The Erdös–Hajnal conjecture for paths and antipaths
Nicolas Bousquet, Aurélie Lagoutte, Stéphan Thomassé

To cite this version:

HAL Id: hal-01134469
https://hal.archives-ouvertes.fr/hal-01134469
Submitted on 23 Mar 2015
The Erdős-Hajnal Conjecture for Paths and Antipaths

N. Bousqueta, A. Lagoutteb,1,*, S. Thomasséb,1

aAlGCo project-team, CNRS, LIRMM, 161 rue Ada, 34392 Montpellier France.
bLIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon, 46, allée d'Italie, 69364 Lyon France.

Abstract

We prove that for every k, there exists $c_k > 0$ such that every graph G on n vertices with no induced path P_k or its complement $\overline{P_k}$ contains a clique or a stable set of size n^{c_k}.

Keywords: Erdős-Hajnal, path, antipath, Ramsey

An n-graph is a graph on n vertices. For every vertex x, $N(x)$ denotes the neighborhood of x, that is the set of vertices y such that xy is an edge. The degree $\text{deg}(x)$ is the size of $N(x)$. In this note, we only consider classes of graphs that are closed under induced subgraphs. Moreover a class \mathcal{C} is strict if it does not contain all graphs. It is said to have the (weak) Erdős-Hajnal property if there exists some $c > 0$ such that every graph of \mathcal{C} contains a clique or a stable set of size n^c where n is the size of G. The Erdős-Hajnal conjecture [8] asserts that every strict class of graphs has the Erdős-Hajnal property; see [3] for a survey.

This fascinating question is open even for graphs not inducing a cycle of length five. When excluding a single graph H, Alon, Pach and Solymosi showed in [2] that it suffices to consider prime H, namely graphs without nontrivial modules (a module is a subset V' of vertices such that for every $x, y \in V'$, $N(x) \setminus V' = N(y) \setminus V'$).

A natural approach is then to study classes of graphs with intermediate difficulty, hoping to get a proof scheme which could be extended. A natural prime candidate to forbid is certainly the path. Unfortunately, even excluding the path on five vertices seems already hard. Chudnovsky and Zwols studied the class \mathcal{C}_k of graphs not inducing the path P_k on k vertices or its complement $\overline{P_k}$. They proved the Erdős-Hajnal property for P_5 and $\overline{P_5}$-free graphs [7]. This was extended for P_5 and $\overline{P_7}$-free graphs by Chudnovsky and Seymour [6]. Moreover structural results have been provided for \mathcal{C}_5 [4, 5]. We show in this note that for every fixed k, the class \mathcal{C}_k has the Erdős-Hajnal property. An n-graph is an ε-stable set if it has at most $\varepsilon(n^2)$ edges. The complement of an ε-stable set is an ε-clique. Fox and Sudakov [11] proved the following:

Theorem 1 ([11]). For every positive integer k and every $\varepsilon \in (0, 1/2)$, there exists $\delta > 0$ such that every n-graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains an ε-stable set of size at least δn.
- G contains an ε-clique of size at least δn.

Note that a stronger result was previously showed by Rödl [14] using Szemerédi’s regularity lemma, but Fox and Sudakov’s proof provides a much better quantitative estimate ($\delta = 2^{-ck(\log 1/\varepsilon)^2}$ for some constant c). They further conjecture that a polynomial estimate should hold, which would imply the Erdős-Hajnal conjecture.

*Corresponding author

Email addresses: nicolas.bousquet@lirmm.fr (N. Bousquet), aurelie.lagoutte@ens-lyon.fr (A. Lagoutte1), stephan.thomasse@ens-lyon.fr (S. Thomassé1)

1These authors were partially supported by ANR Projet STINT under Contract ANR-13-BS02-0007.
In a graph \(G \), a biclique of size \(t \) is a (not necessarily induced) complete bipartite subgraph \((X,Y)\) such that both \(|X|, |Y| \geq t\). Observe that it does not require any condition inside \(X \) or inside \(Y \). Erdős, Hajnal and Pach proved in \cite{erdos1995erdos} that for every strict class \(C \), there exists some \(c > 0 \) such that for every \(n \)-graph \(G \) in \(C \), \(G \) or its complement \(\overline{G} \) contains a biclique of size \(nc \). This "half" version of the conjecture was improved to a "three quarter" version by Fox and Sudakov \cite{fox2009erdos}, where they show the existence of a polynomial size stable set or biclique. Following the notations of \cite{neumann2010erdos}, a class \(C \) of graphs has the strong Erdős-Hajnal property if there exists a constant \(c \) such that for every \(n \)-graph \(G \) in \(C \), \(G \) or \(\overline{G} \) contains a biclique of size \(cn \). It was proved that having the strong Erdős-Hajnal property implies having the (weak) Erdős-Hajnal property:

Theorem 2 (\cite{erdos1980erdos,neumann2010erdos}). If \(C \) is a class of graphs having the strong Erdős-Hajnal property, then \(C \) has the weak Erdős-Hajnal property.

Proof. (sketch) Let \(c \) be the constant of the strong Erdős-Hajnal property, meaning that for every \(n \)-graph \(G \) in \(C \), \(G \) or \(\overline{G} \) contains a biclique of size \(cn \). Let \(c' > 0 \) be such that \(c'c \geq 1/2 \). We prove by induction that every \(n \)-graph \(G \) in \(C \) induces a \(P_4 \)-free graph of size \(n^{c'} \). By our hypothesis on \(C \), there exists, say, a biclique \((X,Y)\) of size \(cn \) in \(G \). Applying the induction hypothesis inside both \(X \) and \(Y \), we form a \(P_4 \)-free graph on \(2(cn)c' \geq n^{c'} \) vertices. The Erdős-Hajnal property of \(C \) follows from the fact that every \(P_4 \)-free \(n^{c'} \)-graph has a clique or a stable set of size at least \(n^{c'/2} \).

We now prove our main result. The key lemma is an adaptation of Gyárfás’ proof of the \(\chi \)-boundedness of \(P_k \)-free graphs, see \cite{gyarfas1986some}.

Lemma 3. For every \(k \geq 2 \), there exists \(\varepsilon_k > 0 \) and \(c_k \) (with \(0 < c_k \leq 1/2 \)) such that every connected \(n \)-graph \(G \) with \(n \geq 2 \) satisfies one of the following:

- There exists a vertex of degree more than \(\varepsilon_k n \).
- For every vertex \(v \), \(G \) contains an induced \(P_k \) starting at \(v \).
- The complement \(\overline{G} \) of \(G \) contains a biclique of size \(c_k n \).

Proof. We proceed by induction on \(k \). For \(k = 2 \), since \(G \) is connected, every vertex is the endpoint of an edge (that is, a \(P_2 \)). Thus we can arbitrarily define \(\varepsilon_2 = c_2 = 1/2 \).

If \(k > 2 \), let \(\varepsilon_k = \frac{\varepsilon_{k-1}}{(2+\varepsilon_{k-1})} \) and \(c_k = \frac{c_{k-1}(1-\varepsilon_k)}{2} \). Let us assume that the first item is false. We will show that the second or the third item is true. Let \(v_1 \) be any vertex and \(S = V(G) \setminus (N(v_1) \cup \{v_1\}) \). The size \(s \) of \(S \) is at least \((1-\varepsilon_k)n - 1 \). If \(S \) has only small connected components, meaning of size at most \(s/2 \), then one can divide the connected components into two parts with at least \((s+1)/4 \) vertices each, and no edges between both parts. This gives in \(G \) a biclique of size \((s+1)/4 \geq (1-\varepsilon_k)n \), thus of size at least \(c_k n \) since \(c_k \leq \frac{1-\delta}{4} \). Otherwise, \(S \) has a giant connected component \(S' \), meaning of size \(s' \) more than \(s/2 \). Let \(v_2 \) be a vertex adjacent both to \(v_1 \) and to some vertex in \(S' \). Observe that \(v_2 \) exists since \(G \) is connected. Consider now the graph \(G_2 \) induced by \(S' \cup \{v_2\} \). The maximum degree in \(G_2 \) is still at most \(\varepsilon_k n = \varepsilon_{k-1}(1-\varepsilon_k)n/2 \leq \varepsilon_{k-1}(s'+1) \). By the induction hypothesis, either the second or the third item is true for \(G_2 \) with parameter \(k-1 \). The second item gives an induced \(P_{k-1} \) in \(G_2 \) starting at \(v_2 \), thus an induced \(P_k \) in \(G \) starting at \(v_1 \). The third item gives a biclique of size \(c_{k-1} |G_2| \) in \(\overline{G_2} \). Since \(|G_2| = s' + 1 \geq \frac{1-\delta}{4} n \), this gives a biclique of size at least \(\frac{c_{k-1}(1-\varepsilon_{k-1})}{2} n = c_k n \) and concludes the proof.

Theorem 4. For every \(k \geq 2 \), \(C_k \) has the strong Erdős-Hajnal property. Thus, by Theorem 2, the class \(C_k \) has the (weak) Erdős-Hajnal property.

Proof. Let \(\varepsilon_k \) be as defined in Lemma 3 and \(\varepsilon = \varepsilon_k/8 > 0 \). By Theorem 1, there exists \(\delta > 0 \) such that every graph \(G \) not inducing \(P_k \) or \(P_k \) does contain an \(\varepsilon \)-stable set or an \(\varepsilon \)-clique of size at least \(\delta n \). Free to consider the complement of \(G \), we can assume that \(G \) contains an \(\varepsilon \)-stable set \(S_0 \) of size \(\delta n \). We start by deleting in \(S_0 \) all the vertices with degree in \(S_0 \) at least \(2\varepsilon s_0 \) where \(s_0 \) is the size of \(S_0 \). Since the average degree in \(S_0 \)
is at most εs_0, we do not delete more than half of the vertices. We call S the remaining subgraph which is a 4ε-stable set of size $s \geq \delta n/2$ with maximum degree less than $4\varepsilon s$.

Let G_S be the graph induced by S. Our goal is to find a constant c such that G_S have a biclique of size cs, which gives a biclique in \overline{G} of size at least $c\delta n/2$ and concludes the proof. Assume first that G_S only has small connected components, meaning of size less than $s/2$. Then one can partition the connected components of G_S in order to get a biclique in $\overline{G_S}$ of size $s/4$. Otherwise, G_S has a connected component S' of size $s' \geq s/2$. The degree of every vertex in S' is at most $8\varepsilon s' = \varepsilon k s'$, and S' does not contain any induced P_k since G does not. By Lemma 3, there exists a biclique of size $c_k s' \geq c_k s'/2$ in the complement of the graph induced by S', thus in $\overline{G_S}$.

