F. Alipour and R. Scherer, Flow separation in a computational oscillating vocal fold model, The Journal of the Acoustical Society of America, vol.116, issue.3, pp.710-711, 2004.
DOI : 10.1121/1.1779274

D. A. Berry, Mechanisms of modal and nonmodal phonation, Journal of Phonetics, vol.29, issue.4, pp.431-450, 2001.
DOI : 10.1006/jpho.2001.0148

J. Cisonni, A. Van-hirtum, X. Pelorson, and J. Willems, Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models, The Journal of the Acoustical Society of America, vol.124, issue.1, pp.535-545, 2008.
DOI : 10.1121/1.2931959

URL : https://hal.archives-ouvertes.fr/hal-00321308

T. A. Davis, UMFPack: unsymmetric multifrontal sparse LU factorization package

G. Decker and S. Thomson, Computational Simulations of Vocal Fold Vibration: Bernoulli Versus Navier???Stokes, Journal of Voice, vol.21, issue.3, pp.273-284, 2007.
DOI : 10.1016/j.jvoice.2005.12.002

M. Deverge, X. Pelorson, C. Vilain, P. Lagree, F. Chentouf et al., Influence of collision on the flow through in-vitro rigid models of the vocal folds, The Journal of the Acoustical Society of America, vol.114, issue.6, pp.354-357, 2003.
DOI : 10.1121/1.1625933

URL : https://hal.archives-ouvertes.fr/hal-00363836

B. Erath and M. Plesniak, The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds, The Journal of the Acoustical Society of America, vol.120, issue.2, pp.735-748, 2006.
DOI : 10.1121/1.2213522

M. Feistauer, J. Felcman, and I. Stra?kraba, Mathematical and computational methods for compressible flow, 2003.

J. Horá?ek, P. Sidlof, and J. G. Svec, Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces, Journal of Fluids and Structures, vol.20, issue.6, pp.853-869, 2005.
DOI : 10.1016/j.jfluidstructs.2005.05.003

K. Ishizaka and J. Flanagan, Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords, Bell System Technical Journal, vol.51, issue.6, pp.233-234, 1972.
DOI : 10.1002/j.1538-7305.1972.tb02651.x

M. Kob, S. Krämer, A. Prévot, M. Triep, and C. Brücker, Acoustic measurement of periodic noise generation in a hydrodynamical vocal fold model, Proceedings of Forum Acusticum, pp.731-733, 2005.

G. Link, A 2D finite-element scheme for fluid???solid???acoustic interactions and its application to human phonation, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, 2008.
DOI : 10.1016/j.cma.2009.06.009

J. Lucero, Optimal glottal configuration for ease of phonation, Journal of Voice, vol.12, issue.2, pp.151-158, 1998.
DOI : 10.1016/S0892-1997(98)80034-9

D. Martin, Finite element library Mélina

T. Nomura and T. J. Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer methods in applied mechanics and engineering, vol.95, pp.115-138, 1992.

X. Pelorson, A. Hirschberg, R. Van-hassel, and A. Wijnands, Theoretical and experimental study of quasisteady flow separation within the glottis during phonation. Application to a modified twomass model, Journal of the Acoustical Society of America, vol.96, issue.3, pp.416-419, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00370269

R. C. Scherer, D. Shinwari, K. J. De-witt, C. Zhang, B. R. Kucinschi et al., Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees Fluid-structure interaction in human vocal folds Finite element modeling of airflow in vibrating vocal folds Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production, Proceedings of International Conference on Voice Physiology and Biomechanics ? ICVPB, pp.616-617, 2001.

S. L. Thomson, L. Mongeau, and S. H. Frankel, Aerodynamic transfer of energy to the vocal folds, The Journal of the Acoustical Society of America, vol.118, issue.3, pp.689-690, 2005.
DOI : 10.1121/1.2000787

I. R. Titze, The human vocal cords: A mathematical model, Part II, Phonetica, vol.29, 1974.

I. R. Titze, Principles of Voice Production, National Center for Voice and Speech, 2000.

S. Turek, Efficient solvers for incompressible flow problems: An algorithmic and computational approach, 1999.
DOI : 10.1007/978-3-642-58393-3

C. E. Vilain, X. Pelorson, C. Fraysse, M. Deverge, A. Hirschberg et al., Experimental validation of a quasi-steady theory for the flow through the glottis, Journal of Sound and Vibration, vol.276, issue.3-5, pp.475-490, 2004.
DOI : 10.1016/j.jsv.2003.07.035

URL : https://hal.archives-ouvertes.fr/hal-00363830

M. Zanartu, L. Mongeau, and G. Wodicka, Influence of acoustic loading on an effective single mass model of the vocal folds, The Journal of the Acoustical Society of America, vol.121, issue.2, pp.119-120, 2007.
DOI : 10.1121/1.2409491

Z. Zhang, J. Neubauer, and D. Berry, Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation, The Journal of the Acoustical Society of America, vol.122, issue.4, pp.279-281, 2007.
DOI : 10.1121/1.2773949

S. Zörner, Numerical study of the human phonation process by the Finite Element Method, Proceedings of the International Conference on Acoustics NAG/DAGA, pp.718-719, 2009.