Fast Optimal Transport Averaging of Neuroimaging Data

Abstract : Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before group linear averaging. In this work we build on ideas originally introduced by Kantorovich to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of an entropic smoothing approach. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.
Type de document :
Communication dans un congrès
Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of Skye, United Kingdom. Springer, 2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01135198
Contributeur : Alexandre Gramfort <>
Soumis le : mardi 24 mars 2015 - 21:41:05
Dernière modification le : samedi 18 février 2017 - 01:17:39

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01135198, version 1
  • ARXIV : 1503.08596

Citation

Alexandre Gramfort, Gabriel Peyré, Marco Cuturi. Fast Optimal Transport Averaging of Neuroimaging Data. Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of Skye, United Kingdom. Springer, 2015. 〈hal-01135198〉

Partager

Métriques

Consultations de la notice

616

Téléchargements de fichiers

267