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Abstract

In this paper we present our new design of
NNCTPH, a scalable algorithm to build an approx-
imate k-NN graph from large text datasets. The al-
gorithm uses a modified version of Context Triggered
Piecewise Hashing to bin the input data into buckets,
and uses NN-Descent, a versatile graph-building algo-
rithm, inside each bucket. We use datasets consisting
of the subject of spam emails to experimentally test the
influence of the different parameters of the algorithm
on the number of computed similarities, on processing
time, and on the quality of the final graph. We also
compare the algorithm with a sequential and a MapRe-
duce implementation of NN-Descent. For our datasets,
the algorithm proved to be up to ten times faster than
NN-Descent, for the same quality of produced graph.
Moreover, the speedup increased with the size of the
dataset, making NNCTPH a sensible choice for very
large text datasets.

1. Introduction

A graph is a mathematical structure made up of
nodes (or vertices) connected with edges. In some
cases, the edges have a weight, resulting in a weighted
graph. Instead of physical relationships like “is a friend
of”, “likes” or “has an hyperlink to”, edges may also
represent the similarity between nodes. This results in
a nearest neighbors graph, of which two flavors exist.
The most commonly used is the k-nearest neighbors
graph (k-NN graph), where each node is connected to
(has an edge to) its k nearest neighbors, according to
a given similarity metric.

Another possibility is to create an ǫ-NN graph,
a graph where an edge exists between two nodes if

their distance is less than a pre-defined threshold ǫ.
However, it has been shown in [1] that ǫ-NN graphs
easily result in disconnected components. Moreover,
it is usually difficult to find a good value of ǫ which
yields graphs with an appropriate number of edges [2].
From a practical point of view, it is more efficient to
build a k-NN graph and afterward filter the graph with
different values of ǫ. Hence most of the research on
graph building currently focuses on k-NN graphs.

Until recently, no algorithm was able to quickly
build k-NN graphs from a large text datasets. There-
fore, in [4] we proposed a preliminary design of
NNCTPH, a new scalable algorithm to build k-NN
graphs from large text datasets. The algorithm uses a
custom Context Triggered Piecewise Hashing (CTPH)
function, which tends to produce the same hash for
similar input strings, to bin the input text data into
buckets. Then, the algorithm computes the subgraph
inside each bucket, and uses multiple stages to join
these unconnected subgraphs. The algorithm is based
on the MapReduce programming model and can be
executed on scalable computing frameworks such as
Hadoop. Furthermore, it uses a single job (as opposed
to iterative algorithms) which facilitates the task of the
resource scheduler of systems like Hadoop or Spark.

In this paper, we enhance the original design of
the algorithm by using NN-Descent inside the buckets
to reduce the computational cost of the algorithm.
We also experimentally test the algorithm on different
datasets consisting of the subject of spam emails. We
test the influence of the different parameters of the
algorithm on the number of computed similarities, on
processing time, and on the quality of the final graph.
We also compare the algorithm with a sequential and a
MapReduce implementation of NN-Descent, and show
that NNCTPH largely outperforms state of the art
approaches in term of run-time.



The rest of this paper is organized as follows.
In Section 2 we present existing algorithms to build
a k-NN graph, and algorithms that perform nearest
neighbor search in general. In Section 3 we present
the implementation details of our algorithm. In Sec-
tion 4 we show experimental results, and compare
our algorithm with a sequential and a MapReduce
implementation of NN-Descent. Finally, in Section 5
we present our conclusion and directions for future
work.

2. Related work

Different approaches exist to build a k-NN graph.
Some of them tolerate incorrect edges to speedup the
building process and produce an approximate graph,
while others produce an exact graph. In both cases,
these building algorithms are closely related to nearest
neighbor search algorithms. But when it comes to
building a k-NN graph from a big unstructured text
dataset, where each node consists of a string, none of
these offer an efficient solution.

The naive method, also called linear search, con-
sists in computing the distance between the query point
and every other point in the set, keeping track of the
“best node so far” (or k “best nodes so far”). Similarly,
the most naive way to build a complete k-NN graph is
is to use brute force to compute all pairwise similari-
ties. Then, for each node, the algorithm keeps only the
k edges with the highest similarity. This method has
a computational cost of O(n2) and is thus very slow,
even implemented in parallel.

Another approach is to use some kind of index
to speedup nearest neighbors search. These techniques
usually rely on the branch and bound algorithm, and
the index is used to partition the data space. For
example, a k-d tree, that recursively partitions the
space into equally sized sub-spaces, can be used to
speedup neighbor search. R-trees can also be used for
euclidean spaces. In the case of generic metric spaces,
vantage-point trees, also known as metric trees, and
BK-trees can be used. But these approaches are hard to
implement in parallel on a shared nothing architecture
like MapReduce (MR). In [3] for example, the authors
present a distributed k-NN graph building algorithm,
but use a shared memory architecture to store a kd-tree
based index.

Some nearest neighbors search algorithms use
Locality-Sensitive Hashing (LSH), like [6], to hash
the input items so that similar items are mapped to

the same buckets with a high probability. As opposed
to conventional hash functions, such as those used in
cryptography, the goal of LSH is to maximize the
probability of collision between similar items. Various
authors also propose algorithms relying on LSH the
build k-NN graphs. In [8], the authors use LSH to
divide the dataset into small groups. Then, inside these
small groups, the algorithm builds the k-NN graph. As
groups are not overlapping, the constructed graph is a
union of multiple isolated small graphs. To build the
final graph, and improve the approximation quality, the
division is repeated several times to generate multiple
approximate graphs, which are combined to produce
the final graph. They also show experimentally that
their algorithm is much faster than existing algorithms,
for similar quality of the built graph. But LSH func-
tions are defined only for some similarity measures
(lp, Mahalanobis distance, kernel similarity, and χ2

distance). The algorithms relying on LSH can thus not
be used to build a k-NN graph from text data using an
edit distance (Levenshtein distance) or another similar
function (weighted Levenshtein distance, Jaro-Winkler
distance, Hamming distance) as a similarity metric.

A different and versatile algorithm to efficiently
compute an approximate k-NN graph is described
in [5]. The algorithm, called NN-Descent, starts by
creating edges between random nodes. Then, for each
node, it computes the similarity between all neighbors
of the current neighbors, to find better edges. The
algorithm iterates until it cannot find better edges. The
main advantage of this algorithm is that it works with
any similarity measure. The authors also propose a
MapReduce version of the algorithm, but it requires
multiple iterations to converge, and two MR jobs per
iteration. Moreover, the algorithm requires to read and
write a lot of data on disk between MR jobs. Although
the sequential version of the algorithm proved to be
very efficient, these constraints make it inefficient
when implemented in parallel. This will be confirmed
during the experimental tests presented below.

As no current algorithm was suitable for building a
k-NN graph from a big text dataset, in [4] we proposed
a new MR algorithm that requires a single iteration
and a single MR job, and does not rely on a shared
index. Internally, the algorithm uses a specific hashing
scheme, called Context Triggered Piecewise Hashing
(CTPH), also known as Fuzzy Hashing, to bin the input
data into buckets. To build the subgraphs inside the
buckets, the original algorithm used the naive method,
which has a computational cost O(n2). Consequently
the algorithm was very sensitive to skewed data, as in
this case the computational time was largely dominated



by the largest buckets. Moreover, the algorithm only
supported a fixed number of buckets.

3. NNCTPH

We present here the design of an enhanced version
of NNCTPH. The algorithm, presented in Algorithm 1,
requires a single MR job. In the map phase, the
algorithm uses a modified CTPH function to produce
a hash of each input string. This hash value is then
used to bin the string into a bucket. Each reduce task
builds a k-NN graph of the strings in the bucket. We
experimentally found that, for small datasets, the naive
method requires less computations and processing time
than sequential NN-Descent. Therefore, if the number
of strings in the bucket is smaller than a given threshold
θ, the reduce task uses the naive method, otherwise it
uses NN-Descent.

Algorithm 1 NNCTPH

Input:
s the number of stages
c the number of characters of emitted hash
l the number of letters used to produce the hash

procedure MAP(string)
h = CTPH(string, s, c, l)
// string is emitted s times
for i in 0..s do

// As key, we concatenate the stage i and
// a substring of c characters of the hash
// starting at ith character
key = i SUBSTRING(h, i, c)
EMIT(< key, string >)

end for
end procedure

procedure REDUCE(key , < strings >)
if SIZE(strings) < θ then BRUTEFORCE

else NNDESCENT

end if
for string in strings do

// Emits the k strings from this bucket
// that have the highest similarity with string
EMIT(< string, EDGES(string, k) >)

end for
end procedure

To control the number of buckets, and hence the
number of strings per bucket, we modified the original
CTPH function to: i) produce a hash of variable size;

and ii) use only a subset of letters in the hash, instead
of the 64 original letters. Moreover, if we only emit
each string once, we will end up with a series of
unconnected subgraphs, as each string is binned into
a single bucket, and no edges are created between the
strings of different buckets. To reconnect the graph,
in the map phase, the algorithm creates a longer hash
(using a coefficient we call stages) and emits the input
string once for each subpart of the hash.

For example, to run the algorithm with 100 buckets
and two stages, the custom CTPH function produces a
hash of three characters, using ten letters. If the hash
of an input string is ABC, the original string will be
emitted twice by the mapper: once for AB, and once
for BC. In this way, we can expect that the reduce task
for bucket BC will produce edges to strings located
outside bucket AB, hence reconnecting the graph.

The algorithm thus requires three parameters: the
number of stages (s), the number of characters of
emitted hash (c), and the number of letters used to
produce the hash (l). These have an impact on the
quality of the graph, on the quantity of data that has
to be shuffled, on the parallelism of the algorithm, on
the quantity of RAM required by the reducers, and on
the number of similarities to compute.

The number of buckets produced by the hashing
function is lc. If we assume the input strings are
uniformly distributed over the buckets (if data is not
skewed), the number of strings per bucket is n

lc
. Dong

et al. [5] experimentally found that the computational
cost of NN-Descent is around O(n1.14). As we use
NN-Descent inside the buckets to build the subgraphs,
the number of similarities to compute is: O(s · lc ·

( n
lc
)1.14). If we choose l and c such that the number

of strings per bucket (n/lc) is constant (with a number
of buckets proportional to the size of the dataset), this
means that the computational cost of our algorithm
is proportional to the number of buckets, and thus
proportional to the size of the dataset. This is a lower
bound. If the input data is skewed, which is the case
of our test dataset, the total number of similarities to
compute is higher.

The number of stages s will also have an impact
on the quality of the final graph: if more stages are
used, the same string will be emitted multiple times.
The probability to discover correct edges will thus also
rise. The number of stages is also directly proportional
to the quantity of data to shuffle and transmit over the
network: data to shuffle = s · n where n is the size of
the dataset. Using a higher number of stages will thus
slow down the algorithm.



In the next section, we perform a sensitivity analy-
sis of the effects and interactions of these parameters.

4. Experimental evaluation

To analyze the performance of our algorithm, we
implement it using Hadoop MapReduce and test it
on datasets containing the subject of 200.000 spam
emails. This dataset is a sample of spams collected
by Symantec Research Labs in 2010. It is mainly
used to improve spams signature definitions, and to
analyze trends in spam campaigns. We also compare
it against our Hadoop MapReduce implementations
of NN-Descent and of the brute-force method. All
algorithms are executed on a cluster of 20 worker
nodes, each equipped with a four-core processor, 8GB
of RAM, and four 1Gb ethernet cards.

To compute the similarity between spam subjects,
we use the Jaro-Winkler distance [7]. This measure of
string similarity is normalized such that zero equates
to no similarity and one is an exact match.

To measure the accuracy of the output of each
algorithm, like in [5], we use recall, which is the
ratio between the number of correct edges found by
the approximate algorithm (where the ground truth are
the edges found by the naive algorithm) and the total
number of edges created by approximate algorithm.

4.1.Number of stages

We first test the influence of the number of stages
used to run the algorithm. The number of stages is the
number of times each input string will be emitted by
the mapper. We use this coefficient to reconnect the
different subgraphs produced by the reducers.

We use NNCTPH to build a 10-nn graph from
our dataset. We use hashes of two characters, with
32 possible letters. We thus create 1024 buckets, and
we let the number of stages vary between one and
ten. The quantity of data that has to be shuffled and
transmitted over the network is directly proportional
to the number of stages, which is confirmed by our
experiments. Using a higher number of stages will thus
slightly slow the algorithm down. At the same time,
this will distribute the same input string into more
buckets, thus increasing the probability to find correct
edges.

The resulting running time and recall are shown on
Figure 1. As we can see, as little as two stages suffice
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Figure 1: Influence of the number of stages on the
running time and recall of NNCTPH.

to correctly discover 50% of edges in the dataset.
Increasing the number of stages increases the running
time, as expected, but has only a limited effect on
recall.

4.2.Number of buckets

We now study the influence of the number of
buckets on processing time and on the quality of
produced graph. We have two ways to modify the
number of buckets: varying the length of the hash,
and varying the number of letters used to produce the
hash. Therefore we run three series of tests. For each
series, we use NNCTPH to build a 10-nn graph from
our spam dataset. Given the results of our previous
section, we use two stages as this offers the best
trade-off between running speed and recall. In the first
and second series, we use respectively one and two
characters, and we let the number of possible letters
used to compute the hash vary. In the third series, we
use a fixed number of possible letters (two), and we
let the number of characters of the hash vary. These
values are summarized below.

S1 S2 S3

Characters 1 2 7 to 12

Letters 20 to 44 4 to 40 2

Buckets 20 to 44 16 to 1600 128 to 4096

The resulting running time and recall of each series
of experiments are displayed on Figure 2. As we can
observe, the running time and recall both tend to
decrease when the number of buckets increases, but
the impact on recall is quite limited. We can also see
that, for the same number of buckets, shorter hashes
(with less characters, but created using more possible
letters, like S1) produce slightly better graphs but run
slower.
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Figure 2: Influence of the number of buckets on the
running time and recall of NNCTPH

4.3.Comparison with NN-Descent

We also implement a complete MapReduce (MR)
version of NN-Descent, that we compare to our algo-
rithm. We run NN-Descent on our dataset, and for each
iteration we measure the total running time and recall.
The results are shown on Figure 3. On the same Figure,
we also present the results of previous experiments. As
we can see, in some cases NNCTPH runs 6 times faster
than NN-Descent for the same quality of produced
graph, but the attainable recall is limited.

This is mainly due to the principle of binning itself.
At some point, the hashing function has to produce
different hashes for different input strings. This means
that two similar strings, that differ by only one letter,
may receive different hashes. Therefore they will be
binned into different buckets, which makes the creation
of an edge between them impossible. We mitigate this
effect using multiple stages, but the resulting attainable
recall is still limited to roughly 50%, as shown on
Figure 1. We can also reduce this effect by using less
buckets, and more strings per bucket, but this increases
the computational cost of the algorithm, as shown on
Figure 2, and reduces the parallelism of the algorithm.
A possible solution to increase recall would be to use
different hashing functions in parallel. Furthermore,
even if we have an idea of how many edges were
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Figure 3: Comparison of NN-Descent and NNCTPH
algorithms

correctly discovered by our algorithm, we would like
to know which edges are correctly detected, and which
ones are not. These are left as a future work.

4.4.Scalability

We now test how the algorithm behaves when
the size of the dataset increases. Therefore we use
other datasets with up to 800.000 spams. Based on
previous experiments, we use two stages, hashes of
two characters, and we tune the number of letters used
so that each buckets receives an average of 200 spams,
as summarized below.

T2 T4 T6 T8

Spams (x1000) 200 400 600 800

Characters 2 2 2 2

Letters 32 45 55 64

Buckets 1024 2025 3025 4096

We also compare NNCTPH with our MR im-
plementation of NN-Descent and with our sequential
implementation of NN-Descent. For both algorithms,
we chose parameters that deliver approximately the
same recall. The resulting running times and recalls
are displayed on Figure 4. As we can see, the recall
achieved by NNCTPH with these parameters is very
stable, and the running time rises very slowly. As a
result, the bigger the dataset is, the higher the speedup
with respect to MR NN-Descent. With our dataset
of 800,000 spams, we reach a speedup of nearly an
order of magnitude for the same quality of the final
graph. Clearly here MR NN-Descent suffers from its
iterative structure, which is not well suited for the
MR framework, and requires a lot of slow disk I/O
operations.
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for larger datasets

5. Conclusion and future work

In this paper we presented our implementation
of NNCTPH, a MapReduce algorithm that builds an
approximate k-NN graph from large text datasets. We
used datasets containing the subject of spam emails
to experimentally test the influence of the different
parameters of the algorithm on the quality on pro-
cessing time and on the quality of the final graph.
We also compared the algorithm with a sequential
and a MapReduce implementation of NN-Descent. For
our datasets, the algorithm proved to be up to ten
times faster than the MapReduce implementation of
NN-Descent, for the same quality of produced graph.
Moreover, the speedup increased with the size of the
dataset, making NNCTPH a perfect choice for very
large text datasets.

In the future we plan to further study the quality
of the produced graphs: until now we have an idea
of how many edges were correctly discovered by our
algorithm, but we would like to know which edges are
correctly detected, and which ones are not. We also
want to study the influence of graph quality on the
post-processing algorithms that use an approximate k-
nn graph (e.g. connected components). We will have

to tackle the problem of skewed data, and study
the possibility of using multiple hashing functions in
parallel to improve recall. Finally, we plan to compare
our algorithm with algorithms that build a k-NN graph
using the bag-of-words (BOW) model.
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