I. E. Sønderby, F. Geu-flores, and B. A. Halkier, Biosynthesis of glucosinolates-gene discovery and beyond, Trends Plant Sci, vol.15, issue.5, pp.283-290, 2010.

J. W. Fahey, A. T. Zalcmann, and P. Talalay, The chemical diversity and distribution of glucosinolates and isothiocyanates among plants, Phytochemistry, vol.56, issue.1, pp.5-51, 2001.

D. J. Kliebenstein, A quantitative genetics and ecological model system: Understanding the aliphatic glucosinolate biosynthetic network via QTLs, Phytochem Rev, vol.8, pp.243-254, 2008.

S. Textor, Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: Recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle, Planta, vol.218, issue.6, pp.1026-1035, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02104692

R. A. Lankau, Specialist and generalist herbivores exert opposing selection on a chemical defense, New Phytol, vol.175, issue.1, pp.176-184, 2007.

M. Burow, B. A. Halkier, and D. J. Kliebenstein, Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness, Curr Opin Plant Biol, vol.13, issue.3, pp.348-353, 2010.

B. A. Halkier and J. Gershenzon, Biology and biochemistry of glucosinolates, Annu Rev Plant Biol, vol.57, pp.303-333, 2006.

J. E. Rodman, A. R. Kruckeberg, and A. Ia, Chemotaxonomic diversity and complexity in seed glucosinolates of Caulanthus and Streptanthus (Cruciferae), Syst Bot, vol.6, issue.3, pp.197-222, 1981.

J. E. Rodman, Population variation and hybridization in sea-rockets (Cakile, Cruciferae): Seed glucosinolate characters, Am J Bot, vol.67, issue.8, pp.1145-1159, 1980.

A. J. Windsor, Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae), Phytochemistry, vol.66, issue.11, pp.1321-1333, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02104685

D. J. Kliebenstein, J. Gershenzon, and T. Mitchell-olds, Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds, Genetics, vol.159, issue.1, pp.359-370, 2001.

M. Reichelt, Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana, Phytochemistry, vol.59, issue.6, pp.663-671, 2002.

P. D. Brown, J. G. Tokuhisa, M. Reichelt, and J. Gershenzon, Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana, Phytochemistry, vol.62, issue.3, pp.471-481, 2003.

T. Züst, Natural enemies drive geographic variation in plant defenses, Science, vol.338, issue.6103, pp.116-119, 2012.

M. W. Horton, Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel, Nat Genet, vol.44, issue.2, pp.212-216, 2012.

S. Atwell, Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines, Nature, vol.465, issue.7298, pp.627-631, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468440

H. M. Kang, Efficient control of population structure in model organism association mapping, Genetics, vol.178, issue.3, pp.1709-1723, 2008.

H. M. Kang, Variance component model to account for sample structure in genome-wide association studies, Nat Genet, vol.42, issue.4, pp.348-354, 2010.

B. G. Hansen, A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis, Plant Physiol, vol.148, issue.4, pp.2096-2108, 2008.

E. K. Chan, H. C. Rowe, J. A. Corwin, B. Joseph, and D. J. Kliebenstein, Combining genomewide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana, PLoS Biol, vol.9, issue.8, p.1001125, 2011.

J. Bergelson and F. Roux, Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana, Nat Rev Genet, vol.11, issue.12, pp.867-879, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00563568

L. M. Jensen, B. A. Halkier, and M. Burow, How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport, Biol Chem, vol.395, issue.5, pp.529-543, 2014.

D. J. Kliebenstein, Genetic control of natural variation in Arabidopsis glucosinolate accumulation, Plant Physiol, vol.126, issue.2, pp.811-825, 2001.

D. Kliebenstein, D. Pedersen, B. Barker, and T. Mitchell-olds, Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana, Genetics, vol.161, issue.1, pp.325-332, 2002.

J. Li, B. G. Hansen, J. A. Ober, D. J. Kliebenstein, and B. A. Halkier, Subclade of flavinmonooxygenases involved in aliphatic glucosinolate biosynthesis, Plant Physiol, vol.148, issue.3, pp.1721-1733, 2008.

R. Nielsen, Genomic scans for selective sweeps using SNP data, Genome Res, vol.15, issue.11, pp.1566-1575, 2005.

C. Toomajian, A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome, PLoS Biol, vol.4, issue.5, p.137, 2006.

B. S. Weir and C. C. Cockerham, Estimating F-statistics for the analysis of population structure, Evolution, vol.38, issue.6, pp.1358-2728, 1984.

S. Wright, The genetical structure of populations, Ann Eugen, vol.15, issue.4, pp.323-354, 1951.

F. Roux, J. Gasquez, and X. Reboud, The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines, Genetics, vol.166, issue.1, pp.449-460, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02676870

R. J. Hopkins, N. M. Van-dam, and J. Van-loon, Role of glucosinolates in insect-plant relationships and multitrophic interactions, Annu Rev Entomol, vol.54, pp.57-83, 2009.

M. G. Bidart-bouzat and D. J. Kliebenstein, Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana, J Chem Ecol, vol.34, issue.8, pp.1026-1037, 2008.

A. M. Hancock, Adaptation to climate across the Arabidopsis thaliana genome, Science, vol.334, issue.6052, pp.83-86, 2011.

A. Fournier-level, A map of local adaptation in Arabidopsis thaliana, Science, vol.334, issue.6052, pp.86-89, 2011.

J. Kroymann, S. Donnerhacke, D. Schnabelrauch, and T. Mitchell-olds, Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus, Proc Natl Acad Sci, vol.100, issue.2, pp.14587-14592, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02104698

D. J. Kliebenstein, V. M. Lambrix, M. Reichelt, J. Gershenzon, and T. Mitchell-olds, Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutaratedependent dioxygenases control glucosinolate biosynthesis in Arabidopsis, Plant Cell, vol.13, issue.3, pp.681-693, 2001.

S. Schiml, F. Fauser, and H. Puchta, The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny, Plant J, vol.80, issue.6, pp.1139-1150, 2014.

C. F. Olson-manning, M. R. Wagner, and T. Mitchell-olds, Adaptive evolution: Evaluating empirical support for theoretical predictions, Nat Rev Genet, vol.13, issue.12, pp.867-877, 2012.

N. L. Clark, Coevolution of interacting fertilization proteins, PLoS Genet, vol.5, issue.7, p.1000570, 2009.

P. C. Sham and S. M. Purcell, Statistical power and significance testing in large-scale genetic studies, Nat Rev Genet, vol.15, issue.5, pp.335-346, 2014.

S. A. Flint-garcia, J. M. Thornsberry, and E. S. Buckler, Structure of linkage disequilibrium in plants, Annu Rev Plant Biol, vol.54, pp.357-374, 2003.