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Revisiting Froude’s Theory for Hovering Shrouded Rotor

T. Jardin,∗ G. Grondin,∗ J. Gressier,† C. Huo,‡ N. Doué,§ and R. Barènes∗

University of Toulouse, 31055 Toulouse, France

DOI: 10.2514/1.J053507

This paper extends Froude’s momentum theory for free propellers to the analysis of shrouded rotors. A one-

dimensional analytical approach is provided, and a homokinetic normal inlet surface model is proposed. Formulations

of thrusts and power for each system component are derived, leading to the definition of optimum design criteria and

providing insight into the global aerodynamics of shrouded rotors. In the context of micro-air vehicles applications,

assessment of the model is conducted with respect to numerical data. Overall, comparison between numerical and

analytical results shows good agreement and highlights the sensitivity of the model to viscous effects.

Nomenclature

A1 = inlet surface area for momentum (balance), m2

A 0
1 = inlet surface area for mass flow rate, m2

A2 = outlet surface area, m2

AR = rotor surface area, m2

DR = rotor diameter, m
K1 = A1∕AR ratio
K 0

1 = A 0
1∕AR ratio

K2 = A2∕AR ratio
k = A 0

1∕A1 ratio
LS = shroud length, m
_m = mass flow rate, kg∕s
n = surface normal unit vector
p = static pressure, Pa
pt = total pressure, Pa
p1 = inlet static pressure, Pa
p2 = outlet static pressure, Pa
p∞ = farfield static pressure, Pa
Δp = pressure jump at actuator disk, Pa
Pi = induced power, W
RR = rotor radius, M
S1 = inlet surface
S2 = outlet surface
SR1

= upstream rotor surface
SR2

= downstream rotor surface
SS1 = upstream shroud (inner) surface
SS2 = downstream shroud (inner) surface
TR = rotor thrust, N
TS1

= upstream shroud thrust, N
TS2

= downstream shroud thrust, N
TT = total thrust, N
v = velocity, m∕s
v1 = velocity at the shroud inlet, m∕s
v2 = velocity at the shroud outlet, m∕s
vi = induced velocity at the rotor, m∕s
V1 = upstream (control) volume
V2 = downstream (control) volume
ρ = fluid density, kg∕m3

I. Introduction

I N THE past decade, micro-air vehicles (MAVs) have gained
interest owing to their ability to performmissions of observation at

relatively low cost. Institutional fundings (e.g. 1996–2000Micro-Air
Vehicles Program initiative by the US Defense Advanced Research
Projects Agency, DARPA) considerably promoted research dedi-
cated to the development ofMAVs, leading to three distinct concepts:
fixed-wing, flapping-wing, and rotary-wing MAVs [1–3]. While
fixed-wing MAVs have a priori no hovering capabilities (although
new concepts tend to achieve horizontal/vertical transition flight),
flapping-wing and rotary-wing MAVs may offer the possibility to
operate in confined environments. Yet, flapping-wing MAVs exhibit
both complex mechanics and aerodynamics [4–7], making it an
immature technology. Thus, rotary-wingMAVs appear to be themost
relevant solution for indoor scene recognition, cave exploration or
monuments surveillance.
Rotary-wing MAVs can further be divided into two categories:

whether their rotor is free or shrouded. Shrouded-rotors are inher-
ently safe and may enhance aerodynamics performance owing to the
lifting property of the shroud and blade-tip vortex annihilation,
specifically under hovering conditions [8,9]. Although such config-
urations may suit missions of observation in confined environments,
they remain poorly documented and no universal guidelines have
emerged for the design of efficient shrouded-rotors at MAV scale.
Pereira and Chopra [9,10] explored the influence of some design

parameters on aerodynamics performance of a hovering single
shrouded rotor at MAV scale. Overall, the authors have experimen-
tally demonstrated the sensitivity of the total thrust coefficient, at a
given power coefficient, to diffuser divergence angle, diffuser length,
inlet lip radius and blade tip clearance. Lakshminarayan and Baeder
[11] have extended these investigations using a numerical approach,
further revealing the influence of inlet shape on the global perfor-
mance of the single shrouded rotor. Similarly, Lee et al. [12] have
experimentally investigated the role of rotor-rotor spacing, rotor
position, inlet shape and blade tip clearance on the performance
characteristics of a coaxial shrouded rotor. Their work not only
focuses on hovering flight conditions but also addresses axial climb
and edgewise forward flight conditions. Lately, Hrishikeshavan and
Chopra [13] analyzed the response of a single shrouded rotor to
edgewise gusts.
Rather than resorting to heavy experimental and numerical

approaches, analytical approach may, at relatively low cost, provide
simple fruitful information on rotor flows, hence setting guidelines
for the design of shrouded rotor MAVs [14,15]. Toward that end, the
present paper aims at revisiting Froude’s theory for shrouded rotors,
subsequently leading to the definition of a simple one-dimensional
model from which optimal criteria can be derived. Secondly, the
model is assessed using numerical data.

II. Analytical Model

In this section, we define a theoretical model for the analysis of
shrouded rotors. Figure 1 is an illustration of the associated system.
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Surfaces labelled by subscript 1 and 2 delimit the upstream and
downstream control volume V1 and V2, respectively.

A. Model Definition

Following Froude’s theory, the rotor can be approximated by an
infinitely thin flat disk (disk actuator). A uniformpressure jumpΔp is
imposed across the disk,which induces a continuous velocity vi at the
rotor. The left (upflow) and right (downflow) surfaces of the rotor are
denoted SR1

and SR2
respectively. This approach, though valid for

both single and coaxial rotors, is more consistent with coaxial contra-
rotating rotor modeling since swirl effects are omitted.
Conversely to Froude’s classical theory, the shroud here introduces

a solid boundary, denoted SS1 and SS2 upstream and downstream of
the rotor respectively, which constrains the fluid flow.S1 andS2 stand
for the inlet and exit surfaces of the system respectively.
The flow is assumed to be steady, incompressible and non-viscous

with an ambient pressure p∞. The total and static pressures (pt and p
respectively) upstream of the rotor (i.e. within V1) are given by

pt � p∞ and p � p∞ − ρv2∕2 (1)

where ρ and v are the local fluid density and velocity. Identically, the
total and static pressures downstream of the rotor (i.e. within V2) are
given by

pt � p∞ � Δp and p � p∞ � Δp − ρv2∕2 (2)

It should be emphasized that the present actuator disk approach
considers the rotor (or pair of rotors) as a perfect system. Therefore,
the classical figure of merit which usually characterizes rotor quality
is here inappropriate. Rather, the model highlights the role of the
shroud on the aerodynamics of the whole system by evaluating its
ability to convert induced power into thrust.
In what follows, formulations will be derived with respect to

hovering conditions [16,17]. Similar formulations for general inflow
velocities are addressed in the appendix.

B. Thrust and Power: Dimensional Formulations

As stated in the previous section, the flow is assumed to be steady
and non-viscous. In addition, the fluid is assumed to be at rest on the
outer region of the shroud, which yields p � p∞ and v � 0 on these
outer surfaces, where integrals of p − p∞ and v will be zero. Thus,
forces on the outer shroud surfaces are zero, and forces on both
upstream and downstream shroud sections will comprise only the
contributions of their respective inner surfaces.
The aerodynamic force experienced by a solid surface SS of the

system can be derived from the momentum balance equation applied
over a control volume V of fluid delimited by SS and fluid surfaces S

F � −
Z

S

��p − p∞�n� ρ�v · n�v� ds (3)

where n is the outward-pointing normal to solid and fluid surfaces.
The pressure term is written under its relative form since the integral
of the constant ambient pressure on the closed surface SS ∪ S is zero.
Note that the formulation is valid only under steady assumptions.
Besides, viscous terms are also omitted [18–20].

The system illustrated on Fig. 1 is axisymmetric with respect to the
x axis, hence the radial component of the aerodynamic force is null.
Therefore, only the thrust T (x component of the aerodynamic force
with a positive orientation backwards) is considered

T � −F · x �

Z

S

��p − p∞�nx � ρ�v · n�vx� ds (4)

where nx and vx are the projections of n and v on the x axis
respectively.
Besides, the mass flow rate _m through surface S can be introduced

as

_m �

Z

S

ρ�v · n� ds (5)

If n and v are collinear along the surface S of the control volume V,
the previous equations become

T �

Z

S

��p − p∞�nx � ρv2nx� ds (6)

and

_m �

Z

S

ρv ds (7)

Furthermore, in the following subsections, surface integration is
performed under the assumption that (p − p∞) and ρv2 are uniform
along a given surface. This assumption and the n and v collinearity
assumption are intrinsic to Froude’s theory at the rotor disk surfaceSR
and are reasonably valid at the exit surface S2 of the system for a
straightened adapted nozzle. They are also reasonably valid at the
inlet of the system, along a quasi-homokinetic surface that is normal
to local fluid velocity. Such inlet surfacewill be referred to asS1. Note
that S1 is depicted on Fig. 1 as a simple illustration. Its precise
definition will further be addressed in Sec. III. It should be noted that
these assumptions build a one-dimensional model.
Thus, the integration of Eqs. (6) and (7) reduces to the surface

integral of nx and 1, respectively. Two distinct areas can then be
associated with a given surface Si

Ai �

Z

Si

nx ds (8)

and

A 0
i �

Z

Si

ds (9)

If the given surface Si is purely directed along the radial axis, then
Ai � A 0

i . This is the case for the rotor SR and outlet S2 surfaces, with
corresponding areas AR and A2, respectively. On the other hand, A1

and A 0
1 need to be distinctly defined for S1 (as shown in Fig. 2).

Following these definitions, one can then introduce the ratios
K1 � A1∕AR, K

0
1 � A 0

1∕AR and K2 � A2∕AR. It is emphasized that
K1 can be directly related to the inlet geometry of the shroudwhileK 0

1

reflects the aerodynamics of the shroud inlet. For clarity, the ratio
k � K 0

1∕K1 is also introduced. At this point, k can be anticipated to
be significantly greater than 1.

Fig. 1 Scheme of the axisymmetric system illustrating the analytical
model.

Fig. 2 Inlet area A1 and A 0
1
deduced from S1.
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1. Total Thrust

Total thrust can be derived from momentum balance [Eq. (6)]
applied over the control volumeV1 ∪ V2 enclosing thewhole system

TT �

Z

S1∪S2
��p − p∞�nx � ρv2nx� ds (10)

Imposing pressure equilibrium at the shroud exit (surface S2) and
substituting Eq. (1) yields

TT � ρv22A2 −
1

2
ρv21A1 (11)

Then, using _m � ρv1A
0
1 � ρv2A2 and introducingK1,K2 and k, total

thrust can be expressed as

TT �
1

2
ρAR

�

_m

ρAR

�

2
�

2

K2

−
1

k2K1

�

(12)

2. Rotor Thrust

Similarly, rotor thrust can be derived from momentum balance
[Eq. (6)] applied over the infinitely thin control volume enclosing the
actuator disk and delimited by surfaces SR1

and SR2

TR �

Z

SR1∪SR2

��p − p∞�nx � ρv2xnx� ds (13)

The continuity of vx across the rotor cancels out the integral of ρv
2
xnx

term and the pressure step across the rotor yields

TR � ARΔp (14)

In addition pressure equilibrium at the shroud exit writes p2 � p∞
and from Eq. (2)

Δp � ρv22∕2 (15)

Hence, substituting Eq. (15) into (14) brings

TR �
1

2
ρARv

2
2 (16)

Then, replacing v2 by _m∕ρA2 and introducing K2, the expression
becomes

TR �
1

2
ρAR

�

_m

ρAR

�

2
�

1

K2

�

2

(17)

3. Shroud Thrust

Shroud thrust can simply be expressed as the difference between
total thrust and rotor thrust

TS � TT − TR �
1

2
ρAR

�

_m

ρAR

�

2
�

2

K2

−
1

k2K1

−
1

K2
2

�

(18)

For analysis purposes, it may be convenient to dissociate the thrust
generated by the upstream part of the shroud TS1

from that generated
by the downstream part TS2

. This can be achieved by applying the

momentum balance over the control volumesV1 andV2 respectively.
Using Eqs. (1), (2), and (15), TS1

and TS2
can be expressed as follows

TS1
�

1

2
ρAR

�

_m

ρAR

�

2
�

1 −
1

k2K1

�

(19)

TS2
� −

1

2
ρAR

�

_m

ρAR

�

2
�

1 −
1

K2

�

2

(20)

4. Induced Power

Expressing induced power Pi as the product between rotor thrust
TR and induced velocity vi yields

Pi � TRvi �
1

2
ρAR

�

_m

ρAR

�

3
�

1

K2

�

2

(21)

From the designer’s perspective, it is convenient to express induced
power as a function of the total force. Indeed, the design of a MAV
usually requires the total force as an input parameter, the total mass to
be lifted being in most cases predefined. Thus, substituting Eq. (12)
into Eq. (21) brings

Pi �
1

2
ρAR

�

1

K2

�

2
�

TT

ρAR

�

1

K2

−
1

2k2K1

�

−1
�3

2

(22)

C. Thrust and Power: Non-Dimensional Formulations

The results defined in the previous section are summarized in
Table 1 under their non-dimensional form (labelled with �). The non-
dimensional forms for thrusts and power are obtained with respect to
ρARv

2
i ∕2 and ρARv

3
i ∕2, respectively. The bottom line in Table 1 is the

particular case where k2K1 approaches∞. This is relevant due to the
(a priori) relatively high value of k. In addition, it shows that the
general Froude’s momentum theory for free propellers is recovered
for K2 � 0.5.
This global overview indicates that, at a given mass flow rate, the

upstream shroud thrust is an explicit function of the inlet parameter
k2K1 while the downstream and rotor thrusts are explicit functions of
the outlet ratio K2. This suggests that the outlet parameter K2 drives
the functioning of the rotor. Such interplay is also visible on the
expression of the induced power, highlighting a potential optimisa-
tion of the system via an adequate design of the exit nozzle
(surface S2).
It can be observed that TS2

is always negative; i.e. the downstream
part of the shroud is always dragging. However, relation (22) shows
that increasing that drag can be beneficial to the overall performance,
due to the interplay between K2 and TR with respect to Pi.
Finally, it can be seen from the specific k2K1 → ∞ case (third row

in Table 1) that the shroud thrust is positive if K2 > 1∕2, i.e. if the
streamtube is expanded with respect to the free (Froude’s) stream-
tube. Conversely, the shroud thrust is negative if K2 < 1∕2.
All these straightforward observations indicate that deeper insight

can be obtained from the model. This is the scope of the next section.

Table 1 Non-dimensional formulations for thrusts and power

T�
R T�

S T�
S1

T�
S2

T�
T P�

i

(k � K 0
1∕K1) � 1

K2
�2 � 2

K2
− 1

k2K1
− 1

K2
2

� �1 − 1
k2K1

� −�1 − 1
K2
�2 � 2

K2
− 1

k2K1
� � 1

K2
�2

(k2K1 → ∞) � 1
K2
�2 � 2

K2
− 1

K2
2

� 1 −�1 − 1
K2
�2 � 2

K2
� � 1

K2
�2

Third row is derived from second row using k2K1 → ∞.
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D. Model Characteristics

1. Minimum Induced Power

Figure 3 depicts the induced powerPi as a function of the exit ratio
K2 at given total thrust TT and inlet ratio k2K1 [Eq. (22)]. As an
example ofMAVapplication,we consider a rotor of diameter 180mm
with k2K1 � 2, 20, and ∞ and generating TT � 2.5, 5, and 7.5 N
under hovering conditions. Note that the curves for different TT

collapse onto a single curve when Pi is non-dimensionalized due to
the self-similarity of the solution.
Interestingly, it is observed that the induced power reaches a global

minimum at a specific value of K2. This simple result suggests that
the shroud can be optimized by tuning parameter K2 in order to
modify the relative contribution of the rotor and shroud thrusts with
respect to Pi, up to an optimum operating point. In that sense, the
derivation of the induced power (at given TT and k2K1) with respect
to K2 may provide an optimum design criterion. From Eq. (22):

∂Pi

∂K2

�
1

2
ρAR

�

TT

ρAR

�3
2

×−
3

2

�

K
1
3

2−
K

4
3

2

2k2K1

�−5
2

×

�

1

3
K

−2
3

2 −
4

3

K
1
3

2

2k2K1

�

(23)

Therefore, ∂Pi∕∂K2 � 0 implies

1

3
K

−2
3

2 −
4

3

K
1
3

2

2k2K1

� 0 (24)

which yields the optimal value

K2 � k2K1∕2 (25)

This particular value is associated with an optimum mass flow rate
_mopt. The latter can be obtained by substituting the optimum value of
K2 into Eq. (12), which gives

_mopt �

����������������������������

2

3
ρARk

2K1TT

r

(26)

Thus, the geometric parameterK2 can beviewed as away to constrain
the mass flow rate, up to a specific value that optimizes the shroud
performance.
Note that the same result can be obtained by deriving Pi with

respect to _m (see demonstration in the Appendix).

2. Shroud Thrust

In order to further investigate the model characteristics, we focus
on the thrust generated by the shroud. In particular, attention should
be paid to the relative contribution of the upstream and downstream
parts of the shroud.
Firstly, the evaluation of the threshold beyond which the shroud

produces thrust rather than generates drag can be obtained by writing
the following equation:

TS > 0 (27)

which using Eq. (18) yields

−K2
2 � 2K2k

2K1 − k2K1 > 0 (28)

Hence, solving for the roots of quadratic Eq. (28) (which admits a
solution for k2K1 ≥ 1), the model shows that the shroud produces
thrust if

k2K1 −
���������������������������������

k2K1�k
2K1 − 1�

q

< K2 < k2K1 �

���������������������������������

k2K1�k
2K1 − 1�

q

(29)

It is unlikely that conventional MAV designs reach the upper limit.
This is partly due to the nozzle diffusion angle constraint (diffusion
angle typically below 10–11 deg [9,17]) that prevents the occurrence
of nozzle flow separation and deterioration of the global aerodynamic
performance. However, due to the recent extension of MAV’s field
of application, unconventional designs may emerge. For instance,
recent interest in unmanned cave exploration have favored the need
for very low aerodynamic footprint MAVs with large diverging exit
[21].On the other hand, the lower limit fixes a design constraint that is
much more likely to be violated. Alternatively, Eq. (29) can be
reformulated, with δk � k2K1 − 1∕2, to highlight the K2 � 1∕2
limit associated with Froude’s theory (k2K1 → ∞)

1

2
�

1

4

1

δk �
������������

δ2k −
1
4

q < K2 <
1

2
�

1

4

1

δk −
������������

δ2k −
1
4

q (30)

Interestingly, as previously mentioned, a glance at Eq. (20) shows
that the downstream part of the shroud is detrimental to thrust
production, as TS2

is always negative. Therefore, Eq. (29) defines the
thresholds above and below which the upstream thrust more than
compensates for the downstream drag (see Fig. 4 for illustration).
These observations once again suggest that the primary role of the
downstream part of the shroud (or of associated geometric parameter
K2) is not to produce thrust but to drive the mass flow rate up to an
optimum value. In that sense, it can also be observed that the down-
stream drag may be suppressed for K2 � 1, while this value is not
optimal in terms of induced power consumption (vertical line marks
the optimal K2 in Fig. 4).
It has been shown that some insights could be obtained from a very

simple analysis of the shrouded rotor system. However, as previously
introduced, the definition of the inlet surface required to setup the
model is not straightforward, the flow being highly distorted (i.e.
strongly two-dimensional) at the shroud inlet.

Fig. 3 Pi as a function of K2 with fixed a-c) k2K1 and d) TT. Fig. 4 TT, TR, TS, TS1
and TS2

as a function of K2.
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As such, in order to further assess the analytical model and to
provide a more thorough definition of the inlet parameter k2K1, a
numerical approach based on the resolution of the Navier–Stokes
equations is conducted in the next section.

III. Numerical Approach

In this section, the shrouded rotor aerodynamics is addressed by
means of a numerical approach. The geometry of the shrouded rotor
considered here is illustrated in Fig. 5b.

A. Computational Settings

The Navier–Stokes equations are solved using a finite-volume
method. Taking advantage of the symmetry of revolution of the
system, and given that the Reynolds number based on the rotor
induced velocity vi and rotor diameterDR is on the order of 200, 000
(Mach number number ≪ 1), their incompressible, two-dimensional
axisymmetric form is considered.
The computational domain is displayed in Fig. 5a. It consists of

130,000 hexahedral cells, refined in the vicinity of the shroud wall
(see Fig. 5c). Similarly to the analytical approach, the rotor is
modeled as a disk actuator through which a uniform pressure jump
Δp is imposed. The shroud surface is modeled as a non-slip wall and
is embedded within a large flowfield that extends 50RR and 30RR in
the axial and radial directions respectively. The associated bound-
aries are subjected to Dirichlet velocity and pressure conditions at
the inlet (labelled I on Fig. 5a) and outlet (labelled O on Fig. 5a),
respectively.
Both non-viscous (Euler) and viscous computations are per-

formed. For the latter, the turbulence closure is achieved using a
realizable k-ϵ model. Mesh refinement in the vicinity of the shroud
ensures that y� values do not exceed 0.5. The spatial discretisation is
achieved using second order schemes. In order to reach a steady
solution, transient computations are performed, using first order
implicit time formulation. Additional tests have been performed in
order to ensure mesh convergence.

B. Numerical Flow Fields

Figure 6a depicts the Euler pressure field induced by the 180 mm
diameter shrouded rotor, with exit parameterK2 ≈ 1.19. The specific
case of a 2.5 N rotor thrust (corresponding to a Δp � 100 Pa
pressure jump) is considered. A pressure discontinuity associated
with the actuator disk condition can be clearly observed at the rotor
position. While pressure levels downstream of the rotor are only
weakly affected, a low pressure region develops upstream of the rotor
and extends to the shroud lip. This simple observation corroborates
the analytical model in that the shroud thrust seems to be primarily
generated by the upstream part of the shroud rather than the
downstream part. Furthermore, it emphasizes the role of the shroud
lip where a strong suction applies to the wall regions where normal
vectors n have a significant x-component.
The correlated velocity flowfield is displayed on Fig. 6b. Although

the strongest velocitymagnitudes are observed at the rotor location, it
can be seen that the velocity flowfield is significantly affected at the
shroud lip. In particular, strongly two-dimensional velocity iso-
contours highlight the potential issues associated with the v � Cst

constraint imposed by the analytical model, and in a more general
perspective by one-dimensional approaches. This observation
suggests that a definition for the inlet surface of the model is not
straightforward. Definition of the inlet surface is the scope of the next
section.
Figures 6c and 6d show the viscous flow fields computed for

the same configuration. Both pressure and velocity fields are not
fundamentally altered with respect to non-viscous computations.
The most prominent difference resides in the development of a
boundary layer and the diffusion of the shear layer in the wake of the
shroud.

C. Definition of the Model’s Inlet Parameter (k2K1)

In this section a definition for the inlet surface S1 required to setup
the analytical model proposed in Sec. II is given. As previously
introduced, S1 should be defined such that Eqs. (6) and (7) can
reasonably be treated under one-dimensional assumptions, despite
the two-dimensional nature of the flowfield.

Fig. 5 a) Computational domain, b) shroud geometry, and c) mesh in the vicinity of the lip.

Fig. 6 a, c) Pressure and b, d) velocity magnitudes iso-contours of a, b) Non-viscous (Euler) and c, d) viscous (k-ϵ) computations.
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Here, the inlet surface is fixed such that n is collinear to the
local fluid velocity. Among the infinite possible surfaces that are
locally normal to streamtraces, only one minimizes the average
of jv − @vj∕j @vj, where v and @v are the magnitude and mean value
of v along the inlet surface respectively. This particular quasi-
homokinetic solution is displayed on Fig. 7 (far-out view of Fig. 6b)
together with local velocity vectors. The average of jv − @vj∕j @vj along
this particular solution is on the order of 2.9%, as shown in Fig. 8.
Note that jv − @vj∕j @vj reflects the velocity deviation with respect to a
perfectly homokinetic surface. Thus, due to the 2.9% value, the
solution is referred to as a ‘quasi-homokinetic’ surface rather than
‘homokinetic surface’ (which would imply jv − @vj∕j @vj � 0). In this
regard, Fig. 8 depicts the value of jv − @vj∕j @vj computed for multiple
inlet surfaces (referred on the abscissa using theirK 0

1 values) that are
locally normal to streamtraces. As previously mentioned, we
introduce the area of the algebric projection of S1 onto the radial axis
(A1 � ∫ S1

nxds) and the area ofS1 (A
0
1 � ∫ S1

ds). Given that ∫
Σ
nx ds

is null over any arbitrary closed surfaceΣ, it can be simply shown that
A1 � ∫ S1

nx ds is equal to the area of the straight geometric surface
that extends from the rotor axis to the external part of the shroud. This
makes the value of K1 rather straightforward.
Hence, the analytical model relies on the inlet parameter k2K1,

which depends on both areas A1 and A 0
1. This is in contrast with

classical one-dimensional approaches for which a single inlet area is
used. As previously expressed, one-dimensional assumptions are not
strictly valid here if a single inlet area is used. In such cases, k reduces
to 1 and the inlet parameter reduces to K1.
Table 2 shows the analytical value ofTT computed for four distinct

inlet parameters. It is compared with the value of TT obtained from
non-viscous (Euler) numerical computations. Note that a unique
comparison at Δp � 100 Pa (TR � 2.5 N) is conducted since both
analytical and numerical non-viscous solutions for TT are directly
proportional to Δp (self-similarity).
The first inlet parameter is based on a single area (k � 1) obtained

from the surface that extends from the rotor axis to themost upstream
point of the shroud. The surface is referred to as the ‘geometric inlet’
and the resulting value ofK1, hence that of k

2K1, is equal to 1.63. The
second inlet parameter is based on the sphere cap model introduced
by Dyer [22] and Pereira and Chopra [23] to evaluate the pressure
distribution along the shroud via a one-dimensional approach. The
surface is a hemisphere that extends from the rotor axis to the most
upstream point of the shroud. The resulting value ofK1, hence that of
k2K1, is equal to 3.27. The third inlet parameter is based onA1 andA

0
1

obtained from the homokinetic surface. Here, K1 � 1.78 and

K 0
1 � 6.80, which yields k2K1 � 26. Finally, the fourth inlet param-

eter is based on the assumption that the relatively high value of k
brings k2K1 → ∞. The surface is referred to as the ‘Froude’s inlet’.
It can be seen from Table 2 that the homokinetic normal surface

model best approximates the numerical data (Euler computations),
with a relative error onTT on the order of 1.0%. Furthermore, it is also
interesting to notice that Froude’s inlet model (k2K1 → ∞) yields a
fairly good evaluation of TT , within 1.3% of the numerical value.
This can be related to the asymptotic evolution of TT with respect to
k2K1 [see Eq. (12)] which suggests that TT is weakly dependent on
k2K1 for sufficiently high values of k

2K1. Conversely, both geomet-
ric and hemisphere models do not provide satisfactory results as they
are not thoroughly consistent with one-dimensional assumptions.
Subsequently, in what follows, the analytical approach will be
assessedwith respect to numerical data, for various viscous test cases,
on the basis of the homokinetic inlet model.

D. Comparison of Analytical and Numerical Approaches

In the previous section, it has been shown that the analytical
approach best approximates the numerical Euler computation when
the homokineticmodel is used. Here, in order to assess the robustness
of the analytical model with respect to viscous effects, analytical
results based on the homokineticmodel are comparedwith numerical
viscous (k-ϵ) computations for six test cases, corresponding to rotor
thrusts roughly ranging from 0.5 to 3N by steps of 0.5 N (Δp ranging
from 20 to 120 Pa by steps of 20 Pa).
Table 3 shows that the analytical model is in good agreement

with the numerical data, with a maximum error on TT on the order of
8.2% at Re � 83489 (Δp � 20 Pa). Error is maximum at the lower
Reynolds number due to the influence of viscous effects, which are
not accounted for in the momentum balance formulation. On the
other hand, it should be noticed that viscous effects have an influence
on the analytical value of TT via the inlet parameter k2K1. Here, the
value of k2K1 is smaller than that obtained from non-viscous com-
putations (see Table 2). In addition, it can be observed from Table 3
that k2K1 slightly decreases with the Reynolds number. However,
these variations in k2K1 reflect only small changes in the velocity
flow field at the shroud inlet (which is emphasized by the value of
k squared), as comparison of Figs. 6b and 6d shows. Therefore, the
influence of viscous effects via the inlet parameter k2K1 is of second-
order with respect to that omitted in the momentum balance
formulation.
To illustrate this feature, it can be shown that if k2K1 is fixed to 20

for all viscous cases, the maximum error on TT is not drastically
altered (8%). Furthermore, due to the asymptotic evolution of TT

with respect to k2K1, themaximumdiscrepancy does not exceed 12%
if k2K1 tends to∞.
Finally, although the result is independent on the inlet parameter,

Table 3 shows that the value ofPi is analytically approximatedwithin
a maximum error of 3.8% with respect to viscous computations. As
observed in Fig. 6, overestimation of analytical TT andPi principally
arises from the absence of boundary layer modeling, which both
generates viscous drag and mitigates the mass flow rate (see _m in
Table 3), as expected from the displacement effect.

E. Discussion

By definition, parameter k2K1 reflects the dependency of shroud
performance on the two-dimensional flow field at the inlet of the

Fig. 7 Velocity flow fields from Non-viscous (Euler) computations and
inlet surfaces.

Fig. 8 Average (plain) and maximum (dashed) values of jv − #vj∕j #vj for
several inlet surfaces.

Table 2 Comparison of the
analytical value of TT for distinct inlet

surface models

Inlet model k2K1 TT (N) Error

Geometric 1.63 3.84 −35.5%
Hemisphere 3.27 4.94 −17%
Homokinetic 26 5.90 −1.0%
Froude’s ∞ 6.03 �1.3%

Error is computed with respect to the value of

TT obtained numerically.
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shroud. Thus, it is rather intuitive that the value of k2K1 will, to some
extent, depend on the design of the shroud. Nevertheless, the present
section emphasizes the weak sensitivity of shroud performance
to parameter k2K1 for suitable design that ensures large values of
k2K1. Here, analytical results are compared with numerical viscous
computations for three other test cases, corresponding to three
distinct shroud geometries.
The geometries are displayed in Fig. 9. They have a similar rotor

radius to that of the reference case previously addressed. Case A is a
short shroud of length LS � 90 mm and exit parameter K2 � 1.09.
Given the limited length of the nozzle, K2 is reduced with respect
to that of the reference case in order to avoid flow separation
downstream the rotor. CaseB has a similar nozzle to that of caseAbut
exhibits an extended shroud lip, hence an increased shroud lip radius.
The resulting shroud length is LS � 140 mm. Case C has a similar
exit parameter K2 to that of the reference case but has shorter shroud
lip and shroud nozzle, leading to LS � 120 mm. For all three cases,
the rotor thrust is set to 2.5 N (Δp � 100 Pa).
The analytical results are given in Table 4 for three values of k2K1.

The first and third values are deduced from the homokinetic model
and Froude’s inlet model respectively, while the second value is the
empirical value k2K1 � 20 proposed in the previous section.
Results reported in Table 4 provide evidence of the dependency of

k2K1 on shroud geometry. These suggest that the analytical model
could thus be enhanced through an empirical parameterization of
k2K1 with respect to shroud design parameters (e.g. shroud lip radius,
shroud length). Such parameterization would require more extensive
numerical and/or experimental investigations,which goes beyond the
scope of the present study. Nevertheless, as previously mentioned,
Table 4 indicates that reasonable agreement between analytical and
numerical values can be obtained using the empirical value k2K1 �
20, or even using ‘Froude’s approximation’ k2K1 → ∞. In other
words, due to the relatively strong value of k2K1 and to the asymp-
totic evolution of TT with respect to k2K1 [see Eq. (12)], results are
only weakly affected by k2K1.
While the analytical model presented here can be used as a simple

preliminary approach for the evaluation of shrouded rotor perfor-
mance, it also suggests that k2K1 can be used as an indicator of the
potential for shroud thrust improvement. Indeed, for a given outlet
parameter K2, larger k2K1 values are associated with larger TT

values, Froude’s limit k2K1 → ∞ being the asymptotic limit for
shroud performance. Although the present study indicates that values
on the order of k2K1 � 20 are a reasonable target, more extensive
numerical and/or experimental investigations should be performed to
complete the picture.

IV. Conclusions

In this paper, Froude’s theory is revisited in order to extract the
aerodynamic characteristics of shrouded rotors. Due to the highly
two-dimensional flow field induced at the lip of shrouded rotors, it is
suggested that the analytical one-dimensional approach developed
here be based on a homokinetic normal surface model. Such model
ensures that the approach can reasonably be treated under one-
dimensional assumptions.
Firstly, formulations for total, rotor, shroud, upstream shroud, and

downstream shroud thrusts as well as induced power are derived,
hence highlighting the role of specific system components in the
global aerodynamics of shrouded rotors. It can be observed that, at
given mass flow rate, while upstream shroud thrust is driven by inlet
design parameter (k2K1), rotor and downstream shroud thrusts are
driven by outlet parameter (K2). In addition, the downstream shroud
always generates drag and thus does not explicitly contribute to the
generation of total thrust. Rather, the role of the downstream shroud
(and of associated design parameterK2) is to drive themass flow rate,
hence implicitly influencing the upstream shroud thrust. This implicit
interplay between each system component indicates that the determi-
nation of optimal design criteria is not straightforward.
Secondly, the induced power is derived from previous relations

and expressed as a function of the total thrust of the system. It is found
that, at a given total thrust (which stands as an input parameter from
the designer’s perspective), the induced power admits a global
minimum, which is a function of the outlet design parameter. Inter-
estingly, the optimal outlet design parameter is directly linked to the
inlet design parameter through the relation K2 � k2K1∕2, which

Table 3 Comparison of analytical values of _m, TT and Pi for increasing
Reynolds numbers

Re Δp, Pa TR, N _m, kg∕s k2K1 TT , N Pi, W

83489 20 0.51 0.21 (�3.8%) 21.27 1.17 (�8.2%) 3.45 (�3.8%)
118072 40 1.02 0.30 (�3.1%) 21.44 2.35 (�6.8%) 9.75 (�3.1%)
144608 60 1.53 0.37 (�2.7%) 21.52 3.52 (�6.2%) 17.92 (�2.7%)
166978 80 2.04 0.42 (�2.4%) 21.58 4.69 (�5.8%) 27.59 (�2.5%)
186688 100 2.54 0.47 (�2.3%) 21.64 5.87 (�6.7%) 38.55 (�2.3%)
204506 120 3.05 0.52 (�2.2%) 21.67 7.01 (�6.5%) 50.68 (�2.2%)
∞ 120 3.05 0.52 (−1.2%) 25.99 7.08 (−1.0%) 50.68 (−1.2%)

Error with respect to the values obtained numerically are shown in round brackets.

Fig. 9 Illustration of the three shroud geometries.

Table 4 Comparison of the analytical
value of TT for distinct values of k2K1

Case k2K1 TT , N Error

A 17.49 5.38 �3.2%
20 5.40 �3.6%
∞ 5.55 �6.5%

B 19.44 5.40 �2.1%
20 5.40 �2.2%
∞ 5.55 �5.1%

C 20.22 5.86 �3.9%
20 5.86 �3.8%
∞ 6.03 �7.0%

Error is computed with respect to the value of TT

obtained numerically.
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provides guidelines for the design of efficient shrouded rotors. In
addition, this optimal criterion does not coincide with the cancella-
tion of the drag of the downstream shroud (which is found to occur
for K2 � 1).
Subsequently, the analytical model is assessed with respect to

results obtained from the resolution of the Navier–Stokes equations
and its sensitivity to viscous effects is evaluated. Overall, the com-
parison between the analytical and numerical data shows good
agreement, with a relative error on the total thrust on the order of 1%
for potential flows and between 6 to 8% for low Reynolds number
flows typical of micro air vehicles (MAVs). It is shown that for such
low Reynolds number flows, both total thrust and induced power are
slightly overestimated by the analytical model due to the absence of
boundary layer modeling, which both generates viscous drag and
mitigates mass flow rate.
Finally, the analytical model is tested on three distinct shroud

geometries. It is indicated that while the inlet parameter k2K1 is
geometry dependent, its variation with shroud design only weakly
affects the analytical results. As such, it is shown that the empirical
value k2K1 � 20 provides reasonable accuracy with respect to
viscous computations. Nevertheless, it is suggested that the model
could benefit from an empirical parameterization of k2K1 with
respect to geometric parameters.

AppendixA:Extension of theAnalyticalModel toGeneral
Inflow Conditions

Here, total, rotor, and shroud thrust relations are reformulated for
general inflow conditions, i.e. not restricted to hovering flight condi-
tions. In what follows, V∞ stands for the axial flight speed.
Total thrust:

TT �
1

2
ρAR

��

_m

ρAR

�

2
�

2

K2

−
1

k2K1

�

− k2K1V
2
∞

�

(A1)

Rotor thrust:

TR �
1

2
ρAR

��

_m

ρAR

�

2
�

1

K2

�

2

− V2
∞

�

(A2)

Shroud thrust:

TS �
1

2
ρAR

��

_m

ρAR

�

2
�

2

K2

−
1

k2K1

−
1

K2
2

�

− �k2K1 − 1�V2
∞

�

(A3)

Upstream shroud thrust:

TS1
�

1

2
ρAR

��

_m

ρAR

�

2
�

1 −
1

k2K1

�

− �k2K1 − 1�V2
∞

�

(A4)

Downstream shroud thrust:

TS2
� −

1

2
ρAR

�

_m

ρAR

�

2
�

1 −
1

K2

�

2

(A5)

Appendix B: Alternative Derivation for Minimum
Induced Power

Noting that the outlet design parameter K2 drives the mass flow
rate _m of the system, a relation for the minimum induced power can
be derived using ∂Pi∕∂ _m � 0. Substituting Eq. (12) into Eq. (21)

Pi �
1

2
ρAR

�

_m

ρAR

�

3
��

TT

ρAR

��

_m

ρAR

�

−2
�

1

2k2K1

�

2

�
1

2
ρAR

��

TT

ρAR

�

2
�

_m

ρAR

�

−1
�

1

4k4K2
1

�

_m

ρAR

�

3

�
TT

ρARk
2K1

�

_m

ρAR

��

(B1)

hence

∂Pi

∂ _m
�

1

2
ρAR

�

−
�

TT

ρAR

�

2

ρAR _m−2

�
3

4k4K2
1

�

ρAR

�

3
_m2 �

TT

�ρAR�
2k2K1

�

(B2)

Subsequently, writing the following equivalence

∂Pi

∂ _m
� 0 ⇔

2 _m2

ρAR

∂Pi

∂ _m
� 0 (B3)

and solving for the roots of the quadratic equation

3

4k4K2
1�ρAR�

3
_M2 �

TT

�ρAR�
2k2K1

_M −
�

TT

ρAR

�

2

ρAR � 0 (B4)

where _M � _m2, the optimum mass flow rate can be obtained

_m2
opt �

2

3
ρARk

2K1TT (B5)

Finally, substituting _mopt into Eq. (12) yields

TT � ρAR

2ρARK1TT

3�ρAR�
2

�

1

K2

−
1

2k2K1

�

(B6)

which suggests an optimum value for the outlet design parameterK2

K2 �
k2K1

2
(B7)

While the K2 parameter is used as a geometric design variable to
optimize the system, it is interesting to note that thrust enhancement is
linked to increasedmass flow ratewhich promotes shroud lip suction.
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