A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring

Abstract : Rapid population growth and human activity (such as agriculture, industry, transports,...) development have increased vulnerability risk for water resources. Due to the complexity of natural processes and the numerous interactions between hydro-systems and human pressures, water quality is difficult to be quantified. In this context, we present a knowledge discovery process applied to hydrological data. To achieve this objective, we combine successive methods to extract knowledge on data collected at stations located along several rivers. Firstly, data is pre-processed in order to obtain different spatial proximities. Later, we apply a standard algorithm to extract sequential patterns. Finally we propose a combination of two techniques (1) to filter patterns based on interest measure, and; (2) to group and present them graphically, to help the experts. Such elements can be used to assess spatialized indicators to assist the interpretation of ecological and river monitoring pressure data.
Type de document :
Article dans une revue
Ecological Informatics, Elsevier, 2015, 26, pp.127-139. 〈10.1016/j.ecoinf.2014.05.011〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01130144
Contributeur : Import Ws Irstea <>
Soumis le : mercredi 11 mars 2015 - 14:43:03
Dernière modification le : jeudi 24 mai 2018 - 15:59:25
Document(s) archivé(s) le : lundi 17 avril 2017 - 07:43:08

Fichier

mt2014-pub00042247.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hugo Alatrista Salas, Jérôme Azé, Sandra Bringay, Flavie Cernesson, Nazha Selmaoui-Folcher, et al.. A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring. Ecological Informatics, Elsevier, 2015, 26, pp.127-139. 〈10.1016/j.ecoinf.2014.05.011〉. 〈hal-01130144〉

Partager

Métriques

Consultations de la notice

387

Téléchargements de fichiers

260