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Abstract—This paper describes a vision-based ground-plane to camera motion [2] [7]. Our approach takes advantage d¢f bot
classification system for autonomous indoor mobile-robot Hat information sources, towards the goal of a more robust and

takes advantage of the synergy in combining together multile 4o htive system. In particular, the core of our system dasta
visual-cues.A priori knowledge of the environment is important

in many biological systems, in parallel with their mutually @ lé@ming algorithm (that maintains a population of Gaarssi
beneficial reactive systems. As such, a learning model apmoh ~ parameters) combined with a Markov Random Field (MRF)
is taken here for the classification of the ground/object spee, that is used to classify, regularise, integrate other Vibaaed
it?]ititalisedt throughl a nerDitStrithteld-gUtSion (D'ngon).me?thos cues (motion, etc), and provide feedback into the learnirdy a
at captures colour and textural data using Superpixels. : o : :

Markov Random Field (MRF) network is then used to classify, modelling system. S.Imllar lea.mmg algorithms have algead
regularise, employ a priori constraints, and merge additonal °€€N shown to provide a flexible system toward the task of
ground/object information provided by other visual cues (sich as  Obstacle avoidance [5] [8]. Moreover, MRF's have been shown

motion) to improve classification images. The developed sgsn to be a powerful yet flexible technique for the integration of
can classify indoor test-set ground-plane surfaces with aaverage  multiple data sources [9] [10].

true-positive to false-positive rate of 90.92% to 7.78% rgsectively To aid the processing of multiple visual-cues, over-
on test-set data. The system has been designed in mind to fuse . . . '

variety of different visual-cues. Consequently it can be cstomised ~ Ségmented image regions (superpixels) are chosen as the sam

to fit different situations and/or sensory architectures acordingly. ~ ples for image classification as they have several advasitage
. o . . . [8] [11]. In our system, it is envisioned that a ground/obkta
Index Terms—image classification, image disparity, ground calibration image set is provided for initial learning, o
plane, obstacle avoidance, visual navigation, mobile robs. which it will be able to learn, adapt, and perform obstacle
avoidance autonomously in a self-supervised learning JSSL

|. INTRODUCTION manner. The paper makes four main contributions:

Robot obstacle avoidance and navigation, although imtuiti  « The development of an adaptive framework and algorithm
within nature, it is difficult in practice. The vast infornham for the task of mobile-robot obstacle avoidance.
provided by a single visual image, and moreover multiple « A novel image segmentation algorithristributed-
visual images highlights a redundancy in having an addiion Fusion (D-Fusion) used to cluster superpixels to min-

active range-based sensory system. However, the sole use of imise the data within the learning model.

vision for obstacle avoidance is also plagued with problems « A practical evaluation of the use of ground-plane mod-
regarding robustness and environmental assumptions [1] [2  elling techniques for the task of classification, adaptatio
[3]. To tackle these issues, we approach the problem by and learning of new obstacles/ground plane surfaces.
developing a flexible framework that is able to fuse multiple « EXperimental evaluation of a classification system that
visual cues for the task of image classification of traveesab combines the use of appearance-based features, regu-
surfaces. As such, the completed system can be customised larised over a gradient edge image.

using various visual-cues and environments.

This paper describes the framework developed for the
task of obstacle avoidance within an office environment that The abundant amount of information provided by images,
includes homogeneous surfaces, such as painted walls amdupled with the technological improvements in computing,
carpet floors; as well as textured surfaces, such as patternbas spawned the development of a large number of differ-
vinyl and stone walls. Furthermore, focus is placed on theent visual-system approaches [7]. Of particular relevatoce
use of monocular vision, although the framework can incorthe work presented here, are the monocular mapless-based
porate other sensory modalities (i.e stereo-vision). Thstm visual navigation systems in the sub-categories of opfloal,
commonly used monocular approaches to obstacle avoidangeound-plane detection, and appearance-based approaches
involve the use of appearance-based features [3] [4] [5], or Stanley [5], winner of the DARPA Grand Challenge 2005,
motion information [1] [6]. However, the sole use of eithgra employs a visual-model learning speed control system com-
proach contains inherent assumptions and/or is highlyitsens bining the techniques founded by Ulrich [12] and Thorpe

Il. RELATED WORK



[13]. Stanley modelled the road terrain using a mixture ofof using multiple visual-cues to produce an adaptable self-
Gaussians in the RGB space with training also conductedjusirsupervised system.

a trapezoidal region, although it was verified using a laser
sensor. Two recent appearance-based works by Kim [8] and
Alencastre-Miranda [14] are of particular inspiration teet Figure 1 shows the system block diagram for our approach.
system developed here. In Kim’s approach, patch-basedeémagdhe system can be divided into three main phases, (i) Initial
regions were compared with superpixel representationsufer  isation Phase, (ii) Operation Phase, and (iii) Update Phase
door traversability classification. Kim found that supegé
produced more accurate classifications, able to recogma# s
thin tree trunks that were not seen in the patch-based sesult?

Alencastre-Miranda created an outdoor colour classiticati distributions categorised into ground-plane or objectepdo
system using MRF’'s, which allowed for the integration of o e f
Y g ’ 9 onstruct the initial world model, ®istributed-Fusion (D-

contextual information of the scene. As such, the systerr'iusion) rocess is emploved with the aid of hand-seamented
was able to correct mis-classifications and produce cdryrectI bel ? itial t ploy ¢ This oh : 'gl tt
labelled images under different lighting conditions dgrihe abels of an inial training set. 1his phase 15 equivaient 1
day. the.trlalnlng phase in many learning algo_nthms, although it
Another important visual-cue is the image motion sample nV|S|0n_ed here to allow the robot to begin in a ‘safe’ state,
; . . o : rom which it can then explore.
using optical-flow. This method is invariant under many as-
sumptions inherently associated with appearance-basét me— In the operation phase new images are classified in the
ods. Although the qualitative use of optical-flow has haddyjoo MRF system using the world model, regularised using gradien
success for navigation through techniques such as batanciimages, and improved using additional visual-cues (greund
optical-flow fields [15], we focus on those techniques whichplane motion).

are beneficial toward thle task.of image classifjcation. Teaid _ 110 update phaseis highlighted by the dotted-line boxes,
of ground-plane detection using optical-flow is not new [16]

nd works in parallel with the operation phase to update and
[17]. The main idea of these systems revolves around mO(f;edback classification confidences to the learning modes T
elling the ground-plane optical-flow field from the perspeet hase is employed to update the world model when confident
of the robot’s camera image. Consequently, when the exgect isual-cues exist, providing feedback for system adamtati
flow field is compared to the computed optical-flow field

non-ground regions will produce a high disparity. Work by This phase is currently in development.

Chen [18] has used the same ground-plane motion principles. Important overlapping processes in the system’s three
However, as opposed to the calculation of optical-flow on thephases include the description of visual features, anchtagé
conventional image format, a reciprocal-polar (R-P) farmasegmentation. These processes are heavily dependentlon eac
was used. Thus, coplanar motions in the R-P image space weegher, as the image regions must contain significant statist
found to lie on sinusoid, and then fitted to the R-P motion datalata of the chosen visual features for the D-Fusion algorith
for ground-plane detection. In a more computational efficie to be effective.

manner, Braillon [19] investigated ground-plane mode¢lfor .

II. SYSTEM OUTLINE

— The initialisation phase is a one-off phase that creates
a world modelused for the image classification. The world
model consists of a population of hyper-dimensional Gaussi

the detection of dynamic obstacles. Braillon achieved ltiyis | |mage% Over-Segmentation
| (superpixels)

using simple similarity measures between the original lmag‘

and the consecutive image patches shifted according to th Visual
expected optical-flow field. The inherent pitfalls that exigth 1 gature
using optical flow and ground-plane modelling include the 5

Clusterlng
time optical-flow and expected flow; the frequency of frames phitiaisation | World Model" £

computational accuracy and time to compute both the real
I

required to meet the motion requirements; and the restnicti . World Model: Population of Hyper-dimensional |

Gaussian Distributions.

to environments with flat surfaces. 2. Learning Model: Uses World Model for MRF | | Extra Cues

Initial Image Classifications. |

Our approach takes advantages of both the appearance-
based and the motion-based principles, and combines thehig. 1. Overall System Diagram. Left - Initialisation PhaBéeght - Operation
using a flexible and adaptable MRF model. The system makgd'as¢ and Update Phase (dotted-iine boxes).
use of a semi-supervised model for learning and adaptation b
requiring a initiala priori of the environment. Although the
focus in this paper is placed on combining appearance-based
features with ground-p]ane motion information’ the Sysm For the Iearning and construction of the world mOdeI, we
been developed with a view toward combining many differencreated a novel clustering/segmentation technique called
visual features, which are envisioned to work in synergy to~usion The motivation for this was four-fold:
achieve a robust system. The approach here differs from manyl) Biological-inspiration from complex cells learning tes+
learning-based approaches because it encompasses the idea tinguish natural scenes using statistical patterns [20].

Learning
Model?

S

Confldence

Final
Classification

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

IV. THE WORLD MODEL USING D-FUSION



2) Ability to better encompass spatial-textural properiie  thresholdR is chosen to determine the final number of clusters.
a scene. In the initialisation phase, the D-Fusion algorithm itesat
3) Simplification of computational processing and struetur through every superpixel over the training images, merging
during later stages in classification and regularisation irthose Gaussians whosein(r;;) < R. After merging, the

the MRF. new segments mean and covariance are updated accordingly.
4) Ability to provide better spatial coherence for the assoc Although the process of creating an initial world model isnco
ation of additional visual-cues. putationally costly, once initialised, an incremental eggzh

Distribution-Fusion is a fusion of the statistical distritons IS taken to update the models. Superpixels are only merged
formed from an over-segmentation technique, in this caséogether if they have common labels (as determined from
Gaussians with mean and covariance. D-Fusion consists #@nd-labelled segmentations of the ground/obstacle jpace
three steps, (i) an initial over-segmentation of the imdip, Furthermore, only those Gaussian distributions that arget®
a choice of visual features, and (iii) a clustering method from the largest image regions are included in the final world
The image regions are the representents of the world modenodel. An example D-Fusion segmentation image is shown in
To support the distributions, the D-fusion is used to limit Figure 2.
the redundancy in the world model to create more reliable
‘individuals’ in the population of Gaussian distributions

A. Over-segmentation

herent pixels over a feature-space, to produce what is als:
commonly known as a superpixel. From this, statistical rep
resentations (mean and covariance) over a number of chos¢?
visual feature-spaces can be extracted from each supkrpix¢
Consequently, these superpixels encompass importariispat
statistical features, such as textures. Here, the Efficteaph-
Based Image Segmentation (EGBIS) technique [11] is used {
construct the superpixels. EGBIS meets key requiremanth, s

as being fast to compute, and allows control of superpixze si

and connectivity, while maintaining the important boundar

and object lines within the image. Furthermore, EGBIS also
provides an Region Adjacency Graph (RAG) that provides the

Fig. 2. D-Fusion Segmentation Example. Right: Originalde: EGBIS,
Left: D-Fusion

V. MRF CLASSIFICATION AND REGULARISATION

structure for the MRF model. For the task of producing the final classification images, a
non-regular planar graph MRF model is associated with the
B. Appearance Features superpixels of the image. A MRF system has the benefits of

Given an over-segmented image, a choice of the visuatlassifying superpixels while considering the their néigtr-
feature-space is required to aid the fusion of superpifidles,  hoods as well as any additional visual-cues. Figure 3 shows a
a feature-space must be chosen to describe the environmehagram of the MRF model. Three main information sources
appropriately, in our case by discriminating the groundhfro are used within the MRF model: the world mode| edge
the rest of the scene. By using a Gaussian distribution mode$trength imager, and a visual-cue confidence image
each region is characterised by a hyper-ellipsoid with almea ~ The principle of MRF based classification is to model the
vectory,, and anxn covariance matrix. As the robot operates final labelling (here ground/non-ground) as the most prtgab
in an indoor office environment, the RGB colour-space and/alue taken by a random field (here the set of superpixels)
texture features computed using 20 Gabor filters (5 frdg. under the assumption of local dependence (corresponding
orient.) were chosen. Gabor filter frequencies sample aerahg here to the adjacency relation between superpixels). Tams ¢
high-end frequencies, whilst orientations cover four ctimms  be modelled by a local potential function defined on every
(45° separation). These visual-features were chosen based §Hperpixel and its neighbourhood, such that maximizing the
the visual-examination of the filtered images and the D-¢iusi Probability of a label field is equivalent to minimizing thers

segmentations over several different feature-space sets. ~ Of the corresponding potential function over all superfsixe
_ _ This optimization is usually performed through an iterativ
C. Merging Super-Pixels process, here a Gibbs sampler, which operates by modifying

With the new feature statistics generated, superpixelsd muderatively superpixel labels, starting from an initiab& field.
be merged before being included into the world model. Asp pjtial labelling
such, superpixels are clustered by means of the hypeseitp
clustering method developed by Kelly [21]. Kelly uses an
geometric-based metrig;; to provide an effective distance
measure between two hyper-ellipsoid clusteend j. Thus a I'={Gn}nen = {p(n),C(n), A\(n) }nen (1)

As described before, our world model is given by a selof
Gaussian distributions represented by a collection ofetisp



is defined on 1-order cliques, and is of the form:

V= _Zﬂ'i(yi-)\i) (4)
icL
whereL is the set of superpixel indexes over the image,
is the MRF node (unobserved) mirroring the superpixel;
is the initial classification label provided by criterion &nd
m; is the confidence weight associated with that classification
label for nodei.

’e
~[ Cue Confidence Image

g e ////X N la. The confidence weight; for attributing the label\; to

" - /«\\\\\\\\\\\ superpixelR; is determined through:

Marko/v R/andom Fleld/ \\\X\\\\\\\\ | min {Dny(R;, Gn); A(n) = =1} — min {Dn (Ri, Gpn); A(n) = +1}]
Gibﬁﬁ @Q\\\% (i, Do (R, Go) .

2. The potential component modelling classification smooth-
ness prior is defined on 2-order cliques, and is of the form:

Edge Strength Image

Final Classified Image

Fig. 3. MRF Model.
¢ = —Z Z wij (Yiyy) (6)
. i€L jEN (i)
where p(n) and C(n) are the mean vector and covariance . ! o
matrix in the feature space, an&(n) is the ground label where y; is the MRF node (unobserved) mirroring the
obtained from the learning phase. superpixelj, andw;; is the weighting factor between the two

As a trade-off between a fully global Bayesian classifica-"0desy; andy;.

tion where every label would be represented by one singlea. The weighting factot;; provides a smoothing link to the
distribution, and a fully local nearest neighbour methotlere  image layer through an edge strength image. Weights are used
every pixel is modelled according to its features, our appho o decrease or increase the smoothing across edges seen in th

effectively combines the two strategies by classifying pest  image. The weights are calculated as follows:
pixel according to the nearest superpixel in terms of Ganssi

distributions. LetR be an unclassified superpixel, with mean wij = exp(—c* u;;) @)
vectoru g in the feature space. The Mahalanobis distance [22] 1
betweenR and the Gaussian distributionis defined as: Ui = Card P, ) > E(k) (8)

keP(i,5)

Dy(R,Gy) = —un)TC(n)- ! — u(n 2 . ] )

_ e ) \/(MR_ u(m) _( ) (H_R pm) - 2) ~ whereP(i,j) is a set of superpixels boundary coordinates

Given a set of superpixels provided by image segmentatiothat are common to the superpixélaind j. Card(X) is the

{Ri}icr, the initial (unregularised) classification of every cardinality of setX, E(k) is the edge strength at that pixel

superpixelR; is then found by: coordinatek found from the gradient magnitude from Sobel
A = Marg Hilgl\lz Dar(Ri, Gn)) 3) filters, andc is a constant used to control the smoothing.

3. Using these potentials, the conditional distribution oyer
B. MRF Model Description is: g P Y

i i 1 1
I_n the_ MRF model, a_random field on a segmented image p(Y =90 = 0) = — exp(——(® + D)) (9)
defines in each superpixel a random variabjewhose value T

yi € {—1,+1} represents ground or object space. EVEfys  whereY is the hidden fieldD the observed (image) field;
associated to a graph node of the RAG provided by the EGBI$s the partition function, withl’ the temperature parameter,
segmentation. Every node indéis then associated to a set of which is used in the Gibbs process to control the level of
neighbours indexed/ (i) such that{Y}};cr(;) are the random  determinism.

variable adjacent (and then dependent)to Figure 4 shows two test images classified by the MRF
The world model is first used to obtain classification Conﬁ'system in a seen environment. Table | presents the mean true-
dence weights and labels in the MRF system. The MRF als@gsitive and false-positive rates for the classificatioaray set

provides smoothing and enforcement of the spatial comsigte of training and test images, each set containing 25 images.
through using image edge strengths. Additionally, motion

ground-cue confidence information developed (but not yet TABLE |

integrated) in Section VI is expected to improve classifirat CLASSIFICATION RESULTS FORIMAGE SETS.

and update the world model. The current MRF is defined Image Set| Ground TP-R| Ground FP-R

through the following equations: Training 95.44% 6.22%
Test 90.92% 7.78%

1. The potential component modelling attachment to the data



Original Image Superpixel Image Classification without MRF MRF Classification
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Fig. 4. Example Classification Images.

VI. LEARNING/ADAPTING USING GROUND-PLANE CUES Original Image Mahalanobis Image MRF Classification

The fundamental flaw of appearance-based modelling i
the introduction of an unseen surface in the image, as se
in Figure 5. Here, a red trolley is unidentifiable using the
world model and thus incorrectly classified. In order for the
system to learn new features, ground-plane modelling w
investigated with a view toward its ability to provide spars
but important obstacle information. The idea behind greund
plane modelling is to fit an expected ground-plane flow fiel
(using odometric data and camera parameters) to the optic
flow field computed from the robot images. From this, areas o
high disparity should theoretically correspond to nonegya
points in the environment, and vice versa. However, current
optical-flow algorithms are not ideal, with trade-offs ooing
between noise, accuracy, and computational time [23]. Wemployed. Flow vectors are then extrapolated to an intéosec
avoid the explicit computation of the optical-flow field by point. Provided the mean and variance of the intersection
utilising a technique proposed by [19], that matches patchepoints are within the given thresholds, the similarity iraag
shifted according to the expected ground-plane motion én this computed. The expected motion field of the ground-plane is
first image, to the corresponding patches in the second imagthen calculated through the homography described in [19].
From these comparisons, areas of low similarity corresgond
an obstacle and vice versa.

Fig. 5. Classification with Unseen Obstacle.

B. Similarity Image and Confidence Computation

To compare the similarities between the original image
A. Finding the Expected Motion Field patch and the shifted image patch, the mean-centered corre-

Before obtaining the expected motion field, the problem ofiation measure was employed. To diminish the effect of less
detecting pure translational motion must first be tacklegere ~ informative surfaces that contain low or no gradient change
if the robot is commanded to perform a translation motion the measure was multiplied by the standard deviation of each
in practice the robot and camera motion instabilities gatrru patch. The construction of the confidence cue image is defined
the image motion. '_I'h_us, in ord_er to detect_ a pure trans_latior?\‘S follows: Card({s € Si:s > T))
camera motion, a similar technique to [18] is used to esémat G =
the Focus of Expansion (FOE) of image motion. By estimating Card(S;)
the FOE and comparing it to the expected FOE from purevhere(; is the confidence of node/superpixelCard(X) is
translation camera motion, bad frames can be discarded. The cardinality of setX, s is the similarity measure]” is a
detect the FOE, a Harris corner detector combined with aimilarity threshold,S; indexes all pixels in superpixél The
pyramidal Lucas and Kanade optical-flow technique is firstfinal confidence cue image relates to the degree of which an

(10)



obstacle is present. Figure 6 shows the creation of the cuearning algorithm using ground-cues to update the world-
confidence image for an image that met the imposed motiomodel. (iii) Investigation of other visual-cues that can be
requirements, and demonstrates a frame that can be useditdegrated into the system, in particular, vertical linesuhat

teach and update the world model to identify the new obstaclenay help in identifying homogeneous ground-plane regions.

seen in Figure 5.

Original Image & Expected Flow

Similarity Image

(1]

100

% 2]

° (3]
(4

(5]

(6]
(7]

(8]

, [9]

Fig. 6. Cue Confidence Image Creation - Corridor. [10]

VII. DISCUSSION ANDFUTURE WORK

Our results from the current MRF implementation demon-[11]
strates some promising abilities for traversability difisastion,  [12]
with test-set images averaging a true-positive to falsstpe
rate of 90.92% to 7.78% respectively. Such results can bas)
attributed to the use of the D-fusion for creation of the \dorl
model, that is able to identify several types of differenstalsle [14]
surfaces alongside the two distinct ground-plane surfaces
Furthermore, in difficult areas with distinct lighting clges or
similar ground/obstacle surfaces, the MRF is able to perfor [15]
regularisation using gradient images of the scene, to farm a
overall better classification image more usable for obstacl
avoidance.

Additionally, for the task of adapting and learning new
surfaces in a scene, similarity/disparity images foundugh  [17]
using ground-plane motion modelling have also shown great
potential in improving MRF classifications and training of [18]
the world model. The ground-plane cue confidence images
here are able to highlight areas of high-obstacle protigbili [19]
These probability calculations can be used within in the
MRF and feedback loop to adapt the world model, with
the help of image classification confidences. Ground-pIanE,2
cues are only envisioned as one of the many visual-cugg)
used in the system. The flexibility of the developed system
structure allows it to take advantage of a number of weal??
visual-features to improve its overall reactivity and retmess.  [23]

[16]

Future work includes: (i) Integration of the ground-plane cue
confidence images into the MRF system. (ii) Creation of a
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