϕ
HUMAN OBS.

ERRONEUS MATCH
HIT MISS

opposition 67 9 107

buoy 40 3 46

tap 25 8 50

h. anchor 44 30 86

Table 5: Per-formula summary of the total number of

observations found, missed and erroneously classified

observations

differentiates them, if we only have tracking information,

is their movement: if a hand is moving is a buoy, other-

wise is an opposition. Even though this is not always the

case, sometimes the situation arises and the system con-

fuses these properties for one another; if some of the move-

ments of the hands are too fast, or not ample enough, when

performing a buoy, the system interprets them as a static

posture, therefore classifying some of the internal states

of the buoy as opposition. This, however, doesn’t im-

pede finding the buoy, since the definition of buoy specifies,

from the beginning, an arbitrary number of internal states,

hence not affected by having found one instead of two dis-

tinct states. The opposite case might also arise, when a

short involuntary movement, is interpreted by the system

as an intended action instead of noise, hereafter classifying

an opposition as a buoy, or even as two sequential oppo-

sitions. Similar arguments can be made for tap and head

anchor, where movement thresholds alone can affect the

form and the quantity of states on the LTS. In the future, we

expect that adding new information will reduce the quantity

of misclassified data, specially because this will result in a

more fine-grained model from the beginning.

At this stage, the system returns a list of proposed proper-

ties as result of the verification phase. What the numbers on

Table 5 mean is that, in most cases, the proposed annotation

will almost never return single properties but rather sets of

properties. This may not be a problem with simple formu-

lae like the ones described, but would be problematic with

complete sign descriptions; there is such thing as too much

information. In that case, we would need a human being

to complete the classification process. This points out the

need or a higher level module in charge of cleaning the an-

notation proposal by way of machine learning techniques.

Finally, most of the false positives that don’t correspond

to any overlap with human observations were caused by

signer’s movements without communication intent. For

example, some opposition properties were found when a

signer crossed his arms, when his hands were posed over

his knees or when he assumed other natural repose posi-

tions. Similarly, some co-articulatory movements created

chains of states that satisfied the formulae for buoy or tap.

These cases could also be reduced with help of a higher

level module or a human expert.

5.2 Extending to 3D

Currently, we are extending the system to model features

tracked in 3D. We have already extended the framework

to process data returned by the Kinect (Microsoft, 2013),

a motion sensing device capable of tracking 3D positions

on several body articulations. Figure 7 shows the points

that can be tracked by using the Kinect with it’s official

development kit.

Figure 7: Points tracked by the Kinect device (Microsoft,

2013)

For the moment, we have been able to reuse the same mod-

eling rules that we implemented for the 2D case; mainly,

we have used the Kinect tracker to obtain 3D position data

of hands and head, and we have projected this information

in 2D. This lets us create the same kind of models we build

from corpora. However, the variety of the tracked articu-

lations and the 3D capabilities of the sensor, call for the

definition of more complex atoms and lambda properties,

as well as 3D descriptions of individual signs. As of 2014,

work is still ongoing on the matter and has not been prop-

erly evaluated. Nevertheless, we considered important to

point out that we can already exchange trackers if needed,

so as to showcase the flexibility of our framework.

6. Conclusions

Here we have presented an automatic annotation frame-

work for SL based on a formal logic. The system lets us

represent SL video inputs as time-ordered LTSs by way of

PDLSL, a multi-modal logic. We have shown that it is pos-

sible to use the resulting graph to verify the existence of

common lexical structures, described as logical formulae.

Furthermore, the framework gives us the necessary tools to

adapt the model generation for different corpora and track-

ing technologies.

From the point of view of recognition, we noticed that the

quality of the tracking tools is of utmost importance for

both formula definition and model generation. The low

presence of information and high levels of noise immedi-

ately took a toll on verification; in some cases, we lacked

enough information to distinguish between intended move-

ments and noise. In turn, this resulted on high rejection

rates of what would otherwise be considered hit frames.

Similarly, we noticed that modeling can be affected by the

presence of low information, which can render states in-

distinguishable. For instance, without hand configurations

every state satisfying opposition is, effectively, the same

state. Therefore, every formula sharing the same opposi-

tion base would be satisfied on that single state. This could

gravely affect the system’s performance; in the worst case,

all states could satisfy all formulae. On the other hand, a

too fine-grained model can lead to a LTS that replicates

the same problems we have in synthesis-oriented descrip-

tions. In that case, we would need very specific formulae

(with near to perfect SL corpora) to achieve any identifica-

tion at all. Similarly, formula creation can’t be neither too

broad nor too specific, if we want to minimize the quantity

of imperfect matches. Anyhow, one of the advantages we

have by using a logical language is that we can control the

granularity of information simply by defining or discard-

ing atoms, which opens the door to the use of algorithmic

techniques to control information quantity.

From the point of view of the implementation, the results

of the 2D experiments show that further effort has to be put

on integrating new sources of information to the system, es-

pecially if we want avoid false positives. Even though the

system is in place and works as expected, the high quan-

tity of erroneous hits reflects the gravity of the problems

we can have with indistinguishable states. Further compar-

isons have to be done once the system completely incorpo-

rates 3D modeling, so as to measure the effective impact of

additional information on verification.

Future work in recognition will be centered on implement-

ing machine learning techniques to improve verification.

Using data analysis to find relationships between detected

structures, could lead us to better results even in subopti-

mal environments. Additionally, we would like to integrate

communication with user level software like the one pre-

sented by (Dubot and Collet, 2012), a manual annotation

tool. This could lead to other possible uses of the frame-

work as engine for higher applications, such as dictionary

searching or even for automatic creation of sign description

databases from SL videos.

Further analysis will also target the building blocks of the

language, by changing the semantic definitions of PDLSL

operators to better suit SL. Changes to its syntax are also to

be expected, in an effort to ease the development of exten-

sions for different trackers and simplify descriptions. Fi-

nally, we want to steer further into 3D representation and

the inclusion of non-manual features, important stepping

stones towards higher level language processing.

7. References

Aronoff, M., Meir, I., and Sandler, W. (2005). The paradox

of sign language morphology. Language, 81(2):301.

Barendsen, H. B. E. (1994). Introduction to lambda calcu-

lus.

Bossard, B., Braffort, A., and Jardino, M. (2004). Some

issues in sign language processing. In Camurri, A.

and Volpe, G., editors, Gesture-Based Communication

in Human-Computer Interaction, volume 2915 of Lec-

ture Notes in Computer Science, pages 90–100. Springer

Berlin Heidelberg.

Cooper, H., Holt, B., and Bowden, R. (2011). Sign lan-

guage recognition. In Moeslund, T. B., Hilton, A.,

Krüger, V., and Sigal, L., editors, Visual Analysis of Hu-

mans, pages 539–562. Springer London.

Curiel, A. and Collet, C. (2013). Sign language lexical

recognition with propositional dynamic logic. In Pro-

ceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers),

pages 328–333, Sofia, Bulgaria, August. Association for

Computational Linguistics.

Dalle, P. (2006). High level models for sign language anal-

ysis by a vision system. In Workshop on the Representa-

tion and Processing of Sign Language: Lexicographic

Matters and Didactic Scenarios (LREC), Italy, ELDA,

page 1720.

DictaSign. (2012). http://www.dictasign.eu.

Dreuw, P., Stein, D., Deselaers, T., Rybach, D., Zahedi,

M., Bungeroth, J., and Ney, H. (2008). Spoken language

processing techniques for sign language recognition and

translation. Technology and Disability, 20(2):121–133.

Dubot, R. and Collet, C. (2012). Improvements of the dis-

tributed architecture for assisted annotation of video cor-

pora. In 5th Workshop on the Representation and Pro-

cessing of Sign Languages: Interactions between Cor-

pus and Lexicon., pages 27–30. Language Resources and

Evaluation (LREC).

Filhol, M. (2008). Modèle descriptif des signes pour un

traitement automatique des langues des signes. Ph.D.

thesis, Université Paris-sud (Paris 11).

Filhol, M. (2009). Zebedee: a lexical description model

for sign language synthesis. Internal, LIMSI.

Fischer, M. J. and Ladner, R. E. (1979). Propositional dy-

namic logic of regular programs. Journal of Computer

and System Sciences, 18(2):194–211, April.

Gonzalez, M. and Collet, C. (2011). Robust body parts

tracking using particle filter and dynamic template. In

2011 18th IEEE International Conference on Image Pro-

cessing (ICIP), pages 529 –532, September.

Gonzalez, M. and Collet, C. (2012). Sign segmentation us-

ing dynamics and hand configuration for semi-automatic

annotation of sign language corpora. In Efthimiou, E.,

Kouroupetroglou, G., and Fotinea, S.-E., editors, Ges-

ture and Sign Language in Human-Computer Interaction

and Embodied Communication, number 7206 in Lecture

Notes in Computer Science, pages 204–215. Springer

Berlin Heidelberg, January.

Kervajan, L., Neef, E. G. D., and Véronis, J. (2006).

French sign language processing: Verb agreement. In

Gesture in Human-Computer Interaction and Simula-

tion, number 3881 in Lecture Notes in Computer Sci-

ence, pages 53–56. Springer Berlin Heidelberg, January.

Liddell, S. K. and Johnson, R. E. (1989). American sign

language: The phonological base. Gallaudet University

Press, Washington. DC.

Losson, O. and Vannobel, J.-M. (1998). Sign language for-

mal description and synthesis. INT.JOURNAL OF VIR-

TUAL REALITY, 3:27—34.

Meir, I., Padden, C., Aronoff, M., and Sandler, W. (2006).

Re-thinking sign language verb classes: the body as sub-

ject. In Sign Languages: Spinning and Unraveling the

Past, Present and Future. 9th Theoretical Issues in Sign

Language Research Conference, Florianopolis, Brazil,

volume 382.

Microsoft. (2013). Tracking users with kinect

skeletal tracking, http://msdn.microsoft.com/en-

us/library/jj131025.aspx.

Ong, S. and Ranganath, S. (2005). Automatic sign lan-

guage analysis: a survey and the future beyond lexical

meaning. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(6):873 – 891, June.

Wittmann, H. (1991). Classification linguistique des

langues signées non vocalement. Revue québécoise de

linguistique théorique et appliquée, 10(1):88.

