Étude des erreurs d'un décodeur LDPC dans le standard DVB-S2

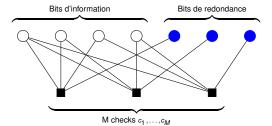
Jean-Christophe Sibel

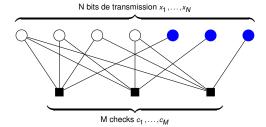
IETR - INSA UMR 6164 OptiSat2 Project

20 février 2014

Bits d'information

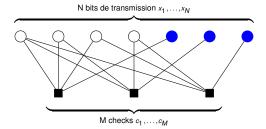




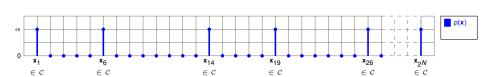


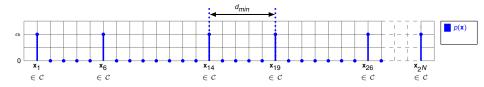
N bits de transmission $x_1,...,x_N$ M checks $c_1,...,c_M$

Graphe de Tanner du code de Hamming

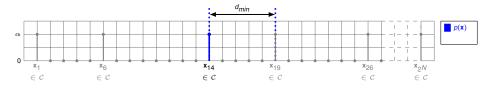

- Matrice de parité $H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ (matrice d'adjacence entre bits et checks),
- $d_V(i)$ = nombre de "1" dans la colonne i de H (degré du bit X_i),
- $d_c(j)$ = nombre de "1" dans la ligne j de H (degré du check c_i).

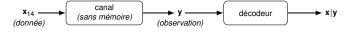
- lacktriangle un seul check non vérifié \Leftrightarrow mot ${\bf x}$ rejeté (${\bf x} \not\in {\cal C}$),
- tous les checks vérifiés \Leftrightarrow mot x accepté : CODEWORD ($x \in C$),



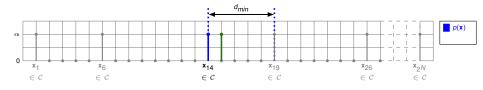

- un seul check non vérifié \Leftrightarrow mot \mathbf{x} rejeté ($\mathbf{x} \not\in \mathcal{C}$),
- tous les checks vérifiés \Leftrightarrow mot \mathbf{x} accepté : **CODEWORD** ($\mathbf{x} \in \mathcal{C}$),
- définition d'une distribution a priori:

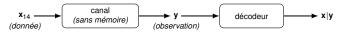
$$\rho(\mathbf{X}=\mathbf{x}) \propto \prod_{j=1}^{M} \mathbb{1}(c_{j} \text{ v\'erifi\'e}), \qquad \begin{array}{c} \mathbf{x} \not\in \mathcal{C} & \Longleftrightarrow & \rho(\mathbf{x}) = 0 \\ \mathbf{x} \in \mathcal{C} & \Longleftrightarrow & \rho(\mathbf{x}) = \alpha > 0 \end{array}$$

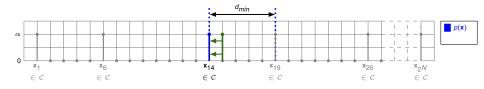




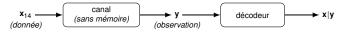
- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.



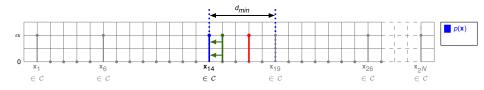

- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.



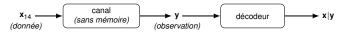
- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.



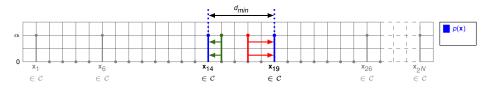
• Cas 1 : le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche :



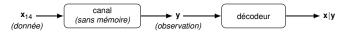
- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.



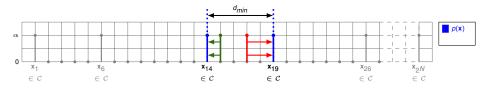
• Cas 1 : le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche : $x|y = x_{14}$ GOOD!



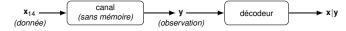
- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- d_{min} ≫ 1 : code très robuste au bruit de canal.



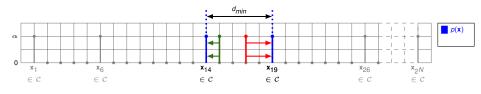
- Cas 1 : le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche : $x|y = x_{14}$ GOOD!
- Cas 2 : le bruit renvoie $y \equiv x_{17}$. Codeword le plus proche :



- d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.



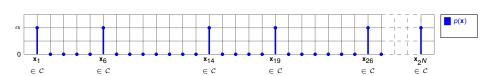
- Cas 1 : le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche : $x|y = x_{14}$ GOOD!
- Cas 2 : le bruit renvoie $y \equiv x_{17}$. Codeword le plus proche : $x \mid y = x_{19}$ BAD!



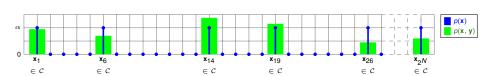
- \bullet d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.

- Cas 1 : le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche : $x|y = x_{14}$ GOOD!
- Cas 2 : le bruit renvoie $y \equiv x_{17}$. Codeword le plus proche : $x \mid y = x_{19}$ BAD!
- Un code LDPC peut corriger $\frac{d_{min}-1}{2}$ erreurs.

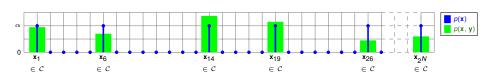
- \bullet d_{min} : plus petite distance (= nombre de bits différents) entre deux codewords,
- $d_{min} \gg 1$: code très robuste au bruit de canal.

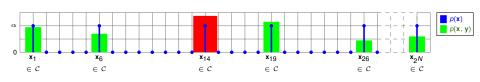

- Cas 1: le bruit renvoie $y \equiv x_{15}$. Codeword le plus proche :
- Cas 2 : le bruit renvoie $y \equiv x_{17}$. Codeword le plus proche :
- Un code LDPC peut corriger $\frac{d_{min}-1}{2}$ erreurs.

Définition d'une distribution a posteriori $p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$ avec :

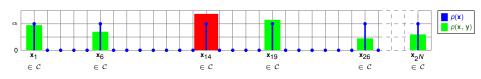

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y}|\mathbf{x}) \propto \prod_{j=1}^{M} 1(c_j \text{ v\'erifi\'e}) \prod_{i=1}^{N} p_i(y_i|x_i)$$

Décoder: étant donnée \mathbf{y} , quel est le bon codeword, i.e. quel \mathbf{x} est le plus probable / maximise $p(\mathbf{x}, \mathbf{y})$?



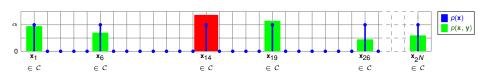


 $\textbf{Algorithme:} \quad \text{parcourir tous les mots possible pour trouver celui qui maximise } p(\mathbf{x},\mathbf{y}).$



 $p(\mathbf{x}_{14}, \mathbf{y}) > p(\mathbf{x}_n, \mathbf{y}),$ pour tout index $n \neq 14$

 $\textbf{Algorithme:} \quad \text{parcourir tous les mots possible pour trouver celui qui maximise } p(\mathbf{x},\mathbf{y}).$


 $p(\mathbf{x}_{14}, \mathbf{y}) > p(\mathbf{x}_n, \mathbf{y}),$ pour tout index $n \neq 14$

Algorithme : parcourir tous les mots possible pour trouver celui qui maximise $p(\mathbf{x}, \mathbf{y})$.

 $\textbf{Problème}: \quad \text{trouver le bon codeword} \equiv \text{recherche parmi 2}^{N} \text{ mots binaires}.$

 $N\gg 1$ (ex: DVB-S2, N=64800) donc recherche infaisable.

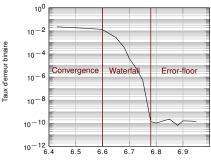
 $p(\mathbf{x}_{14}, \mathbf{y}) > p(\mathbf{x}_n, \mathbf{y}),$ pour tout index $n \neq 14$

Algorithme : parcourir tous les mots possible pour trouver celui qui maximise $p(\mathbf{x}, \mathbf{y})$.

Problème : trouver le bon codeword \equiv recherche parmi 2^N mots binaires. $N \gg 1$ (ex: DVB-S2, N = 64800) donc **recherche infaisable**.

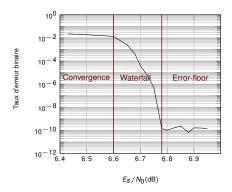
Solution : approximer \mathbf{x} par $\hat{\mathbf{x}}$ à l'aide d'un décodeur itératif :

- Belief Propagation (BP) / Viterbi / Forward-Backward / BCJR / Sum-Product (complexité en N.d_V),
- Min-Sum
- Décodeurs Itératifs à Alphabets Finis (FAID),
- BP Généralisé (GBP),
- optimisation sous contraintes (concave-convex procedure),
- ...



Code pratique : standard DVB-S2, rendement R=3/4, modulation 8-PSK, canal sans mémoire à bruit blanc gaussien additif.

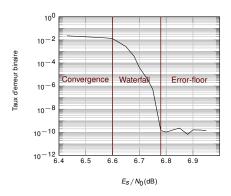
Code pratique : standard DVB-S2, rendement R=3/4, modulation 8-PSK, canal sans mémoire à bruit blanc gaussien additif.



 $E_S/N_0(dB)$

20 février 2014

Code pratique : standard DVB-S2, rendement R = 3/4, modulation 8-PSK, canal sans mémoire à bruit blanc gaussien additif.



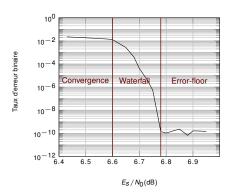
o pourquoi des erreurs ? d_{min} trop petite, processus itératif dégradé par la présence de cycles,

LDPC Jean-Christophe Sibel 20 février 2014

Code pratique : standard DVB-S2, rendement R=3/4, modulation 8-PSK, canal sans mémoire à bruit blanc gaussien additif.

- o pourquoi des erreurs ? d_{min} trop petite, processus itératif dégradé par la présence de cycles,
- peut-on les annuler ? post-processing,

 ${\it Code\ pratique: standard\ DVB-S2, rendement\ } \\ R = 3/4, \ modulation\ 8-PSK, \ canal\ sans\ m\'emoire\ {\it a}\ bruit\ blanc\ gaussien\ additif.$



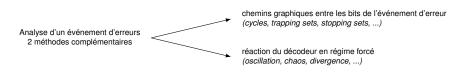
- pourquoi des erreurs ? d_{min} trop petite, processus itératif dégradé par la présence de cycles,
- peut-on les annuler ? post-processing,
- peut-on les éviter ? design de codes,

LDPC Jean-Christophe Sibel 20 février 2014

Code pratique : standard DVB-S2, rendement R=3/4, modulation 8-PSK, canal sans mémoire à bruit blanc gaussien additif.

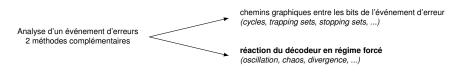
- o pourquoi des erreurs ? d_{min} trop petite, processus itératif dégradé par la présence de cycles,
- peut-on les annuler ? post-processing,
- peut-on les éviter ? design de codes,
- peut-on les modéliser ? aujourd'hui.

LDPC Jean-Christophe Sibel 20 février 2014

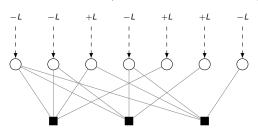


Définition : étant donné le codeword \mathbf{x} émis, l'événement d'erreurs est la séquence des bits qui diffèrent entre \mathbf{x} et $\hat{\mathbf{x}}$

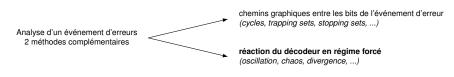
20 février 2014

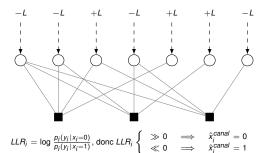


Définition : étant donné le codeword \mathbf{x} émis, l'événement d'erreurs est la séquence des bits qui diffèrent entre \mathbf{x} et $\hat{\mathbf{x}}$

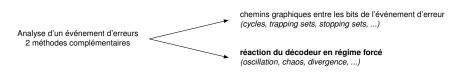


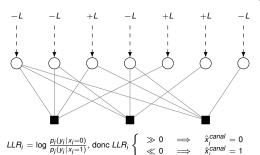
Définition : étant donné le codeword x émis, l'événement d'erreurs est la séquence des bits qui diffèrent entre x et x et x


Régime forcé : affecter des observations en sortie du canal, forcer les LLRs à des valeurs extrêmes $\{-L, +L\}$


LDPC Jean-Christophe Sibel 20 février 2014

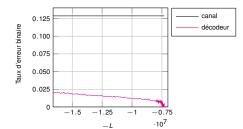
Définition : étant donné le codeword x émis, l'événement d'erreurs est la séquence des bits qui diffèrent entre x et x̂


Régime forcé : affecter des observations en sortie du canal, forcer les LLRs à des valeurs extrêmes $\{-L, +L\}$


LDPC Jean-Christophe Sibel 20 février 2014

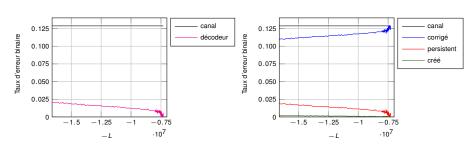
Définition : étant donné le codeword x émis, l'événement d'erreurs est la séquence des bits qui diffèrent entre x et x̂

Régime forcé : affecter des observations en sortie du canal, forcer les LLRs à des valeurs extrêmes $\{-L, +L\}$

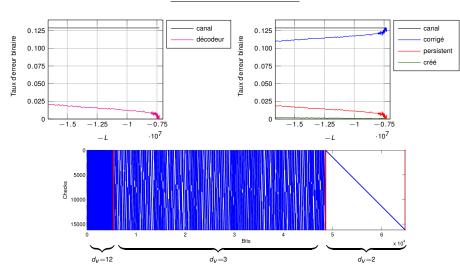

On envoie le codeword tout-à-zéro, le canal est sans effet si tous les LLRs sont positifs.

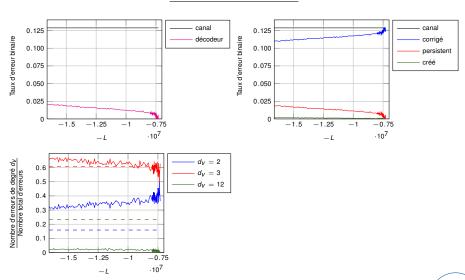
En régime forcé, on inflige des LLRs très négatifs -L de manière contrôlée.

Régime forcé

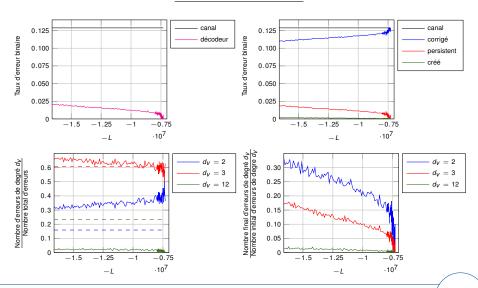

Code LDPC DVB-S2, rendement 3/4

Régime forcé


Code LDPC DVB-S2, rendement 3/4


Régime forcé

Code LDPC DVB-S2, rendement 3/4



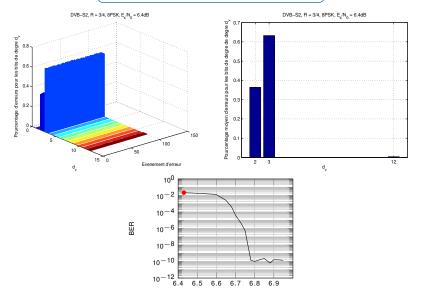
Code LDPC DVB-S2, rendement 3/4

Code LDPC DVB-S2, rendement 3/4

Observations:

- les bits en erreurs de degré 12 sont bien corrigés,
- les bits en erreurs de degrés 2 et 3 sont problématiques,
 - * erreurs persistentes importantes,
 - * erreur créées non nulles

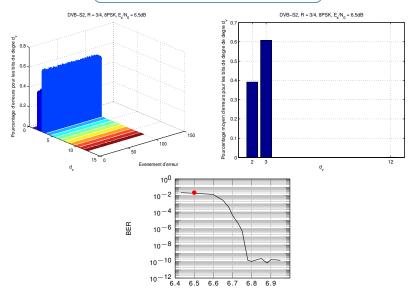
Observations:


- les bits en erreurs de degré 12 sont bien corrigés,
- les bits en erreurs de degrés 2 et 3 sont problématiques.
 - * erreurs persistentes importantes,
 - * erreur créées non nulles

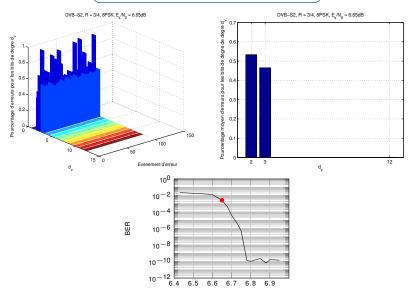
Suite de l'analyse :

- mise en situation réelle :
 - * modulation 8PSK,
 - * canal additif gaussien,
 - LLRs non forcés.
- extraction de valeurs moyennes :
 - * dépendance au degré des bits,
 - dépendance au SNR

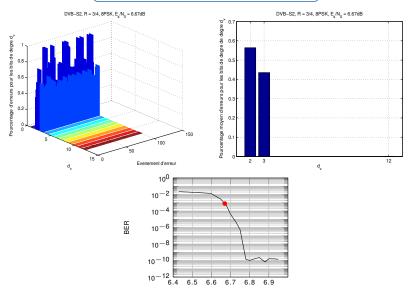
LDPC



E_S / N_O(dB)


Jean-Christophe Sibel

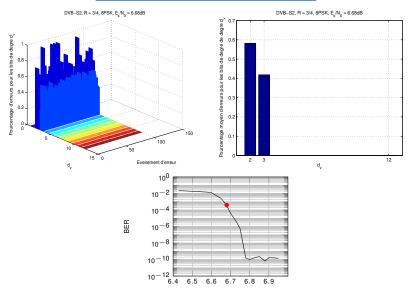
20 février 2014



 $E_S/N_{\Omega}(dB)$

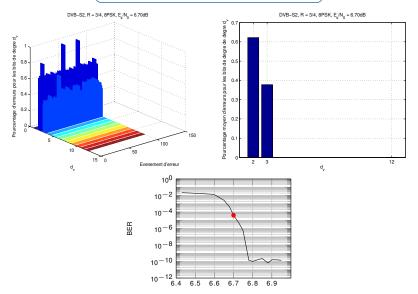
LDPC Jean-Christophe Sibel

20 février 2014

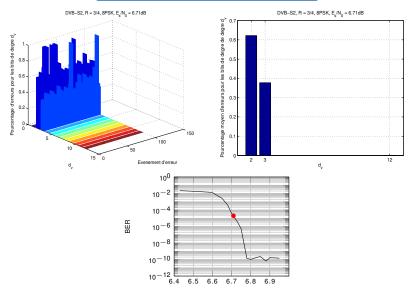


 $E_S/N_O(dB)$ Jean-Christophe Sibel

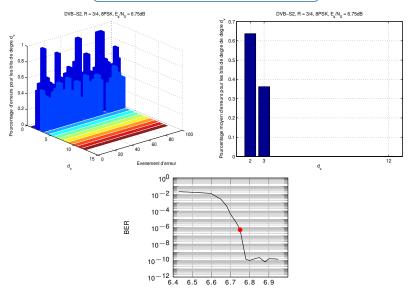
10 / 13



E_S / N_O(dB)


Jean-Christophe Sibel

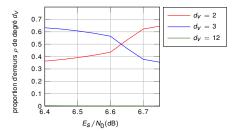
20 février 2014


 $E_S/N_{\Omega}(dB)$

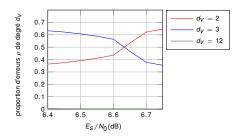
Jean-Christophe Sibel

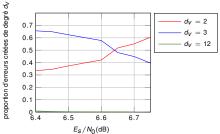
LDPC

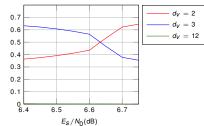
20 février 2014

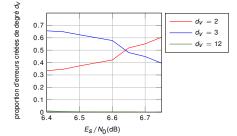


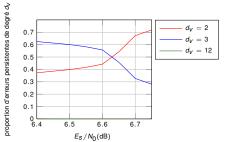
 $E_S/N_{\Omega}(dB)$

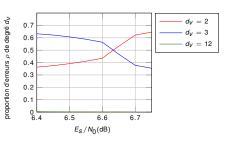

LDPC Jean-Christophe Sibel

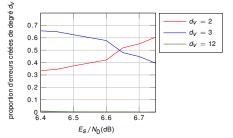

20 février 2014

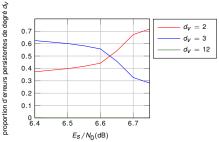














Observations:

trois zones pour trois comportements selon le SNR :

Observations:

- trois zones pour trois comportements selon le SNR :
 - * zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous,

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous,
 - ⋆ waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,

20 février 2014

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous,
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,

12 / 13

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - ★ waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
- * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

12 / 13

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
- * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- aille de l'événement d'erreurs décroissant avec le SNR.

Modélisation : pour une réalisation de canal à SNR donné

20 février 2014

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

soit N_e le nombre d'erreurs à infliger,

Observations:

- trois zones pour trois comportements selon le SNR :
 - * zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
- * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation : pour une réalisation de canal à SNR donné

- soit N_e le nombre d'erreurs à infliger,
- soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_e le nombre d'erreurs à infliger,
- soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
- soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,

20 février 2014

Observations:

- trois zones pour trois comportements selon le SNR :
 - * zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3.
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_e le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
 - soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,

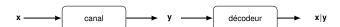
Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_P le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
 - soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,
- ⇒ la modélisation d'événement d'erreurs / simulateur d'erreurs "typiques" en sortie du décodeur est possible !

12 / 13



Observations:

- trois zones pour trois comportements selon le SNR :
 - * zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3.
- * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- o soit Ne le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
 - soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,
- ⇒ la modélisation d'événement d'erreurs / simulateur d'erreurs "typiques" en sortie du décodeur est possible!

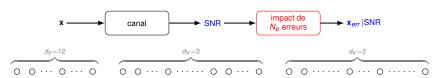
12 / 13

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - ⋆ waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
- * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_e le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
 - soit N₃ = ρ₃ × N_e le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,
- ⇒ la modélisation d'événement d'erreurs / simulateur d'erreurs "typiques" en sortie du décodeur est possible !

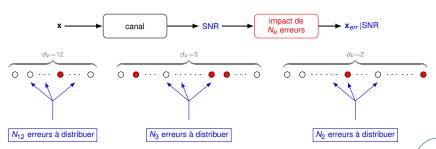

Observations:

- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - ⋆ waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
- error floor: plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
 taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_P le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_e$ le nombre d'erreurs de degré 2 à infliger,
 - soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,

⇒ la modélisation d'événement d'erreurs / simulateur d'erreurs "typiques" en sortie du décodeur est possible!



Observations:

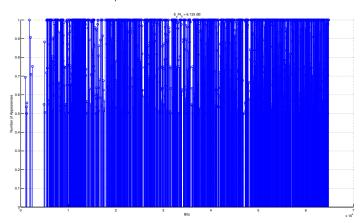
- trois zones pour trois comportements selon le SNR :
 - zone de convergence : plus d'erreurs de degré 3, erreurs de degré 2 importantes, erreurs de degré 12 très en-dessous.
 - * waterfall : croisement entre les taux d'erreurs de degré 2 et degré 3,
 - * error floor : plus d'erreurs de degré 2, erreurs de degré 3 non négligeable, erreurs de degré 12 inexistantes,
- taille de l'événement d'erreurs décroissant avec le SNR.

Modélisation: pour une réalisation de canal à SNR donné

- soit N_P le nombre d'erreurs à infliger,
 - soit $N_2 = \rho_2 \times N_R$ le nombre d'erreurs de degré 2 à infliger,
 - soit $N_3 = \rho_3 \times N_e$ le nombre d'erreurs de degré 3 à infliger,
 - soit $N_{12} = \rho_{12} \times N_e$ le nombre d'erreurs de degré 12 à infliger,
- ⇒ la modélisation d'événement d'erreurs / simulateur d'erreurs "typiques" en sortie du décodeur est possible !

Question: étant donné N2, N3, N12, comment distribuer les erreurs?

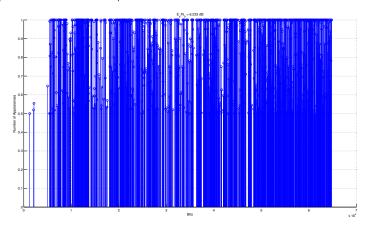
Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.


Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?

Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Question: étant donné N2, N3, N12, comment distribuer les erreurs?

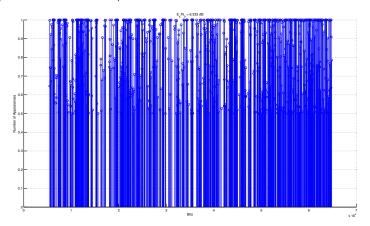
Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.



 $\textbf{Question:} \ \text{\'etant donn\'e} \ \textit{N}_{2}, \textit{N}_{3}, \textit{N}_{12}, \text{comment distribuer les erreurs?}$

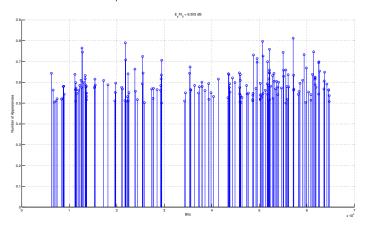
Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Solution approchée : sélectionner les bits le plus souvent en erreurs.

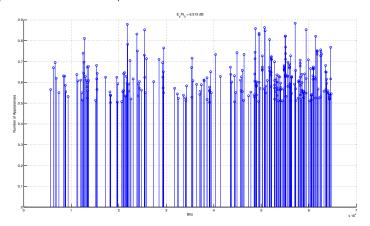


Jean-Christophe Sibel

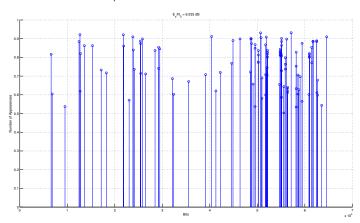
Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?


Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

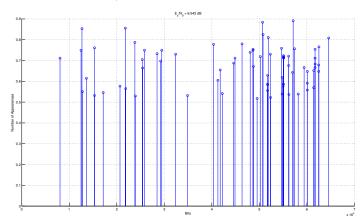
Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?


Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?


Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?


Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Question: étant donné N2, N3, N12, comment distribuer les erreurs?


Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

Question : étant donné N_2 , N_3 , N_{12} , comment distribuer les erreurs ?

Solution exacte : sélectionner les bits selon leurs connexions dans le graphe.

