
HAL Id: hal-01135447
https://hal.science/hal-01135447

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Analytical Study of an Isotropic Viscoplastic Sea Ice
Model in Idealized Configurations

Jérôme Sirven, Bruno Tremblay

To cite this version:
Jérôme Sirven, Bruno Tremblay. Analytical Study of an Isotropic Viscoplastic Sea Ice Model in
Idealized Configurations. Journal of Physical Oceanography, 2015, 45 (2), pp.331-354. �10.1175/JPO-
D-13-0109.1�. �hal-01135447�

https://hal.science/hal-01135447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Analytical Study of an Isotropic Viscoplastic Sea Ice Model in Idealized
Configurations
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ABSTRACT

Analytic solutions of a mechanical sea ice model are computed in idealized configurations. They are then

used to study the properties of this model. It classically assumes that the ice behaves at large scale as an

isotropic viscoplastic medium. The plastic regime is characterized by a Mohr–Coulomb yield curve. The flow

rule corresponds to the one used in granular mediums and depends on a parameter d that characterizes the

expansion properties of the medium. Using simplemodel configurations, this study first shows that a sliding of

the ice along the coast must be permitted; otherwise, the model generally has no solution when the plastic

regime is active. This study then shows that the viscous regime is reached only if the stress remains nearly

uniform over a large area. For a stress having no particular properties, the plastic regime acts everywhere. In

this case, the compressive stress may reach the maximum value allowed by the model close to the coastline.

The extension of the domain where the compressive stress is at its maximumdepends on d and the direction of

the forcing field. Over this domain, the ice behaves as a fluid material with a small negative viscosity. Last, the

authors found that neither the existence of the solution nor its unicity are guaranteed in this stationary model.

This result does not imply that the unicity is lost in the transient problem; it suggests that the evolution of sea

ice depends not only on the forcing, but also on the initial conditions or history of the system.

1. Introduction

Sea ice is formed by the freezing of seawater. How-

ever, this process alone is not sufficient to explain how

the ice fields are transformed during their life. Mechani-

cal processes are important to understand how the com-

bined action of temperature changes at the surface of the

ice, wind, and ocean succeeds in modifying the young ice

to create the pack ice that covers the polar oceans.

Sea ice is not a simple elastic solid whose properties

have been well known for more than a century. At large

spatial scale (larger than 100 km), the Arctic Ice Dy-

namics Joint Experiment campaign suggested that sea

ice could be treated as an isotropic continuous medium

(Coon et al. 1974). These assumptions have been recently

questioned (see, e.g., Coon et al. 2007; Rampal et al.

2008), and anisotropic (Hibler and Schulson 2000) or

discontinuous (Schreyer et al. 2006) models have been

developed. However, most of themodels used for climate

studies—a wide range of such models are described and

their performances discussed in the Arctic Ocean Model

Intercomparison Project (AOMIP; see Proshutinsky

et al. 2011)—still assume continuity and isotropy. Among

these models, those based on a viscous–plastic rheology

are the most frequently used; this includes the so-called

elastic–viscous–plastic models (Hunke and Dukowicz

1997), which have the same physics as the viscous–plastic

models but differ by their numerical implementation.

Models that represent the physical elastic stress are more

rarely used because of the complexity of the numerical

resolution. For instance, see Pritchard (2001) who ex-

plains how the elastic waves, which contaminate the

elastic–plastic numerical simulations, can be eliminated.

Sea ice models generally assume that the ice behaves

like a very viscous fluid when the strain rate is small
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(under a threshold value arbitrarily fixed). Beyond this

value, the ice is assumed to behave like a plastic medium:

the two principal stresses satisfy a relation that defines the

‘‘yield curve’’ (also known as the plasticity criterion) and

the strain rate tensor is linked to the stress tensor by a

‘‘flow rule,’’ the most common one being the ‘‘normal

flow rule.’’

Such assumptions are exceptional—even unique to

our knowledge—in the field of continuous medium

mechanics. Indeed, when the stress remains small, the

materials commonly studied inmechanics (oftenmetals)

behave as elastic media, of which the theory is well es-

tablished. The theoretical investigations are therefore

advanced for the static behavior of elastoplastic materials

[seeHill (1960) for a classic book or Salençon (2002) for a
more recent one], whereas they remain inexistent for

viscoplastic materials. Moreover, laboratory experiments

have been performed for a long time (more than a cen-

tury) in order to determine the validity of the assump-

tions that are made to study the plastic regime of metals

[Hill (1960) providesmany historical details]. Such studies

are just beginning for sea ice (Schulson and Nickolayev

1995; Schulson 2001) and suggest that sea ice can show a

brittle behavior when the strain rates are high (see also

Marsan et al. 2004).

Despite these difficulties or discrepancies, the visco-

plastic models are widely used and turn out to be efficient

to predict the thickness, concentration, and drift of sea ice.

Obviously, improvements are needed, and a large body of

work has been devoted to this effort [see Proshutinsky

et al. (2011) and the publications listed in their article and

associated with the AOMIP project]. The current search

around the viscoplastic rheology of sea ice is mainly de-

voted to determine the best yield curve and flow rule (e.g.,

Tremblay and Mysak 1997; Hibler and Schulson 2000;

Ukita and Moritz 1995; Wilchinsky and Feltham 2004;

Taylor et al. 2006) or to look for more stable and accurate

numerical models (e.g., Hunke and Dukowicz 1997; Heil

and Hibler 2002; Hunke and Dukowicz 2002; Lemieux

et al. 2008; Lemieux et al. 2010). However, little attention

has been paid to the mathematical properties of the

models themselves and their solutions. Only Gray (1999)

investigated the well-posedness of the equations of the

viscous–plastic sea icemodel ofHibler (1979) and showed

that, for a uniaxial divergent flow, the equations could be

unstable and ill posed because of the loss of hyperbolicity.

This paper investigates the mathematical properties

and solutions of viscous–plastic sea icemodels, but adopts

a more basic approach than that followed by Gray (1999)

and considers models different from the one of Hibler

(1979). Indeed, stationary exact solutions are searched in

very simple configurations for isotropic models with a

Mohr–Coulomb yield curve. This choice is not the most

usual in sea ice modeling but is now considered in a few

papers (see, e.g., Heil and Hibler 2002; Sedlacek et al.

2007) and is simple enough to allow analytic computa-

tions. Moreover, recent studies (Weiss et al. 2007) based

on the observations of Richter-Menge et al. (2002) give it

an experimental support.

Section 2 presents the model we study [similar to that

of Tremblay and Mysak (1997)]. In section 3, the ide-

alized configuration we consider is introduced and the

corresponding solutions are computed and studied when

the system behaves as a plastic medium. The following

section considers the simple and exceptional case of a

uniform free drift, where a viscous behavior may be

observed in a part of the domain. A discussion of the

results concludes the paper.

2. Isotropy and Coulomb friction law in sea ice
models

The sea ice models usually are one of many com-

ponents of climate models, which include at least

atmosphere, ocean, and land models. Here, these com-

ponents are not considered, and the physical variables

that they allow to compute (for example the wind stress

or the current velocity in the ocean) will be prescribed.

The focus is on the mechanical processes that play a role

in the evolution of sea ice. This approach is somewhat

artificial, since they interact with thermodynamical pro-

cesses; however, we make this assumption to isolate the

internal stresses and strains in the sea ice from the other

variables, and, by doing so, we hope to clarify the prop-

erties of sea ice models.

a. Free drift of sea ice

The acceleration and advection terms can be neglected

in comparison with other terms in the momentum equa-

tion when long time scales (longer than about 1 day) are

considered (see, e.g., Thorndike 1986; Leppäranta 2005).
The free drift of sea ice ufd is then determined by a bal-

ance between the Coriolis force, the friction with the at-

mosphere and the ocean, and the gradient of dynamic

height at the ocean surface. This leads to the equation

rihf k3 ufd52rihg$(Hd)1 ta2 tw ,

where ta and tw are the stresses exerted respectively by

the wind and the ocean on the ice, Hd is the dynamic

height of the ocean, h is the ice thickness, ri is the ice

density, f is the Coriolis parameter assumed constant, k

is a unitary vector normal to the ice surface, and g is the

gravitational acceleration. The ice concentration A is

not taken into account in this equation for simplicity, but

could be introduced by multiplying ta 2 tw by A. In the
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free drift regime, the ice concentration is very low, and it

is important to include it correctly in the external forc-

ing. Here, we will only consider regimes where the in-

ternal stress is high; in this case, its effect is very weak

according to Tremblay and Mysak (1997).

The stress ta exerted by the wind on the ice surface

can be assumed independent of the ice drift because the

wind velocity is usuallymuch larger than the ice velocity.

On the contrary, the ocean drag on the ice flow tw de-

pends on the ocean currents as well as on the ice drift.

Following the formulation proposed by Hutchings et al.

(2005), we set tw 5 rwcwRuw(ufd 2 ug), where ug is the

geostrophic ocean current, uw is a fixed positive rotation

factor, and Ruw(�) is the rotation matrix of angle uw.

Quadratic drag laws (McPhee 1975) are more correct

and more frequently used; the linear law is used in the

following for simplicity. Rewriting rihg $(Hd) in term of

geostrophic velocity, we obtain

rihf k3 (ufd2 ug)1 rwcwRu
w
(ufd 2ug)5 ta .

Introducing the matrix

M5

�
rwCw cosuw 2ri f h2 rwCw sinuw

ri f h1 rwCw sinuw rwCw cosuw

�
,

the previous equation becomes ufd 5 ug 1 M21ta. To

facilitate the interpretation of this relation, wewriteM5
NR0, where N 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rihf )

2 1 2rirwhfCw sinuw 1C2
wr

2
w

q
is

a positive number and R0 a rotation matrix of angle u0:

R05

�
cosu0 2sinu0
sinu0 cosu0

�
,

with cosu0 5 rwCw cosuw/N and sinu0 5 (rihf 1
rwCw sinuw)/N . Hence, the free drift velocity can be

written as

ufd 5 ug1N21R21
0 ta . (1)

The variations of the coefficient N and angle u0 as a

function of the ice thickness h are shown in Fig. 1 (the

values of the constants are given in Table 1). The co-

efficientN increases with h, since the influence of thewind

becomes less important when the ice becomes thicker. For

the same reason, the turning angle u0 increases with h.

b. The assumptions about rheology: Isotropy and
Coulomb friction law

The material behavior of sea ice in viscous–plastic

models is characterized by the stress tensor integrated

over the thickness of the ice s. Its component sij acts on

a plane perpendicular to the i axis in the j direction. The

stress tensor is a function of the only strain rate tensor _�,

which suffices to characterize the deformation of sea ice

(the strain tensor is ignored). Both tensors being sym-

metric, they can be diagonalized after a rotation of the

coordinate axes x and y. For a common material, two

distinct rotations are needed; but for an isotropic ma-

terial, the same rotation can be used. In the rotated

coordinate axes these tensors take the form

FIG. 1. Variation of (top) N and (bottom) u0 as functions of the ice thickness h.
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s5

�
s1 0

0 s2

�
and _e5

�
_�1 0

0 _�2

�
, (2)

where s1, s2, _�1, and _�2 are the principal stresses and

strain rates. As shown in appendix A, the isotropy hy-

pothesis thus implies

sxx 52P1h(›xu2 ›yy)

sxy 5syx5h(›xy1 ›yu)

syy 52P2h(›xu2 ›yy)

,

8>><
>>: (3)

with

P52(s11s2)/2,

h5 S/D ,

S5 (s12s2)/2, and

D5 _�12 _�251
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu2 ›yy)

21 (›xy1 ›yu)
2

q
.

A more usual way of writing Eq. (3) is sij 5
2Pdij 2hTr( _e)dij 1 2h _�ij, where dij is the Kronecker

symbol and Tr(A) is the trace of a matrix A. This form

makes explicit a difference between the model described

here and the standard (Hibler) viscous–plastic model.

In the latter, the relation sij52[P1 (z2h)Tr( _e)]dij 1
2h _�ij is used. The second viscosity z does not appear in

our model; it is included in the unknown P.

Two supplementary relations must be specified to

determine P and S. When the deformation of sea ice is

plastic, the results of Weiss et al. (2007)—the second

figure of their article is reproduced here in Fig. 2—

coming from data of the Surface Heat Budget of the

Arctic Ocean (SHEBA) and Sea Ice Mechanics Initia-

tive (SIMI) experiments (Richter-Menge et al. 2002)

lead to adopt a coulombic rheology; it inherits its name

from the Coulomb’s friction law that characterizes

the sliding of an object on a plane. It assumes an affine

relation between s1 and s2: s1 5 as2 1 b. This relation

defines a wedgelike yield curve; the constant b allows us

to take into account a possible tensile strength. We re-

write this relation as follows:

S5
s12s2

2
5
�
2
s11s2

2
2P0

�
sinf5 (P2P0) sinf .

(4)

The constant P0 represents the maximum tensile strength,

and the angle f is the effective angle of friction that links

the shear and normal stresses acting on an object sliding

on a plane.

TABLE 1. Constants used in the numerical computations.

Variable Symbol Value

Water density rw 1025kgm23

Ice density ri 900kgm23

Air drag coefficient Ca 2.3 3 1023m s21

Water drag coefficient Cd 0.66 3 1023m s21

Water turning angle uw 258
Coulombic friction angle f 308
Ice thickness h 1.8m

Maximal compressive stress Pmax 7. 3 103 kg s22

Maximal viscosity hmax 1. 3 1012 kg s21

FIG. 2. Figure reproduced from Weiss et al. (2007). Stress states

recorded during the Arctic winter at the sensor Baltimore from

mid-October 1997 to end of June 1998 (1 measure per hour). The

top panel is plotted in a principal stress spaces1,s2, and the bottom

one is rotated 458.
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A second relation must still be specified. It adds to the

isotropy hypothesis and introduces a supplementary

relation between the stress tensor s and the strain rate

tensor _e. When the yield curve is elliptic, the most usual

one is given by a normal flow rule: it assumes that the

strain rate is normal to the stress on the yield curve. Here,

this would lead to the relation _�1 1 _�2 5 ( _�1 2 _�2) sinf.

Normal flow rules result in attractive mathematical

properties when the yield curve is convex—such as

a guarantee of positive dissipation—and have been

validated by experimental studies in metallurgy (see,

e.g., Hill 1960). However, they are not often used with

Mohr–Coulomb yield curves and the data of Stern and

Moritz (2002) suggest that they are inappropriate in this

case to represent sea ice rheology (see below); indeed

they lead to too much dilatation (divergence associated

with shear).

Here, we will assume in agreement with Tremblay and

Mysak (1997) that the strain rate makes a constant angle

(distinct from p/2) with the stress. This leads to replac-

ing sinf by a coefficient, tand, so that _�2 1 _�1 5
( _�1 2 _�2) tand. In the x, y coordinates, the divergence and

the shear deformation are thus linked by the relation

›xu1 ›yy5 tand
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu2 ›yy)

21(›xy1 ›yu)
2

q
. (5)

The system is therefore under divergence as soon as

tand . 0. Note that all the relations are given in this

section for s1 2 s2 . 0 and _�1 2 _�2 . 0 (part of Figs. 2

and 3 located under the axis of symmetry s1 5 s2).

Relation (5) was obtained by Tremblay and Mysak

(1997), who were able to give it a physical basis. They

considered a sea ice model based on a granular mate-

rial rheology. Assuming that the granules (ice floes

here) are small, moving planar objects (similar to

hockey pucks of various diameters), the small-scale

sliding of the individual granules may occur in a di-

rection that differs from the large-scale sliding of the

ice pack. Consequently, to model this process, they

introduced an angle between the mean small-scale

sliding planes and the large-scale sliding plane; they

called it the dilatancy angle d. We adopt this formu-

lation below.

Stern andMoritz (2002) studied the sea ice kinematics

from the Canadian RADARSAT satellite over the

SHEBA site and showed that the divergence is usually

much smaller than the shear deformation: for example,

in autumn and early winter, the ratio between these two

values is smaller than 0.14 at the 200-km scale. Conse-

quently, to avoid unrealistic divergence or convergence

of the ice velocity, it is reasonable to assume that the

angle d is bounded by6108 (tand560.176). Considering

FIG. 3. Schema describing themechanical states of the sea ice in themodel.When the plastic-

compressive regime is operating, the flow rule _�1 1 _�2 5 ( _�1 2 _�2) tand no longer applies. The

flow rule with tand and the normal flow rule are represented by the dashed and continuous bold

lines crossing the axes _�1 and _�2.
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the results of Stern and Moritz (2002), the normal flow

rule is clearly wrong. However, since it is frequently

used when the yield curve is elliptic, we briefly in-

vestigate this unrealistic case. It corresponds to tand5
sinf (for f 5 308, sinf 5 0.5, and d 5 248).
With these hypotheses, the plastic regime is character-

ized by Eqs. (3), (4), and (5). The open circles on the thin

continuous lines limiting the triangle in Fig. 3 correspond

to this regime.

Other states of the system may be characterized by

points that are inside the triangle (symbolized by a 1
sign in Fig. 3). These points verify S , (P 2 P0) sinf

and S . 2(P 2 P0) sinf (P . P0). The model assumes

that ice flow is viscous in this case, following the choice

made in the vast majority of publications. We thus set

h 5 hm, where hm is the maximum authorized value

of the coefficient h. Since Eq. (3) may be based on a

physical ground linked to the geometry of the ice floes

(Tremblay and Mysak 1997), we assume that it is still

verified in this case.

Last, the compressive stress cannot indefinitely in-

crease in sea ice. To take this into account, various

solutions have been proposed. For example, Hibler

and Schulson (2000) closed the two straight lines as-

sociated with the coulombic rheology by an elliptic

curve when P exceeded a critical value. The resulting

yield curve had the shape of an ice cream cone (see also

Coon et al. 1974). Others’ solutions have been sug-

gested leading to yield curves similar to a triangle

(Tremblay and Mysak 1997), a lemon (Taylor et al.

2006), and so on.

Here, we try to define a model as close as possible to

the observations. The experimental data from Richter-

Menge et al. (2002) (see Fig. 2) show that the set of stress

states is not convex; consequently, the yield curve that

enfolds them is also not convex (this contrasts with the

usual hypothesis of convexity made in plasticity theory).

Considering these experimental results, we abandon the

idea of closing the yield curve.We assume thatP2P0 can

reach the maximum value Pmax only at the extremity of

the segments defining the plastic behavior (stars in

Fig. 3), following a path that becomes tangent to these

segments close to the extreme points. As a conse-

quence, the Coulomb friction law (4) is still valid when

P2 P0 5 Pmax, but Eq. (5) is not now applicable. It will

be seen below that the flow rule is determined by the

system itself; in particular the relation _�1 . _�2 is no

longer verified when s1 . s2. This point is discussed in

more detail in section 3.

c. The sea ice momentum and continuity equations

Our main aim consists in understanding the conse-

quences of the assumptions made about rheology in

section 2b.We thus assume that the sea ice thickness h is

known and constant.1 Figure 1 allows us to assess the

impact of this hypothesis on the matrix M. It shows that

the hypothesis remains reasonable when h varies in a

range smaller than about 2m, that is, over a large surface

of the Arctic Ocean. However, it is poor when h sustains

strong variations; indeed,N varies from about 0.7 to 1.4

and u from 258 to 658 when h increases from 0 to 8m. In

this case, the quantitative results are no longer valid, but

the nature of the differential equations we study [see

below, Eq. (6)] is not modified. Consequently, the qual-

itative results are not affected.

Everywhere the internal stress is negligible the ve-

locity of the ice u is equal to the free drift velocity ufd.

When contact forces appear, this equality is no longer

verified and the Newton second law specifies how it is

modified:

NR0(ui 2 ufd)5$ � s . (6)

As a consequence of isotropy, the divergence of the

stress tensor is given by

$ � s5

(
2›xP1 ›x[h(›xu2 ›yy)]1 ›y[h(›yu1 ›xy)]

2›yP1 ›x[h(›yu1 ›xy)]2 ›y[h(›xu2 ›yy)]

)

(7)

[see Eqs. (3)]. The supplementary hypotheses that have

been done (a coulombic rheology, a ‘‘granular flow

rule,’’ andmaximum authorized values for h andP) lead

to distinguish three states in the system:

d In the first state (circles in Fig. 3), sea ice behaves as

a plastic material. We have

h5
(P2P0) sinfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(›xu2 ›yy)
21 (›yu1 ›xy)

2
q (8)

associated with the dilatancy equation [Eq. (5)]. We

refer to this case as the ‘‘plastic-shear regime’’ below.
d In the second state, the Coulomb friction law is aban-

doned as soon ash becomes larger thanhm (symbol1 in

Fig. 3). It is replaced by the relation h 5 hm, and the

dilatancy equation is kept unchanged. We refer to this

case as the ‘‘viscous regime’’ below.
d Last, if P 2 P0 reaches the maximum value Pmax, the

dilatancy equation is abandoned and h is equal to

1A dynamic–thermodynamic model include amass conservation

equation; our hypothesis means that the unknown sources and

sinks of mass would adjust in such a model, in such a way that h

remains constant.
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6Pmax sinf/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu2 ›yy)

2 1 (›yu1 ›xy)
2

q
. This state is

characterized by the two stars in Fig. 3.We refer to this

case as the ‘‘plastic-compressive regime’’ below. Note

that this case is the consequence of a plastic behavior.

However, we distinguish it from the first case and give

it another name for clarity. Indeed, it differs from the

plastic-shear regime on two points: the compressive

stress becomes uniform and the flow rule, which led to

Eq. (5), is no longer verified.

In the first two cases (plastic shear and viscous be-

havior), a system of three differential equations is

obtained, which allows us to compute the three variables

P, u, and y. In the third case, the pressure P is known and

two equations suffice to compute u and y. The apparent

simplicity of the problem (only three unknowns in a two-

dimensional space) hides a considerable technical diffi-

culty: the limit of the domain where each regime applies

is unknown and thus must be computed. In the following

section, we consider a simplified setup, which will make

this computation possible.

3. Translation invariant solution of the model

To study the model described in the previous section,

the geometry of the domain is first simplified; we first

assume that the coast is a straight line that defines the y

axis. Then, we suppose that the external forcings ug and

ta yield a free drift ufd 5 (ufd, yfd) that depends only on

the distance x to the coast [see Eq. (1)]. Rather than

prescribing ug and ta, we choose to prescribe ufd. This is

coherent with the hypothesis that the ice thickness is

known and uniform (N and R0 are known).

With these simplified geometry and forcing terms, the

model admits a solution fP(x), u 5 [u(x), y(x)]g that

depends only on x. This solution is determined by the

vector equation

NR0(u2 ufd)5 ›x(2P1h›xu)ex1 ›x(h›xy)ey (9)

(ex and ey are unitary vectors respectively perpendicular

and parallel to the coast), and supplementary equations

that depend on the state of the system (see section 2c

and Fig. 3). These equations are summarized below.

d Plastic-shear regime: h5 (P2P0) sinf/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
and ›xu5 tand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
. The name ‘‘dilatancy

equation’’ will hereinafter refer to this last equation,

which is a particular case of the general dilatancyEq. (5).

d Viscous regime:h5 hm and ›xu5 tand
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
.

d Plastic-compressive regime: P 2 P0 5 Pmax and h5
(s1 2s2)/[2(_�12 _�2)]56(P2P0) sinf/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
.

A different sign for s12 s2 and _�1 2 _�2 is here allowed

(symbol 6).

a. Plastic-shear regime

The dilatancy equation ›xu5 tand
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
is

easily solved. We rewrite it as (›xu)
2(1 2 tan2d) 5

(›xy)
2 tan2d that leads to

y5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 tan2d

p

tand
u1 yi , (10)

where yi is an arbitrary constant and � 5 61; ›xu and

tand have the same sign, which adds a constraint on

the sign of �. Note that the case d 5 0 leads to the so-

lution u 5 u0 and therefore is meaningless here (see the

discussion about d in the conclusion).

Using the dilatancy equation, the expression of h (first

bullet in section 3), and Eq. (10), we have h›xu 5 (P 2
P0) sinf tand and h›xy 5 �(P 2 P0) sinf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 tan2d

p
,

where the dilatancy angle d, which models the micro-

scopic properties of the medium, is a specified constant.

Consequently, the momentum equation takes the form

NR0(u2 ufd)5
›P

›x
(2ex1 sinft) , (11)

where t5 tandex 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 tan2d

p
ey is a unitary vector

that depends only on d, and P0 no longer appears.

Equation (11) is satisfied only if u2 ufd is colinear to the

vector K5 (Kx, Ky)5R21
0 (2ex 1 sinft), which is ob-

tained from the vector 2ex 1 sinft after a rotation of

angle 2u0. Noting K? 5 (2Ky, Kx), this condition be-

comes hu 2 ufd, K
?i 5 0, where ha, bi represents the

scalar product of a and b. Substituting the expression of

u 5 uex 1 yey and using Eq. (10) yield

uht,K?i1 yi tandhey,K?i5 tandhufd,K?i .

A supplementary condition should be added to de-

termine the value of the constant yi. If the domain where

the ice has a plastic behavior extends up to the coast,

the component of the velocity perpendicular to the coast

u must vanish. A more restrictive condition cannot

be imposed. This means that the ice may slip along the

coast. If this domain ends along the unknown line x 5
x0. 0, the regime changes beyond this line. As sea ice on

both sides of the line x 5 x0, it seems natural to assume

that u is continuous at x 5 x0.

A fastidious computation (see appendix A) leads to

the following expression for u:

u5
hufd 2u0fd,K

?i
ht,K?i t1

hu0fd,K?i
hey,K?i ey 1u0

K

hK, exi
. (12)

Here, u0fd and u0 represent the free drift velocity and the

component along the x axis of the drift velocity u at the
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unknown abscissa x 5 x0. This expression is used just

below with x0 5 0—the plastic-shear regime occupies

the whole domain in this case—and will be used in the

next subsection to connect the plastic-shear and plastic-

compressive regimes.

Multiplying Eq. (11) by t?, an explicit expression of

›xP is obtained:

N ht?, u2ufdi
ht?,Ki 5 ›xP .

Using Eq. (12), and the fact that the compressive stress

vanishes at x5 L, abscissa of the ice edge, P is given by

the relation

P(x)

N 5

ðx
L

 
hu0fd 2 ufd, t

?i
ht?,Ki 1

u02 hu0fd, exi
hex,Ki

!
dx (13)

(see appendix A for more details about the computa-

tions). Relations (12) and (13) are valid only if h, hmax

FIG. 4. (top to bottom) Free drift velocity, corresponding sea ice velocity, compressive stress

(kg s22) (the allowed maximum is indicated by the dashed line), and viscosity coefficient

h (kg s21). All the fields are represented as a function of the distance from the coast (km). The

solid black rectangle represents the land.
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and P 2 P0 , Pmax. Since h 5 (P 2 P0) sinf tand/›xu,

this leads with Eq. (12) to the constraint

h5 (P2P0) sinf
ht,K?i

h›xufd,K?i,hmax .

Consequently, the plastic-shear regime is active as soon

as the gradient of the free drift velocity is large enough;

more precisely it suffices that the inequality k›xufdk $

(P2 P0)/hmax is verified. For a compressive stress close to

Pmax, this means that spatial variations of free drift velocity

of about 1 cms21 over a distance not exceeding 400km

lead to a plastic behavior of sea ice. This qualitative analysis

thus suggests that the viscous regime is only possible in

areas where the free drift velocity is nearly uniform.

Two numerical examples are given in order to illus-

trate these results. We once more insist on the fact that

the free drift is prescribed and used to force the model

(see the beginning of the section). Consequently, the

fields shown in Figs. 4 and 5 are computed fromEqs. (12)

and (13). As the plastic-shear regime applies over the

whole domain, the boundary condition at x5 0 is u5 0.

This means that u0 is set to 0 in Eqs. (12) and (13). Last,

the dilatancy angle d is set to 1108.
In Fig. 4 (first panel), the free drift points toward the

coast and decreases linearly from 1.8 cm s21 at 1000 km

from the coast to 0.4 cm s21 at the coast. Over the whole

domain, P remains smaller than Pmax (we took P0 5 0)

and h is smaller than hmax (Fig. 4, third and fourth

panel). This shows that the regime is everywhere

‘‘plastic shear.’’ As expected, the component of the ice

velocity parallel to the coast does not vanish at x 5 0,

inducing a sliding of sea ice along the coast.

When the free drift increases, the response of the

model is dramatically modified. To illustrate this

change, Fig. 5 shows the compressive stress when the

free drift velocity is multiplied by a factor 5 in compar-

ison with the previous experiment. The stress P exceeds

the threshold value Pmax as soon as the distance to the

coast becomes smaller than 870 km. The plastic-

compressive regime is therefore reached in an area

whose size must be determined (see just below). As the

coefficient h remains everywhere smaller than hmax (not

shown), the viscous regime is not observed.

b. Plastic-compressive regime: P 2 P0 5 Pmax

First of all, we recall that the maximum compressive

stressPmax does not depend on x; consequently, ›xPmax5
0. This agrees with the hypothesis that the ice thickness

h is constant.

In the plastic-compressive regime, the ‘‘viscosity

coefficient’’ h5 (s1 2s2)/[2( _�1 2 _�2)] is equal to

6Pmax sinf/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

2 1 (›xy)
2

q
. Differing from the previous

case, negative values for h are now authorized; the

reason for this paradox will be explained below.

Since the compressive stress P is known, the evolution

of the system is given by the unique vector equation

NR0(u2 ufd)5 ›x[(h›xu)ex1(h›xy)ey] . (14)

Equation (14) cannot be solved by only analytical

methods. However, a bit of mathematical calculus helps

understand its properties and greatly facilitates its nu-

merical resolution. Moreover, it also provides exact so-

lutions when the free drift is constant.

The complex velocity Z 5 u 1 iy is introduced (i2 5
21), and Eq. (14) becomes

N eiu0 (Z2Zfd)56Pmax sinf›x(›xZ/j›xZj) . (15)

Defining the complex transports T5
Ð x
a Z(u) du and Tfd5Ð x

a Zfd(u) du, Eq. (15) can be integrated. This yields

eiu0 (T2Tfd1C)5K›xxT/j›xxTj , (16)

where C is a constant and K 5 6Pmax sinf/N . Conse-

quently, jT 2 Tfd 1 Cj 5 jKj and a function c(x) such

that T 2 Tfd 2 C 5 K exp[i(c 2 u0)] exists. Equation

(16) simplifies to

eic5
›xxfTfd 1K exp[i(c2 u0)]g
j›xxfTfd 1K exp[i(c2 u0)]gj

. (17)

The amplitude rfd . 0 and the direction afd of the de-

rivative of the free drift are introduced; ›xx(Tfd)5 ›xufd1
i›xyfd 5 rfd exp(iafd), and finally Eq. (17) is rewritten

FIG. 5. Compressive stress (kg s22) when the free drift is multi-

plied by 5 in comparison with the previous figure. The allowed

maximum is indicated by the dashed line; this solution is thus no

longer valid and must be modified by taking into account the

plastic-compressive regime.
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rfd exp[2i(c 2 afd)] 1 K exp(iu0)(2c02 1 ic00) 5 A,

whereA is an unknown positive real and the prime notes

the derivative. The imaginary part of the first member of

the equality must therefore be equal to 0, whereas the

real part must be positive. This leads to the differential

equation

K cosu0c
00 1K sinu0c

022 rfd sin(c2afd)5 0 (18)

associated with the inequality

K sinu0c
002K cosu0c

021 rfd cos(c2afd). 0, (19)

which adds a constraint on the coefficient K. This con-

straint is more easily understood by eliminating c00 from
Eq. (19). One obtains rfd cos(c2 afd 2 u0). Kc02. If K
is positive, this inequality generally is not verified. In

particular, when r is equal to 0, a case that will be in-

vestigated in section 4, solutions exist only ifK is negative.

The inequality K , 0 means that the viscosity co-

efficient h becomes negative. At first glance, this prop-

erty appears as a flaw in the model; it means that energy

is injected in a bounded area (where P reaches its max-

imum value) and entropy decreases, which seems in

contradiction with the second principle of thermody-

namics. Moreover, it will require changes in order to

guarantee the stability of the numerical schemes that

could be used to solve a sea ice code.

However, this negative assertion can be mitigated. In

fluid mechanics, the viscosity coefficient finds its origin in

the collisions between the atoms or molecules that consti-

tute the liquid or gaz. Here, this coefficient has not a mo-

lecular origin but depends on the large-scale characteristics

of the flow. Such ‘‘negative viscosity coefficients’’—whose

origin depends on the large-scalemacroscopic properties of

a system—are known to exist and have been used for a long

time in geophysics and even in fluid mechanics to param-

eterize the turbulence (see Starr 1968).

For the ‘‘real sea ice,’’ a maximum compressive stress

induces the formation of compressive ridges; (potential)

energy is accumulated in these ridges, and more energy

is available to produce work. In thermodynamics, this

property is often rephrased as ‘‘the order increases.’’ A

fully disorderly state would then correspond to a state

where the ice thickness is nearly uniform, and a more

orderly state would be obtained when anomalies of

thickness appear. This process is not represented here

since we assumed that h remained constant, but the

negative value of h may convey its existence.

Last, the fact that the coefficient h is negative means

that the ratio between the macroscopic fields _�1 2 _�2 and

s12 s2 is negative. When the compressive stress reaches

Pmax 1 P0, the mechanical state of the system is defined

by the two points indicated by stars at the extremities of

the yield curve in Fig. 3. The flow rule is no longer spec-

ified but is determined by the system itself. In the space of

the rates of deformation, a flow in any direction then

becomes possible. On the contrary, when the regime is

plastic shear, the flow rule specifies a deformation rate (in

the half plane _�1 2 _�2 . 0 when s1 2 s2 is positive). More

generally, if the yield curve is closed and convex, the flow

rule assumes a deformation rate in a direction exterior to

the domain bounded by the yield curve to satisfy the

second law of thermodynamics (Hill 1960; Ukita and

Moritz 1995).

The yield curve studied here is not convex; it is even

useless to assume that it is closed. The existence of two

points where P 2 P0 5 Pmax is simply assumed, but we

do not specify how the cone defined by the Coulomb

friction law is closed (this absence is symbolized by the

dotted line in Fig. 3). These assumptions are in agree-

ment with the results of Weiss et al. (2007) based on the

data of Richter-Menge et al. (2002). But they may result

in a deformation rate pointing in a direction inside the

half plane _�1 2 _�2 , 0 when s12 s2 is positive and hence

in a negative coefficient h. As illustrated by the nu-

merical results below, the derivative of the velocity is

discontinuous, which induces a discontinuity of h. Its

absolute value may decrease by an order of magnitude

when the plastic-compressive regime is reached.

The function c characterizes the amplitude and di-

rection of the velocity difference u 2 ufd. Indeed, we

have Z 5 Zfd 1 iKc 0 exp[i(c 2 u0)], that is,

u5ufd1K
dn

dx
with K56

Pmax sinf

N and

n5

"
cos(c2 u0)

sin(c2 u0)

#
. (20)

More precisely, jc0jPmax sinf/N defines the norm of the

vector u 2 ufd, and c 2 u0 1 p/2 defines its direction.

The differential Eq. (18) is too complex to be ana-

lytically solved but standard numerical methods provide

solutions with a very good accuracy. As it is a second-

order equation, two arbitrary constants must be de-

termined with the help of boundary conditions.

The domain whereP5Pmax begins far from the coast,

at a distance x5 x0, and ends at the coast; the transition

to the open sea is ensured by the plastic-shear regime

previously studied—or, when the free drift is nearly

uniform, by the viscous regime. In this section, only

the conditions that must be applied along the unknown

line x 5 x0 separating the ‘‘plastic-shear domain’’ from

the ‘‘plastic-compressive domain’’ are specified. As the
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plastic-compressive regime is still a plastic regime and

the medium does not change (sea ice exist on both sides

of x 5 x0), it is reasonable to assume that the sea ice

velocity and the compressive stress are continuous at x5
x0. This leads to three relations:

d Continuity of P:

P(x10 )5Pmax1P0 .

This condition, combined with the expression of P

in section 3a, gives a relation between x0 and the

component of the sea ice velocity along the x axis at

x 5 x0: u
0.

d Continuity ofu: A simple calculation fromEq. (12) gives

(u2ufd)(x
1
0 )5 f[u0 2 ufd(x

1
0 )]/KxgK, where Kx 5

hK, exi. On the other hand, Eq. (20) yields (u2 ufd)(x
2
0 ).

Combining these two expressions, one obtains�
c(x20 )2 u05 K̂

c0(x20 )Pmax sinf5N [u02 ufd(x
1
0 )]kKk/Kx

,

where K̂ is the angle that defines the direction of the

vector K.

FIG. 6. (top to bottom) The free drift ufd, the corresponding sea ice velocity u, the compressive

stress P, and the viscosity coefficient h. The angle d is equal to 2108.
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Last, the component of the velocity perpendicular to the

coast must vanish, leading to a fourth relation:

ufd(0)52c0(0)Pmax sinf cos[c(0)2 u0]/N .

These four relations, associated with the differential

Eq. (18) and the inequality Eq. (19), allow us to de-

termine the function c and the two unknowns u0, x0.

Some of the numerical solutions presented below

have a remarkable supplementary property. They verify

(u 2 ufd)(x0) 5 0 and c0(x0) 5 0. This means that not

only the ice drift is continuous, but also the derivative of

the compressive stress at x 5 x0; ›xP(x0) 5 0.

The results shown in Figs. 6 to 10 have been obtained

for P0 5 0. They result from a numerical resolution

based on a predictor–corrector scheme of order two and

correspond to five distinct situations.

In the first three cases, the free drift increases with the

distance to the coast and is oriented ‘‘eastwards’’ (y, 0).

When the dilatancy angle d is equal to2108 (Fig. 6), the

plastic-shear regime acts beyond x5 330 km; within this

bound, the plastic-compressive regime (characterized by

P constant) is observed as shown in Fig. 6, third panel.

Note that the derivative of the compressive stress is not

continuous in this case. The direction of the ice velocity

is reversed close to the coast; though the free drift is

eastward, the ice flows westward when x ranges between

0 and 100 km. The ice slides along the coast with a ve-

locity of about 22 cm s21. The viscosity coefficient is

negative in the plastic-compressive regime, as expected.

Everywhere, it remains very small, 20 times smaller than

the threshold value hmax. These characteristics remain

qualitatively unchanged when the dilatancy angle is set

to 1108 (Fig. 7). The domain where the plastic-shear

regime acts is slightly reduced (it starts from x 5
400 km). The derivative of the compressive stress is now

continuous as it can be seen in the middle panel. When

d5 268 (Fig. 8), which corresponds to a normal flow rule,

the domain where the plastic-shear regime acts is

FIG. 7. The free drift is unchanged in comparison with the previous figure, but the angle d is

now equal to 1108. (top) Corresponding sea ice velocity u, (middle) the compressive stress P,

and (bottom) the viscosity coefficient h.
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considerably reduced; it only extends over 430 km.

Moreover, the flow becomes very small close to the coast

and remains oriented eastward.

In the last two cases, the component of the free drift

parallel to the coast points ‘‘westwards’’ (in order to

mimic a situation similar to that occurring north of the

Canadian Archipelago). When the angle d takes the

value 2108, a smooth ice drift is obtained; the ice ve-

locity along the coast is about 12 cm s21. When d is

equal to 1108, noticeable changes can be seen. The size

of the compressive domain increases from 230 to

460 km, the viscosity coefficient is multiplied by about 6

and the direction of the ice velocity is reversed along the

coast. The model dependence on the dilatancy angle

thus strongly depends on the direction of the free drift.

The solution ceases to exist when the components of

the free drift become too large, in particular the com-

ponent normal to the coast. However, in the real world,

the probability that such large values exist is null; the

values we have used are realistic, since their maximum is

comparable with the maxima observed in oceanic gen-

eral circulation models (see Proshutinsky et al. 2011).

They allow the existence of a solution.

In any case, the model behaves as a nonlinear model;

the dependence of the solutions on the parameters

cannot be easily guessed, as exemplified by the previous

figures. The existence of a solution is not guaranteed,

and, as explained in section 4, the unicity of the solution

is problematic.

c. Viscous regime: 0 , P 2 P0 , Pmax and h 5 hmax

Equation (6) is still verified, and consequently the ice

velocity has the same expression as in the plastic-shear

regime: u 5 (u/tand)t 1 yiey. On the contrary, Eq. (11)

becomes

NR0(u2 ufd)52›xPex1hmax›xxu . (21)

Multiplying both side of the previous equation by ey, and

using the expression of u, we obtain the equation

FIG. 8. As in Fig. 7, but where d 5 268.
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›xxu2 l22u5
l22 tand

hey, R0ti
(hey,R0eyiyi2 hey,R0ufdi) ,

(22)

where l represents a characteristic length depending on

the parameters on the problem:

l225
Nhey,R0ti
hmaxht, eyi

.

This length is plotted in Fig. 11 as a function of the ice

thickness for hmax 5 1012 kg s21. It ranges from 1150 to

1450 km.

The solution of Eq. (22) may be decomposed into an

exponential part ue 5 A cosh(x/l) 1 B sinh(x/l) and

a part that depends on the free drift. The length scale l,

which is proportional to the square root of hmax, gives

the typical scale of variations of ue. If the free drift varies

over scales much smaller than this typical scale (in the

example of section 3a, the free drift velocity was divided

by 2 over a distance of about 500 km), the spatial

FIG. 9. (top to bottom) The free drift ufd, corresponding sea ice velocity u, the compressive

stress P, and the viscosity coefficient h. The angle d is equal to 2108.
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variations of u are driven by those of ufd, and the co-

efficient h, estimated from [(P2P0) sinf tand]/j›xufdj,
remains smaller than hmax. Consequently, the viscous

regime is never reached.

This analysis confirms the result shown in section 3a,

namely, that the viscous regime is possible only in areas

where the free drift is nearly uniform. Numerical tests

have corroborated this result. Consequently, and for

simplicity, the connection between the viscous regime

and the plastic-compressive regime will be considered

and studied only for a uniform free drift.

4. Study for a uniform free drift

The case of a uniform free drift ufd over a large area is

certainly not observed but presents two theoretical ad-

vantages: the analytical computations can be further

pursued—in particular, when the plastic-compressive

regime operates, they become exact—and the viscous

regime, which is difficult to reach otherwise, can be in-

vestigated.

As the plastic-shear regime is excluded when the free

drift is uniform, it suffices to consider solutions corre-

sponding to the plastic-compressive and viscous re-

gimes. As before, the solution corresponding to the

plastic-compressive regime is valid in the domain de-

fined by 0# x# x0, where x0 is an unknown abscissa. It is

obtained from the resolution of Eq. (18) with rfd 5 0. It

yields c5c0 1 [ln(x1 c)/tanu0], where c0 and c are two

arbitrary constants. The sea ice velocity is thus equal to

u5 ufd1
Pmax sinf

N tanu0

n

x1c
with n52sincex1 coscey,

(23)

and the compressive stress is P5Pmax1P0. Note that

the sign 2 and the angle u0 in Eq. (20) have been

absorbed in the arbitrary constant c0. With this

FIG. 10. The free drift is unchanged in comparison with the previous figure but the angle d is

now equal to1108. (top) The corresponding sea ice velocity u, (middle) the compressive stress

P, and (bottom) the viscosity coefficient h.
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solution, the ‘‘viscosity’’ h is equal to

2Pmax sinf/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu)

21(›xy)
2

q
52N tanu0 sinu0(x1c)2 and

is always negative (see section 3b).

The solution corresponding to the viscous regime is

valid in the domain defined by x0 # x # L. Using the

results of section 3c and the fact that a particular solu-

tion of Eq. (22) is a constant, one obtains

u5

"
A cosh

�
x2L

l

	
1B sinh

�
x2L

l

	

1
hey,R0ufdi2 yi cosu0

hey,R0ti

#
t1 yiey . (24)

The difference x 2 L has been introduced to facilitate

the ulterior computations. At x 5 L, the compressive

stress vanishes; in order to keep the model consistent,

the expression of the coefficient h obtained on the yield

curve (h 5 P sinf tand/›xu) must remain larger than

hmax. This implies ›xu(x5L)5 0 and consequentlyB5
0. Using this result, fastidious algebraic transformations

(see appendix A) eventually lead to the expression

u2 ufd 5A cosh

�
x2L

l

	
t1wR21

0 ex . (25)

Here, w5 ht?, ufd 2 yieyi/hey, R0ti depends on the ar-

bitrary constant yi and will be considered as an arbitrary

new constant. The previous expression allows us to

compute the pressure from Eq. (21). We first obtain

2›xP5Nw2
N sinu0
ht, eyi

�
A cosh

�
x2L

l

	�
,

and after integration, considering the fact that P(L)5 0,

we obtain

P(x)5Nl

�
w
L2 x

l
1

A sinu0
ht, eyi

sinh

�
x2L

l

	�
. (26)

Equations (25) and (26) are valid as long as the com-

pressive stress P does not exceed the threshold value

Pmax.

The solutions given by Eqs. (23) and (25) join at x 5
x0. The conditions given in section 3b (continuity of P

and u), which rest upon physical principles, are still valid

as well as the one given at x 5 0 (vanishing of u).

However, they do not permit to determine the five ar-

bitrary constants that have been introduced, namely, A,

w, x0, c0, and c. A supplementary condition must be

added.

When the system is close to the extrema point in-

dicated by a star in Fig. 4, the viscosity on the yield curve

is given by h 5 Pmax sinf tand/›xu; it must tend to hmax

FIG. 11. Variations (km) of l as a function of the ice thickness h. The top panel is for �5 1, and

the bottom panel for � 5 21.
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when x / x0. The derivative of the velocity ›xu must

therefore verify

›xu(x5 x10 )5Pmax sinf tand/hmax ,

which provides the searched supplementary condition.

Appendix B gives technical details about the analyti-

cal method that allows us to compute the coefficientsA,

w, x0, c0, and c from this last condition, the continuity

of P and u at x 5 x0, and the vanishing of u on the coast

[u(0) 5 0].

In the next two subsections, numerical solutions

obtained from Eqs. (23), (25), and (26), plus the

boundary and matching conditions, are shown for two

different geometries (note that P0 has been set to 0). In

the first one, we consider a uniform free drift in a ge-

ometry similar to that of section 2c, except that the size

of the domain covered with ice has been reduced to

500 km. In the second one, the geometry is changed; the

sea ice is compressed between two walls, a situation that

might occur if it occupies the whole width of a strait.

a. Case of an open domain

An eastward uniform-free drift of 7.2 cm s21 is applied

over a domain that extends 500 km from the coast (top

panel in Fig. 12. The solution predicted by the model is

first shown for a dilatancy angle equal to 2108 (the co-

efficient N and matrix R0 remain unchanged).

It strongly differs from the one obtained when the

plastic-shear and plastic-compressive regimes acted.

First, the plastic-compressive regime is never reached

(bottom panel). Second, the ice drift is much smaller

than the free drift, never exceeding 1 cm s21 (middle

panel). Last, the viscosity is equal (by hypothesis) to

hmax and thus is considerably larger than the viscosity

previously obtained for an eastward free drift (Figs. 6 to 8).

The response of the model significantly changes when

d is equal to 1108 (Fig. 13). The plastic-compressive

regime is active between x 5 0 and x 5 170 km, and the

solution is not realistic. Indeed, the maximum of the

velocity is reached along the coast where it takes an

unrealistic value of about 53 cm s21. Interestingly, other

solutions may be built, which present the same charac-

teristics, with a still larger velocity along the coast. The

nonunicity of the solution is made explicit in the next

subsection.

Even though high velocities of sea ice have been

reported close to the coasts, it seems difficult to imagine

that such a solutionmight be observed in theArctic. The

high velocity results from the combination of an un-

realistic forcing field (the velocity is uniform over

500 km) and a strongly nonlinear behavior of the model

when the plastic-compressive regime is reached. If the

domain is reduced to 230 km, the plastic-compressive

regime is no longer observed; only the viscous regime

acts, and the solution becomes ordinary again.

b. Ice flow through a strait

To clarify the meaning of the solutions found for the

plastic-compressive regime, a case where the latter acts

alone is considered now. We suppose that sea ice have

formed in a strait of width L 5 200 km and occupies it

completely. Moreover, we assume that the compressive

stress has everywhere reached themaximum value Pmax.

It is not clear if such a case could occur in practice—

uniform, thick ice should occupy the strait in its

entirety—but it has a great theoretical interest; indeed,

the system is thus governed only by Eq. (20).

For a uniform drift (ufd independent of x), an analyt-

ical solution is given by Eq. (23) as explained at the

beginning of this section. The boundary conditions at

x 5 0 and x 5 L add two constraints, which allow us to

determine the coefficients c and c0:

ufd . ex52(K/c) sinfc01 [ln(c)/tanu0]g
52[K/(c1L)] sinfc01 [ln(c1L)/tanu0]g ,

(27)

with K 5 Pmax sinf/(N tanu0).

Figure 14 shows the prescribed free drift inside the

strait (top panel). A solution given by Eq. (23) and that

satisfies Eq. (27) is shown in the bottom panel. The ice

velocity peaks at the western coast (on the left) where it

reaches 21.18 cm s21. Velocities larger than 10 cm s21

appear close to the western coast, at a distance shorter

than 30 km. They become negligible beyond 100 km.

The viscosity coefficienth is everywhere negative, but its

absolute value remains very small; the maximum is about

100 times smaller than hmax and the mean value 1000

times smaller.

This solution is not unique; other solutions given by

Eq. (23) and that satisfy Eq. (27) may be found. This

strange behavior is caused by the sine function in Eq.

(27). It makes possible the determination of different

couples (c0, c); they correspond to successive oscilla-

tions of the sine function and satisfy the identities of Eq.

(27). Figure 15 illustrates this property; it shows a second

solution corresponding to another couple of valuesc0 and

c (the free drift is the same as in Fig. 14). Other solutions

have still been found; they showed a higher velocity along

the coast and thus were less realistic (not shown).

This nonunicity property is made explicit in the

case of a vanishing free drift along ex. Equation (27)

admits as solutions c0 1 [ln(c)/tanu0] 5 pp and c0 1
[ln(c 1 L)/tanu0] 5 qp, where p and q are integers.
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Thus, ln(1 1 L/c) 5 (q 2 p)p tanu0 and c 5 L/f21 1
exp[(q 2 p)p tanu0]g. An infinite family of solutions is

therefore obtained, indexed by the numbers q 2 p.

5. Conclusions

The model studied in this paper is a viscous–plastic

model, close to the models used for climatological

studies. It is based on a classical assumption of isotropy

and assumes that the plastic regimemay be characterized

by a Mohr–Coulomb yield curve. The flow rule, which

prescribes how plastic deformation takes place, has

a physical ground, since itmay be obtained from the study

of granular materials (Tremblay and Mysak 1997). It

contains a parameter d, the angle of dilatancy, which can

be easily modified. In particular, a choice of this param-

eter corresponding to the famous normal flow rule may

be used, even though it is not realistic in such a model.

To study the properties of this model, an analytical

approach has been chosen. Indeed, because of the

complexity of sea ice models, the efficiency and

precision of the numerical schemes do not seem to be

precisely known. It is therefore difficult to discriminate

between the inaccuracies due to the numerical method

and those due to the physical parameterizations. Con-

sequently, to complement the numerical studies, it

seems interesting to look for and study exact solutions.

A simple configuration has thus been defined in which

the physical variables depend only on the distance to the

coast. It allows us to pursue analytical computations far

beyond what is usually done.

In this model, three distinct regimes of sea ice drift

have been defined: the plastic-shear regime, the viscous

regime, and a particular case of the plastic regime that

we named the plastic-compressive regime:

d In the plastic-shear regime, the compressive stress P

remains smaller than the maximum value Pmax 1 P0

(P0 is a tensile stress), and the ratio between the stress

s1 2 s2 and the strain rate _�1 2 _�2, h, remains smaller

than the maximum value hmax. As shown by the

analytical study, this regime occurs as soon as the

FIG. 12. (top) The free drift is now uniform, and the angle d is equal to2108. The (middle) sea

ice velocity is given by the viscous regime since the (bottom) compressive stress remains smaller

than Pmax. The viscosity coefficient h is equal to hmax.
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gradient of the forcing over the considered domain is

sufficiently high; in a realistic situation, this condition

is almost always fulfilled.
d In the viscous regime, h is equal to hmax. This regime

can occur only if the gradient of the forcing field is very

weak (to give an order of magnitude, variations of the

free drift not exceeding 0.2 cm s21 over a distance of

100 km).
d In the plastic-compressive regime, the compressive

stress P is equal to P 5 Pmax 1 P0. This regime is

mainly active close to the coast, up to a distance

depending on the forcing field and dilatancy angle.

This model behaves in such a way that it is useless to

define a curve that links the extremities of the straight

segments that define the plastic behavior. Indeed, when

the compressive stress increases, the state predicted

by the model gets closer to the plastic state, and it

reaches the maximum value P5 Pmax 1 P0 tangentially

to the segments defining the plastic behavior. The yield

curve thus is not closed, and the whole pattern fits the

analysis by Weiss et al. (2007) of the experimental data

of Richter-Menge et al. (2002).

The flow rule is defined by the dilatancy angle d. In the

model proposed by Tremblay and Mysak (1997), d

emerges naturally from considering the small-scale

properties of the sea ice; it represents the angle made

by the planes associated with small- and large-scale

slidings. It thus depends on the properties of the me-

dium, for example, on the size of the ice floes, on the ice

concentration, and so on. It is thus highly probable that

a relation is missing between d and some of the variables

that characterize sea ice. This relation would constitute

the state equation of the system. Note that, in the tra-

ditional Hibler model, a state equation has been in-

troduced; it usually takes the form P 5 P+h exp[C(1 2

A)] and allows us to determine the size of the yield curve

FIG. 13. The free drift is unchanged in comparison to the previous figure, but the angle d is

now equal to1108. (top) The corresponding sea ice velocity u, (middle) the compressive stress

P, and (bottom) the viscosity coefficient h.
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as a function of ice thickness and ice concentration. An

equation that would play a similar role is absent here.

The fact that we have not introduced a state equation

defining d is probably acceptable, since we assumed that

h is constant. The experiments have been done for d 5
2108 (convergent ice drift), d5 108 (divergent ice drift),
and d5 268, this last and unrealistic value corresponding

to a normal flow rule. The response of the model de-

pends on d and the forcing field (here the free drift). For

example, we observed that the size of the domain where

the plastic-shear (plastic compressive) regime is active

decreases (increases) when the angle d increases. These

variations may bemoderate (cf. Figs. 6 and 7) or large (cf.

Figs. 9 and 10). In the latter case, the direction of the ice

drift even reverses close to the coast. These results suggest

that the determination of d (e.g., as a function of h andA),

or more generally of the flow rule, may have a significant

impact on the ice dynamics predicted by a sea ice model.

Our results also suggest that the problem of the

boundary conditions in the numerical models should be

considered in a more detailed way. This study proves

that, in a model with a Mohr–Coulomb yield curve,

the classical no-slip condition too strongly constrains

the sea ice dynamics and consequently may prevent the

existence of a solution in the plastic regime. On the

contrary, if a sliding of the ice along the coasts is al-

lowed, a solution can be computed.

It is not clear if this result is still valid when a more

complex yield curve or a different model is used. How-

ever, it is known that sea ice models are not always nu-

merically stable (see, e.g., Lemieux et al. 2010). This

could be the consequence of a too constraining bound-

ary condition. The velocity is assumed to vanish on the

coasts in most of the sea ice models, but there is no clear

physical reason for such an assumption. In solid me-

chanics, the sliding of a solid over another one may be

allowed, and, adding to the vanishing of the component

of the velocity perpendicular to the interface between

the two solids, supplementary boundary conditions may

apply on the components of the stress tensor itself

(continuity of stress at the interface).

As reminded above, a specificity of this model is the

existence of two extremal points on the curve of plas-

ticity, where the compressive stress is maximal. These

points, which define the plastic-compressive regime,

lead to a dynamics of sea ice that dramatically differs

FIG. 14. (top) The free drift is uniform with an amplitude of 2.4 cm s21. (bottom) The

corresponding ice drift.

FIG. 15. Another unrealistic solution for the same free drift as in the previous figure. There is no

unicity of the solutions.
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from that obtained in the other regimes. Indeed, when

the plastic-compressive regime is reached, the ratio be-

tween the stress s1 2 s2 and the strain rate _�1 2 _�2 may

become negative. This formally leads us to introduce

a negative viscosity coefficient h.

Associated with the plastic-compressive regime,

a second difficulty may happen; there may exist several

(an infinity of) solutions that verify the model equations

and the boundary conditions for a given forcing. This

result is compatible with the nonlinear character of the

equations defining this regime. It means that two dif-

ferent states could be reached for the same final sta-

tionary forcing, depending on the initial conditions that

are prescribed or the history of the system.

These oddities have been previously discussed and

reveal not only the richness of the mathematics and

physics hidden in the model, but also the difficulties it

could generate if a numerical integration is performed.

Indeed, numerical schemes have not been developed to

tackle these unusual (perhaps even unphysical) behav-

iors. They are probably caused by the existence of two

salient points at the extremity of the segments defining

the yield curve. Thus, a yield curve that would be convex

in the vicinity of these points would certainly allow the

elimination of such a phenomenon. The problem of the

boundary conditions is probably more difficult to solve.

A solution is to add dissipative terms (a Laplacian is

sufficient as illustrated by the viscous case). A more

sophisticated solution would be to modify the definition

of h as suggested by Gray (1999); the expression h 5
S/(D 1 Dmin) instead of h 5 S/D would prevent the

simplification that occurs in section 3a and would allow

us to keep more derivatives in order to satisfy more

constraining boundary conditions. It is, however, not

clear whether such modifications have a physical basis.

Last, we want to emphasize that the results have

been derived from a realistic model of the sea ice

rheology. The setup is very simple (the domain has

a straight boundary, the forcing field is uniform in the

direction parallel to the boundary, and the ice thick-

ness is constant) and limits the range of applicability

of the results, but it allowed us to solve the model

equations without doing any approximations that

could simplify the physical mechanisms driving the

rheology of sea ice. The obtained solutions are com-

puted thanks to analytical methods, the use of nu-

merical methods being restricted to the resolution of

only one differential equation. Consequently, these

solutions are not altered by an inappropriate numer-

ical scheme or numerical errors, which are always

difficult to find and analyze. They are just the conse-

quence of the physical principles that defined the

rheology of the model.
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APPENDIX A

Isotropy and System of Eqs. (3)

The stress tensor s is symmetric and thus can be di-

agonalized using a rotation matrix; we have"
sxx sxy

sxy syy

#
5

"
cosc sinc

2sinc cosc

#"
s1 0

0 s2

#

3

"
cosc 2sinc

sinc cosc

#
.

This matrix relation leads to the three equations:8><
>:

sxx 5 (s11s2)/21 cos(2c)(s12s2)/2

sxy 5syx 5 sin(2c)(s12s2)/2

syy 5 (s11s2)/22 cos(2c)(s12s2)/2

.

The same relations are verified by the strain rate tensor

because of the isotropy hypothesis.We use them to find the

expression of cos(2c) and sin(2c). Since _�1 and _�2 are the

eigenvalues of _e, we first have _�1 5 [Tr( _�)1D]/2 and _�2 5
[Tr(_e)2D]/2, where D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[Tr( _e)]2 2 4( _�xx _�yy 2 _�xy _�xy)

q
.

Using the expressions defining the component of

the strain rate tensor, we obtain D 5 _�1 2 _�2 5
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu2 ›yy)

2 1 (›xy1 ›yu)
2

q
. This leads to sin(2c) 5

2 _�xy/D and consequently to

sxy 5h(›xu1 ›yy) ,

with h 5 S/D and S 5 (s1 2 s2)/2.

Similarly, by subtracting the equation giving _�yy from

that giving _�xx, we have cos(2c)5 ( _�xx 2 _�yy)/D. This

leads to

sxx 52P1h(›xu2 ›yy)

and

syy 52P2h(›xu2 ›yy) ,

where P 5 2(s1 1 s2)/2. The system of Eqs. (3) is thus

obtained.
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APPENDIX B

Details about Some Computations

This appendix gives the details of the calculations that

were omitted in the text for the sake of simplicity. They

are now presented for the reader who is interested in

these technical points. Each computation is character-

ized by the labels of the equations to which it is related.

The comments are reduced to the minimum:

d From Eq. (12) to Eq. (13). With Eq. (11), we have

u5 uex 1

"
u
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 tan2d

p

tand
1 yi

#
ey .

Using the definition of t and the fact that u is equal to

tand(2yihey,K?i1 hufd,K?i)/ht,K?i (see section 3a),

we also have

u5
u

tand
t1 yiey 55

2yihey,K?i1 hufd,K?i
ht,K?i t1 yiey .

The unknown u0 has been introduced in the text; it is

the component of the velocity u along ex at the

unknown abscissa x 5 x0. Using this definition, we

have

u05 hu(x5 x0), exi5
2yihey,K?i1 hu0fd,K?i

ht,K?i ht, exi ,

and consequently

yihey,K?i52
ht,K?i
ht, exi

u01 hu0fd,K?i .

Thus,

u5
hufd2 u0fd,K

?i
ht,K?i t1

hu0fd,K?i
hey,K?i ey1 u0A ,

with

A5
1

ht, exi
�
t2

ht,K?i
hey,K?i ey

	
.

The vector A is easy to compute by introducing the

component of t and K? in the orthonormal basis

(ex, ey). It is equal to K /hey, K?i5K /hex, Ki. Equa-
tion (13) is thus shown.

d Equation (14) needs the computation of ht?, u 2 ufdi.
First, using Eq. (13),

ht?, ui5
hu0fd,K?iht?, eyi

hex,Ki 1 u0
ht?,Ki
hex,Ki

(we recall that hey, K?i 5 hex, Ki). We remark that

hu0fd,K?iht?, eyi5 hu0fd, t?ihex,Ki2 hK, t?ihu0fd, exi .

Consequently,

›xP5N
 
hu0fd 2ufd, t

?i
hK, t?i 1

u02 hu0fd, exi
hex,Ki

!
.

d From Eq. (25) to Eq. (26). We have to compute

hey,R0ufdi2 yi cosu0

hey, R0ti
t1 yiey2 ufd .

On the one hand,

hey,R0ufdit2 hey,R0tiufd5 (ux sinu01 uy cosu0)t

2 (tx sinu01 ty cosu0)ufd ,

where (ux, uy) and (t x, ty) note the components of

ufd and t in the basis (ex, ey). The previous equality

simplifies and yields

hey,R0ufdit2 hey,R0tiufd5 hufd, t?iR21
0 ex

(note that the relation cosu0ex 2 sinu0ey 5R21
0 ex has

been used).

On the other hand,

cosu0t2 hey,R0tiey 5 txR21
0 ex5 ht?, eyiR21

0 ex .

Finally, we obtain

hey,R0ufdi2 yi cosu0

hey,R0ti
t1 yiey2 ufd

5
hufd2 yiey, t

?i
hey,R0ti

R21
0 ex

and relation (26) follows.

APPENDIX C

Computation of A, w, c0, c, and x0 (Section 4)

The condition on the viscosity coefficient lim
x/x1

0

hmax›xu5
Pmax sinf tand leads to the relation

Ahmax sinh[(x02L)/l]5 lPmax sinf ,
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which defines A as a function of x0.

The conditionP(x5 x0)5Pmax1 P0 yields the relation

w(x02L)5
Pmax

N
�
sinu0 sinf

hR0t, eyi
2 1

	
2

P0

N ,

where the expressions of l2 and A have been used to

simplify it. This defines w as a function of x0.

To remark, we have

›xu5
Pmax sinf

hmax

sinh[(x2L)/l]

sinh[(x02L)/l]
t .

The consistency of the model is thus ensured since

the viscosity given by the plastic-shear regime h 5
Pmax sinf tand/›xu is equal to hmaxfsinh[(x0 2 L)/l]/

sinh[(x2L)/l]g and is everywhere larger than hmax.

The conditions on the ice velocity at x5 0 and x 5 x0
add three new relations that allow us to determine the

remaining constants. In the interval 0 # x # x0, the ice

drift is given by the relation

u2 ufd 5
Pmax sinf

N tanu0

1

x1 c
(2sincex1 coscey) ,

with c 5 c0 1 [log(x 1 c)]/tanu0. At x 5 0, the compo-

nent of the velocity along ex must vanish. Consequently,

1

c
sin

�
c01

logc

tanu0

	
5

N tanu0ufd(0)

Pmax sinf
. (28)

We define the vector N5N[cos(N̂)ex 1 sin(N̂)ey] by

the following relation:

u(x10 )2 ufd(x
1
0 )5N .

The notation x10 means that we consider a limit in the

interval x0# x#L. Consequently, the expression of u is

given by Eq. (26) with x 5 x0. As A and w depend only

on x0, the two functionsN and N̂ also depends only on x0.

At x 5 x0, the components of the velocity must be

continuous. The two following relations are thus obtained:

c01
log(x01 c)

tanu0
1

p

2
5 N̂(x0) , (29)

and

Pm sinf

N tanu0(x01 c)
5N(x0) , (30)

where we have recalled that N and N̂ depends on x0.

Combining Eqs. (28) and (29), one obtains

1

c
cos

�
N̂(x0)2

1

tanu0
log
�
11

x0
c

��
52

N tanu0ufd(0)

Pm sinf
.

(31)

The unknown c is easily expressed as a function of x0
from Eq. (30). This expression is introduced into Eq. (31)

and the resulting equation allows us to find the unknown x0.
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