Random walks on graphs induced by aperiodic tilings

Abstract : In this paper, simple random walks on a class of graphs induced by quasi-periodic tilings of the d-dimensional Euclidean space are investigated. In this sense, these graphs can be seen as perturbations of the Cayley graph of the N-dimensional integer lattice. The quasi-periodicity of the underlying tilings implies that these graphs are not space homogeneous (roughly speaking, there is no transitive group action). In this context, we prove that the symptotic entropy of the simple random walk is zero and characterize the type (recurrent or transient) of the simple random walk. These results are similar to the classical context of random walks on the integer lattice. In this sense, it suggests that the perturbation remains well controlled.
Type de document :
Article dans une revue
Markov Processes And Related Fields, Polymat Publishing Company, 2017, 23 (1), pp.103-124
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01134965
Contributeur : Basile De Loynes <>
Soumis le : mardi 10 mai 2016 - 14:11:05
Dernière modification le : mercredi 14 mars 2018 - 16:48:03
Document(s) archivé(s) le : mardi 15 novembre 2016 - 23:33:28

Fichier

quasiperiodic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01134965, version 4

Collections

Citation

Basile De Loynes. Random walks on graphs induced by aperiodic tilings. Markov Processes And Related Fields, Polymat Publishing Company, 2017, 23 (1), pp.103-124. 〈hal-01134965v4〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

129