NURBS or not NURBS?
Marie-Laurence Mazure

To cite this version:
Marie-Laurence Mazure. NURBS or not NURBS?. Comptes Rendus Mathématique, Elsevier Masson, 2016, 354 (7), pp.747-750. <10.1016/j.crma.2016.01.027>. <hal-01131616>
NURBS or not NURBS?

Marie-Laurence Mazure

Laboratoire Jean Kuntzmann, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
Marie-Laurence.Mazure@imag.fr

Abstract

We recently determined the largest class of splines which can be used for design: it is the class of all spaces of geometrically continuous piecewise quasi-Chebyshevian splines which contains constants and possess blossoms. This note announces the possibility of constructing associated rational spline spaces within this class.

Keywords: (Quasi) Extended Chebyshev (Piecewise) Spaces, B-Splines, Blossoms, NURBS, Geometric Design

1 Geometrically continuous piecewise Chebyshevian splines for design

Throughout this note we work with a fixed interval \([a, b]\), \(a < b\), and a fixed positive number \(n\). An \((n+1)\)-dimensional space \(E \subset C^n([a, b])\) is an Extended Chebyshev-space (for short EC-space) on \([a, b]\) if any non-zero element of \(E\) vanishes at most \(n\) times on \([a, b]\), counting multiplicities up to \((n+1)\), or equivalently if any Hermite interpolation in \((n+1)\) data on \([a, b]\) has a unique solution in \(E\). Because we are working on a closed bounded interval, this important class of spaces coincides with the class of all spaces of the form \(EC(w_0, \ldots, w_n)\), defined as the set of all functions \(F \in C^n([a, b])\) for which \(L_n F\) is constant on \([a, b]\), where \(L_n\) is the differential operator built from a system \((w_0, \ldots, w_n)\) of weight functions on \([a, b]\) (which means that each \(w_i\) is \(C^{n-i}\) and positive on \([a, b]\)) via the classical procedure [14]

\[
L_0 F := \frac{F}{w_0}, \quad L_i F := \frac{1}{w_i} DL_{i-1} F, \quad 1 \leq i \leq n.
\]

(1)

difop

The EC-spaces which are good for design are those in which we can take \(w_0 = 1\), where \(1(x) = 1\) for all \(x \in [a, b]\).

We now consider a fixed sequence of interior knots \(a = t_0 < t_1 < \cdots < t_q < b\) and a fixed associated sequence of multiplicities \(m_k\), with \(0 \leq m_k \leq n\) for \(1 \leq k \leq q\). With \(t_0 := a\), \(t_{q+1} = b\) and \(m_0 := m_{q+1} = n + 1\), and with \(x^{[k]}\) standing for \(x\) repeated \(k\) times, this provides us with the knot-vector

\[
\Xi := (t_0^{[m_0]}, t_1^{[m_1]}, \ldots, t_q^{[m_q]}, t_{q+1}^{[m_{q+1}]} = (\xi_n, \ldots, \xi_{m+n+1}), \quad \text{where } m := \sum_{k=1}^q m_k,
\]

We denote by \(C(\Xi)\) the class of all \((n+1+m)\)-dimensional spaces of piecewise Chebyshevian splines (for short PEC-splines) based on \(\Xi\). To build a space \(S \in C(\Xi)\) we need the following ingredients:
Theorem 1.1. Any PEC-spline space S (containing constants) is the set of all continuous functions $S : I \rightarrow \mathbb{R}$ such that

1) for $k = 0, \ldots, q$, the restriction of S to $[t_k, t_{k+1}]$ belongs to E_k;
2) for $k = 1, \ldots, q$, the following connection condition is fulfilled:

$$
(S'(t_k^+), \ldots, S'^{(n-m_k)}(t_k^+))^T = M_k \cdot (S'(t_k^-), \ldots, S'^{(n-m_k)}(t_k^-))^T,
$$

The expression “PEC-splines” is used to stress that the pieces are taken from different EC-spaces. Due to the presence of connection matrices, PEC-splines are implicitly allowed to be geometrically continuous. By contrast, we use the expression Chebyshevian spline space in the simpler case where there exists a system (w_1, \ldots, w_n) of weight functions on $[a, b]$ such that $EC(\mathbb{I}, w_1, \ldots, w_n) \subset S$, i.e., when all section-spaces are obtained as restrictions of a single EC-space good for design on the whole of $[a, b]$, and when the splines are parametrically continuous (i.e., all M_k are identity matrices). The ordinary polynomial spline space of degree n (based on K) is obtained when $w_1 = \cdots = w_n = \mathbb{I}$.

Not all spaces of the class $C(\mathbb{K})$ are of interest. This is why we consider the subclass $C_0(\mathbb{K})$ of all $S \in C(\mathbb{K})$ which are good for design in the sense that they possess blossoms. Readers more precisely interested in blossoms are referred to [11] and other references therein. We limit ourselves to mentioning that, when $S \in C_0(\mathbb{K})$, each PEC-spline $S \in S$ blossoms into a symmetric function s of n variables (its blossom) which, by nature, is defined on a restricted subset of $[a, b]^n$ containing the diagonal of $[a, b]^n$ on which s gives S. In this very difficult PEC-context, a major difficulty consists in proving that blossoms are pseudoaffine in each variable. This is the precise property which permits the development of all the classical CAGD algorithms (evaluation, knot insertion, subdivision). This leads to the following statements which highly justify our terminology “good for design”.

Theorem 1.1. Any PEC-spline space $S \in C_0(\mathbb{K})$ possesses a B-spline basis which is its optimal normalised totally positive basis. Conversely, given $S \in C(\mathbb{K})$, if S and any spline space derived from S by knot insertion possess B-spline bases, then $S \in C_0(\mathbb{K})$.

As is classical, a B-spline basis in S is a sequence $N_i \in S$, $-n \leq \ell \leq m$, which is normalised (i.e., $\sum_{\ell=-n}^m N_i = \mathbb{I}$), each N_i being positive on the interior of its support $[\xi_\ell, \xi_{\ell+n+1}]$, with some additional condition on its zeroes at the endpoints of its support. The total positivity of such bases ensures shape preserving control (see [5]) and optimality should simply be understood as “the best possible” from this viewpoint, see [7] and references therein.

We now consider a system (w_0, \ldots, w_n) of piecewise weight functions on $[a, b]$, with the meaning that each w_i is $C^{\ell-n}$ and positive separately on each $[t_k^+, t_{k+1}^-]$. With such a system we can associate linear piecewise differential operators L_0, \ldots, L_n via the procedure already recalled in (1). We denote by $ECP(w_0, \ldots, w_n)$ the set of all piecewise functions on $[a, b]$ such that $L_n F$ is constant on $[t_k^+, t_{k+1}^-]$ for $k = 0, \ldots, q$, with the additional requirement that

$$
L_i F(t_k^+) = L_i F(t_k^-) \quad \text{for } i = 0, \ldots, n, \text{ and for } k = 1, \ldots, q.
$$

This space is $(n + 1)$-dimensional and it is an Extended Chebyshev Piecewise space on $[a, b]$, in the sense that we can count the total number of zeroes of each non-zero of its elements, including multiplicities up to $(n + 1)$, and this number is at most n. We conclude this section a constructive characterisation of the subclass $C_0(\mathbb{K})$ [? , ?], of which the most difficult is the “only if” part.
Theorem 1.2. Let $S \in C(K)$ be given. Then, $S \in C_0(K)$ if and only if there exists a system (w_1, \ldots, w_n) of piecewise weight functions on $[a, b]$ such that $ECP(1, w_1, \ldots, w_n) \subset S$.

2 Geometrically continuous piecewise Chebyshevian NURBS

That a space S in the class $C(K)$ belongs to the subclass $C_0(K)$ can also characterised by the existence of B-spline-like bases in the space $D S$ obtained from S by (possibly left or right) differentiation and also in all spline spaces obtained from it via knot-insertion. Note that, a priori, splines in $D S$ are not functions but piecewise functions. B-spline-like bases satisfy similar properties as those of a B-spline basis, not including normalisation.

In the rest of this section we consider a fixed PEC-spline space S in $C_0(K)$, and we denote by N_k, $k = -n, \ldots, m$ its B-spline basis. One key-point to establish the “only if” part of Theorem 1.2 is the following result (see[11, 13]).

Theorem 2.1. For a spline $\Sigma = \sum_{m-n}^{m} \sigma_k N_k \in S$ the following properties are equivalent:

(i) the poles $\sigma_{-n}, \ldots, \sigma_{m}$ of Σ form a strictly increasing sequence;
(ii) $W := D\Sigma$ has positive coordinates in any B-spline-like basis of $D S$;
(iii) the piecewise function W is positive on $[a, b]$ and, if we define the piecewise differential operator L by $LF = DF/W$, then the spline space LS lies in the class $C_0(K)$.

This theorem has been exploited in [13] to show the existence of infinitely many Schoenberg-type operators in S, permitting simultaneous approximation of a function and its first derivative. Here, we exploit it in a different way, after observing that its equivalence (ii) \iff (iii) is actually an equivalence within the space $D S$. We can thus restate it in S rather than in $D S$, which yields:

Theorem 2.2. Given a spline $\Omega = \sum_{m-n}^{m} \omega_k N_k \in S$, the following properties are equivalent:

(i) the poles $\omega_{-n}, \ldots, \omega_{m}$ of Ω are all positive;
(ii) the spline Ω is positive on $[a, b]$ and the space obtained after division of all elements of S by Ω belongs to the subclass $C_0(K)$.

Definition 2.3. For each spline $\Omega \in S$ with positive poles, the space obtained after division of all elements of S by Ω is called the rational spline space based on S and Ω. We denote it by $R(S; \Omega)$.

We now assume that (i) of Theorem 2.2 holds. The B-spline basis in $R(S; \Omega)$ is the sequence

$$\frac{\omega_k N_k}{\Omega}, \quad k = -n, \ldots, m. \quad (3)$$

Accordingly, the rational spline space $R(S; \Omega)$ can also be described as the set of all continuous functions of the form

$$\frac{\sum_{m-n}^{m} \alpha_k \omega_k N_k}{\sum_{m-n}^{m} \omega_k N_k}, \quad \alpha_{-n}, \ldots, \alpha_m \in \mathbb{R}. \quad (4)$$

By analogy with the classical rational splines we say the functions in (3) are geometrically continuous piecewise Chebyshevian NURBS. One can check that, for each $\Omega \in S$ satisfying (i) of Theorem 2.2

$$S = R \left(R(S; \Omega); \frac{1}{\Omega} \right). \quad (5)$$
3 Geometrically continuous piecewise quasi-Chebyshevian NURBS

An \((n + 1)\)-dimensional space \(E \subset C^{n-1}(a,b)\) is said to be a Quasi-Extended Chebyshev-space (for short QEC-space) on \([a,b]\) if any non-zero element of \(I\) vanishes at most \(n\) times on \([t_k, t_{k+1}]\), counting multiplicities up to \(n\), or, equivalently, if any Hermite interpolation problem in \((n + 1)\) data involving at least two distinct points in \(I\) has a unique in \(E\). If \(C\) is a two-dimensional Chebyshev space (C-space) on \([a,b]\) (which is the same as being a QEC-space on \([a,b]\)) and if \(L_{n-1}\) is associated with a larger system \((w_0, \ldots, w_{n-1})\) of weight functions on \([a,b]\), then the set \(QEC(w_0, \ldots, w_{n-1}; C)\) composed of all functions \(F \in C^{n-1}(a,b)\) for which \(L_{n-1}F \in C\) is an \((n + 1)\)-dimensional QEC-space on \([a,b]\). Actually, all \((n + 1)\)-dimensional QEC-space on \([a,b]\) are of this form [9]. For design, we have to take \(w_0 = 1\). Note that the QEC-context implies many more difficulties (see [8]).

To define the class \(QC(\mathbb{K})\) of all \((n + m + 1)\)-dimensional space of (geometrically continuous) piecewise quasi-Chebyshevian (PQEC) splines we weaken the requirements on the section-spaces: if each \(E_k\) is still assumed to contain constants, we only assume that \(E_k \subset C^{n-1}([t_k, t_{k+1}]\)) and that \(D\mathbb{E}_k\) is an \(n\)-dimensional QEC-space on \([t_k, t_{k+1}]\). Apart from this change, the PQEC-spline space \(S\) is then defined exactly as previously when all multiplicities are positive. Without going into details, let us mention that if \(m_k = 0\) for some \(k \in \{1, \ldots, q\}\), to a connection of the type (2) between the \((n-1)\) first left and right derivatives at \(t_k\) we have to add a convenient relation between left and right Bézier points. As previously we have to introduce the subclass \(QC_0(\mathbb{K})\) composed of all \(S \in QC(\mathbb{K})\) which are good for design in the sense that they possess blossoms. Of course this is a larger class than \(C_0(\mathbb{K})\). In this larger framework, we can then state the exact analogue of Theorem 1.1, simply replacing “B-spline basis” by “Quasi-B-spline basis”. The term “quasi” refers to the fact that the count of zeroes at the endpoints of the supports must take into account that the section spaces are not EC-spaces but QEC-spaces.

Given a system \((w_0, \ldots, w_{n-1})\) of piecewise weight functions on \([a,b]\), the associated piecewise differential operator \(L_{n-1}\), and a two-dimensional C-space \(C \subset C^0([a,b])\) on \([a,b]\), denote by \(QEC(P(w_0, w_1, \ldots, w_{n-1}; C)\) the \((n + 1)\)-dimensional space of all piecewise functions \(F [a,b]\) such \(L_{n-1}F \in C\) and \(L_iF(t_k^*) = L_iF(t_k^{*})\) for \(i = 0, \ldots, n - 1\) and \(k = 1, \ldots, q\). This space is \((n + 1)\)-dimensional Quasi-Extended Piecewise space in the sense that the total number of zeroes of a non-zero element is bounded above by \(n\), multiplicities included up to \(n\). Below, the analogue of Theorem 1.2 describes the class \(QC_0(\mathbb{K})\) (including the possibility of zero multiplicities) see [12].

\[
\textbf{Theorem 3.1. Assume that } S \in QC(\mathbb{K}). \text{ Then } S \in QC_0(\mathbb{K}) \text{ if and only if there exists a system } (w_1, \ldots, w_{n-1}) \text{ of piecewise weight functions on } [a,b] \text{ and a two-dimensional C-space } C \text{ on } [a,b] \text{ such } QEC(P(1, w_1, \ldots, w_{n-1}; C)) \subset S.
\]

The “only if” part relies on an analogue of Theorem 2.1 in the class \(QC_0(\mathbb{K})\) for \(n \geq 2\). This in turn leads to the exact analogue of Theorem 2.2 simply replacing \(C_0(\mathbb{K})\) by \(QC_0(\mathbb{K})\). Within \(QC_0(\mathbb{K})\) we can thus define geometrically continuous piecewise quasi-Chebyshevian NURBS as in (3), the rational spaces satisfying (4) and (5).

4 Conclusion

The class \(QC_0(\mathbb{K})\) is the largest class of spline spaces with ordinary differentiability assumption on the section-spaces which can be used for Design (or Approximation or Isogeometric Analysis).
most famous examples of spaces in $QC_0(K) \setminus C_0(K)$ are the so-called variable “degree” splines, that is, splines with, up to affine changes of variables, different $E_{p,q}$ as section-spaces $[1, 2, 6]$. We have insisted more on the smaller class $C_0(K)$ because EC-spaces $[14]$ are more classical tools than QEC-spaces $[8, 9]$. Moreover the recent results recalled in Section 1 have already appeared, which is not yet the case for their analogues in the more difficult class $QC_0(K)$, see $[12]$. Theorem 2.2 says in particular that the classical rational spline spaces are examples of spaces of parametrically continuous splines in the class $C_0(K)$. They can thus benefit from all properties developed within $C_0(K)$, see $[13]$ for instance. Compared to the degree n polynomial B-splines, one major interest of introducing the classical NURBS $[3, 4]$ was the shape effects permitted by the parameters $\omega_{-n}, \ldots, \omega_m$ defining them. The class $QC_0(K)$ provides us with such a great variety of shape parameters (coming either from the section-spaces or from the connection matrices) that it may seem useless to add new parameters to introduce NURBS in it, all the more so as this does not increase the class $QC_0(K)$. Nevertheless, given $S \in QC_0(K)$, it will be interesting to investigate how its own shape parameters interact with the positive parameters defining all rational spline spaces based on S.

References

