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COMBINATORIAL THEORY OF PERMUTATION-INVARIANT

RANDOM MATRICES I:

PARTITIONS, GEOMETRY AND RENORMALIZATION.

Franck Gabriel

E-mail: franck.gabriel@normalesup.org

Abstract. — Using a natural distance, we define and study a family of orders on partitions
of a given set X. When the set X is the disjoint union of two copies of {1, ..., k}, there exists
a canonical choice of order in the family we constructed. We show that the two ordered
sets of partitions and non-crossing partitions of k elements can be seen as subsets of the
ordered set Pk of partitions on X. We generalize the notion of Kreweras complement to the
set of partitions Pk. These notions allow us to define new structures on the linear forms on
partitions: some triangular transformations, two convolutions, a multiplicative bi-albegra
structure and an Hopf algebra structure and some natural projections. We study the set
of characters on partitions and their interaction with the newly constructed structures.
At last we show that the abstract structures appear naturally when one considers the
notion of convergence in moments for sequence of partitions. The notion of convergence
is generalized in order to study the algebraic fluctuations.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Geometry and orders on partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. The set Pk and the Kreweras complement. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4. Structures on (

⊕∞
k=0C[Pk])

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5. Observables and convergences of partitions. . . . . . . . . . . . . . . . . . . . . . . . . . 35
6. Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1. Introduction

This article is the first of a serie of three in which we generalize the notions of indepen-
dence and freeness in order to define a notion of A-freeness in the setting of A-tracial
algebras. This setting unifies classical and free probabilities and allows us to study
random matrices which are not asymptotically invariant in law by conjugation by the
unitary group. In this article, the reader will find the needed combinatorial tools; in
the article [4], he will find the study of A-tracial algebras and applications to random
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matrices; the article [5] uses the previous result and focuses on the study of general
random walks on the symmetric group and the construction of the S(∞)-master field.

The set of partitions of k elements, denoted by Pk and the set of non-crossing partitions
of k elements, denoted by NCk, both endowed with the finer-order E, are two important
ordered sets in classical probabilities and free probabilities. Their importance comes
from the fact that one can define the notions of cumulants and independence or freeness
using these ordered sets. For example, let X1,...,Xk be random variables which have all
moments bounded. The cumulants of X1, ..., Xk are defined by the fact that for any
integer l and any i1, ..., il ∈ {1, ..., k}:

E[Xi1 ...Xil ] =
∑

π∈Pl

∏

b∈π

cum((Xiu)u∈b).

Besides, two random variables X and Y are independent if and only if their mixed classi-
cal cumulants vanish. This means that for any integers k, l ≥ 1, cum(X, ...,X, Y, ..., Y ) =
0 where we wrote k times X and l times Y .

One can define the free cumulants and freeness by considering elements in a non-
commutative algebra A endowed with a tracial state φ, and using the set of non-crossing
partitions NCl instead of the set Pl. The set of non-crossing partitions NCl is also en-
dowed with an interesting involution, the Kreweras complement involution [8]. Actually,
in this paper we prove the two following results.

Result 1. — For any integer k, there exists an order ≤ on P2k such that the sets (Pk,E)
and (NCk,E) can be seen as subsets of (P2k,≤).

Result 2. — For any integer k, there exists a notion of Kreweras complement on P2k

which generalizes the notion of Kreweras complement on NCk.

In order to prove this, we define for any set X a distance on the set of partitions
P(X) which allows us to define a family of geodesic orders that we thoroughly study in
Section 2. The main results of this section are summarized below.

Result 3. — The function defined on P(X) × P(X):

d(p, p′) =
1

2
(#p+#p′)−#(p ∨ p′),

where p ∨ p′ is the finest partition which is coarser than p and p′, is a distance.

Let b be a partition in P(X) and let say that p′ ≤b p if d(b, p′) + d(p′, p) = d(b, p).

Result 4. — The order ≤b is fully characterized:

1. there exists a “decomposition” of ≤b using two simpler well-understood orders,
2. the Hasse diagram is described,
3. the Möbius function of ≤b is computed.

In Section 3, we apply these two last results to the set P({1, ..., k, 1′ , ..., k′}) = Pk

which is in bijection with P2k. This allows us to prove in particular the Result 1 which
is partly a consequence of the following result.

Result 5. — The order ≤ on Pk is a natural generalization of the Bruhat order on
permutations.
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The order in this special case exhibits some other interesting properties, like the
geodesic factorization, that we study further. In Section 3.8, Result 2 is proved as a
consequence of the new Inequality (18) which links the distance and the multiplication
operations on Pk. The main result of this section is Theorem 2.4 which links different
notions of defect for partitions in Pk and which allows us to prove the following result.

Result 6. — The notion of Kreweras complement can be used in order to define a new
order on partitions, denoted ≺ which satisfies a nice factorization property.

In Section 4, we follow some ideas of [11]: using the previous results, we define some
structures on the set of linear forms (⊕∞

k=0C[Pk])
∗.

Result 7. — The set (⊕∞
k=0C[Pk])

∗ can be endowed with:

1. two convolutions which allow us to define:
– a structure of graded connected Hopf algebra,
– a structure of associative, co-associative bi-algebra,

2. notions of characters and infinitesimal characters which are compatible with one
another through the two notions of convolutions,

3. some triangular transformations which nicely interact with the notions of character
and infinitesimal characters,

4. three natural projections: the cumulant-projection, the moment-projection and the
exclusive-projection.

In Section 5, we explain how the structures defined on (⊕∞
k=0C[Pk])

∗ appear naturally
when one considers a special notion of convergence for sequences of elements in C[Pk].
Actually, we emulate the theory of random matrices in a combinatorial framework: for
any parameter N , we introduce a family of linear forms on the partition algebras which
allows us to define a notion of weak convergence similar to the convergence in moments in
random matrices theory. This notion of convergence is linked with a notion of moments,
yet we can link it with the asymptotics of the coordinates.

Result 8. — A sequence (EN )N∈N converges if and only if the coordinates of EN satisfy
a specific asymptotic behaviour as N goes to infinity.

We also study a notion of exclusive moments and show that the convergence of these
exclusive moments is equivalent to the convergence of the moments. Besides, it is well
known that for any integer N , there exists a natural multiplication on C[Pk] which
depends on N [7]. Let us denote it by ×N : the convergence is “compatible” with this
family of multiplications.

Result 9. — If (EN )N∈N and (FN )N∈N converge for the notion of convergence defined
in Section 5, then EN ×N FN converges and the limit of EN ×N FN is linked with the
multiplicative convolution on (⊕∞

k=0C[Pk])
∗.

If for any integer N , (Et
N )t≥0) is a semi-group for ×N , if the sequence of generators

of (Et
N )t≥0) converges then for any t ≥ 0, Et

N converges.

Gathering all the results in Section 5, we obtain the following result.
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Result 10. — There exists a natural notion of convergence for sequences in C[Pk] such
that the structures defined on (⊕∞

k=0C[Pk])
∗ can be approximated by natural structures

on C[Pk].

In Section 6, we generalize the results obtained about the convergence of sequences in
C[Pk] in order to deal with algebraic fluctuations of these sequences.

2. Geometry and orders on partitions

Let us consider a finite set X. The set of partitions of X is the set:

P(X) = {{b1, ..., bk}|∅ 6= b1, ..., bk ⊂ X;∪k
i=1bi = X;∀i 6= j ∈ {1, ..., k}, bi ∩ bj = ∅},

Let p be an element of P(X). Let b ∈ p: it is called a block of p. We denote by nc(p)
the number of blocks of p. The set P(X) can be endowed with a first order E: p E p′

if and only if p is finer than p′: for any b ∈ p, there exists b′ ∈ p′ such that b ⊂ b′. For
the opposite order we will say that p′ is coarser than p. For any partitions p and p′, we
denote by p ∨ p′ the smallest partition for E which is coarser than p and p′.

Any partition p ∈ P(X) can be represented by a graph. For this we consider some
vertices which represent X: any edge between two vertices means that the labels of the
two vertices are in the same block of the partition p. An example is given in Figure 1.
Using this graphical representation, one can recover a diagram representing p ∨ p′ by
putting a diagram representing p′ over one representing p.

1

2

3

4

5

6

Figure 1. The partition {{1, 4, 5}, {2, 6}, {3}} in P{1,2,3,4,5,6}.

2.1. Cayley graph of P(X). — In this section we define a natural graph on P(X)
which will allow us to define a family of distances on P(X).

Definition 2.1. — The Cayley graph G = (V,E) is given by:

– the set of vertices V is P(X),
– there exists an edge in E between p and p′, two elements of P(X), if and only if

one can go from one to the other by gluing two blocks.

Actually, it is almost the Hasse diagram of (P(X),E): we only forget about the
orientation of the diagram. Using this graph, we can define a geodesic distance on
P(X).
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Definition 2.2. — Let p and p′ be two elements of P(X). Let CG(p, p
′) be the set of

paths π in G which begin in p and finish in p′: it is always non-empty and CG(p, p) has
only one element, the constant path of lenght 0. The geodesic distance on P(X) between
p and p′ is:

d(p, p′) =
1

2
min

π∈CG(p,p′)
#π,

where #π is the length of π. A path π such that #π = d(p, p′) is called a geodesic between
p and p′.

The geodesic distance can be computed easily using the following result.

Theorem 2.1. — For any p and p′ in P(X):

d(p, p′) =
1

2

(

nc(p) + nc(p′)
)

− nc(p ∨ p′).

Proof. — For any partitions p and p′, we set:

d′(p, p′) =
1

2

(

nc(p) + nc(p′)
)

− nc(p ∨ p′).

It satisfies that d′(p, p) = 0 for any partition p. Let p and p′ be two elements of P(X).
Let us see what happens to d′(p, p′) when one moves from p′ to one neighborhood of p′

in G. Suppose that we glue two blocks of p′, then nc(p) is constant, nc(p′) decreases by
1 and nc(p ∨ p′) stays constant or decreases by 1. In this case d′(p, p′) will increase or
decrease by 0.5. Suppose now that we cut one block of p′, then nc(p) is constant, nc(p′)
increases by 1 and nc(p ∨ p′) stays constant or increases by 1. In this case d′(p, p′) will
also increase or decrease by 0.5. Thus a gluing/cutting can at most increase the value
of d(p, p′) by 0.5. It implies that d′(p, p′) ≤ d(p, p′).

We have to show that d(p, p′) ≤ d′(p, p′). Let us remark that p ∨ p′ is coarser than p:
we can go from p to p ∨ p′ by doing nc(p)− nc(p ∨ p′) gluing of blocks. The same holds
for p′: we can go from p′ to p∨ p′ by doing nc(p′)− nc(p∨ p′) gluing of blocks. Thus one
can go from p to p ∨ p′ and then from p ∨ p′ to p′ in nc(p) + nc(p′)− 2nc(p ∨ p′) steps in
G. Thus d(p, p′) ≤ 1

2 [nc(p
′) + nc(p′)− 2nc(p ∨ p′)] = d′(p, p′).

Using this distance, we can define a notion of segments in P(X).

Definition 2.3. — Let p1 and p2 be in P(X). The segment [p1, p2] is given by:

[p1, p2] = {p ∈ P(X), d(p1, p) + d(p, p2) = d(p1, p2)}.

An other geometric interpretation is to say that any element p is in the segment [p1, p2]
if and only if p is on a geodesic path between p1 and p2.

2.2. Family of orders. —
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2.2.1. Definition. — Using the geodesic distance d, we can define a family of geodesic
orders. In order to understand this family, we introduce also two new families of orders
which are sligth modifications of the coarser and finer orders. To define these orders, we
consider a base partition b ∈ P(X).

Definition 2.4. — Let p and p′ be two elements of P(X). We define three new orders
≤b,⊣b and =b:

geodesic order : p′ ≤b p if p′ ∈ [b, p],
coarser-compatible order : p′ ⊣b p if p′ is coarser than p and nc(p′∨b) = nc(p∨b),
finer-compatible order : p′ =b p if p′ is finer than p and nc(p′) − nc(p′ ∨ b) =

nc(p)− nc(p ∨ b).

Using the fact that d is a distance, it is easy to see that ≤b is an order on P(X) for
which b is the smallest partition: it is the geodesic order with base partition b.

Remark 2.1. — The order E is the geodesic order with base partition 0X = {{x}, x ∈
X}. Indeed, using Theorem 2.1, we can see that p′ ≤0X p if and only if nc(p) = nc(p∨p′)
which is equivalent to the fact that p′ is finer than p.

The geodesic order with base partition 1X = {{x, x ∈ X}} is the order D on P(X).

Remark 2.2. — When the partition p gets finer, the quantities nc(p), nc(p ∨ b) and
nc(p)−nc(p∨ b) increase. In particular if one such quantity is the same at the beginning
and at the end of a chain of finer and finer partitions, it must stay constant all along
this chain.

It will be useful to denote the defect of p′ from not being on [b, p] by:

dfb(p
′, p) = d(b, p′) + d(p′, p)− d(b, p) = nc(p′)− nc(p′ ∨ b)− nc(p ∨ p′) + nc(p ∨ b).(1)

2.2.2. Study of the coarser and finer-compatible orders. —

Lemma 2.1. — Let p and p′ be two elements of P(X). We have the following charac-
terization of the coarser-compatible and finer-compatible order:

1. p′ ⊣b p if and only if p′ is coarser than p and p′ ≤b p.
2. p′ =b p if and only if p′ is finer than p and p′ ≤b p.

Proof. — This is a straightforward consequence of the fact that:

1. if p′ is coarser than p, dfb(p
′, p) = −nc(p′ ∨ b) + nc(p ∨ b),

2. if p′ is finer than p, dfb(p
′, p) = nc(p′)− nc(p′ ∨ b)− nc(p) + nc(p ∨ b).

It would be interesting to have a better understanding of the orders ⊣b and =b. In
order to do so, we introduce the notion of pivotal blocks, admissible splits and admissible
gluings for a partition p ∈ P(X).

Definition 2.5. — A pivotal block (for the base partition b) for p is a block of p such
that there exists a way to cut it into two blocks in order to cut a block of p ∨ b into two
blocks. We denote by Pivb(p) the set of pivotal blocks for p.

We denote by ∆b(p) the set of all partitions p′ which are obtained by cutting in p a
pivotal block for p into two blocks in such way that p′ ∨ b has one more block than p ∨ b.
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This defines a function ∆b from P(X) to the subsets of P(X). The admissible splits of

p are Spb(p) =
∞
⋃

k=0

∆k
b (p).

Definition 2.6. — Let Glb(p) be the set of partitions p
′ in P(X) such that p′ is obtained

by gluing blocks of p in a way such that nc(p∨ b) = nc(p′ ∨ b). It is the set of admissible
gluings of p.

We can better understand the orders ⊣b and =b.

Lemma 2.2. — Let p and p′ be two elements of P(X). We have the following equiva-
lences:

1. p′ ⊣b p if and only if p′ ∈ Glb(p),
2. p′ =b p if and only if p′ ∈ Spb(p).

Proof. — The first equivalence is straightforward. Let us prove that the second equiva-
lence holds. We can suppose that p′ is finer than p since it is implied by both conditions.
We have to prove that nc(p′) − nc(p′ ∨ b) is equal to nc(p) − nc(p ∨ b) if and only if
there exists a path p0, ..., pk in the Cayley graph of P(X) such that p0 = p, pk = p′ and
pi+1 ∈ ∆b(pi) for any i ∈ {0, ..., k − 1}.

Let us suppose that such a path exists: by definition of a pivotal block, we see
that for any i ∈ {0, ..., k − 1}, nc(pi) − nc(pi ∨ b) = nc(pi+1) − nc(pi+1 ∨ b) and thus,
nc(p)− nc(p ∨ b) = nc(p0)− nc(p0 ∨ b) = nc(pk)− nc(pk ∨ b) = nc(p′)− nc(p′ ∨ b).

Let us suppose instead that nc(p) − nc(p ∨ b) = nc(p′) − nc(p′ ∨ b). Since p′ is finer
than p, there exists a path π0, ..., πl in the Cayley graph of P(X) such that π0 = p,
πk = p′ and πi+1 is obtained by cutting a block of πi for any i ∈ {0, ..., k − 1}. At
each step the number of blocks of πi goes up by one and the number of blocks of πi ∨ b
is either constant or goes up by one. Since nc(π0) − nc(π0 ∨ b) = nc(πl) − nc(πl ∨ b),

(nc(πi)− nc(πi ∨ b))l−1
i=0 must be constant. This means that at each step the number of

blocks of πi ∨ b must go up by one: πi+1 ∈ ∆b(πi) for any i ∈ {0, ..., l − 1}.

2.3. The matrices of the orders. — In the following, by matrice, we understand a
triple (I, J,M) where I, the departure set, and J , the arrival set, are finite sets and M
is an application from I × J in R. Given (I1, I2,M1) and (I2, I3,M2) two matrices, we
can multiply them and (I1, I2,M1)(I2, I3,M2) = (I1, I3,M1M2) where:

M1M2(i, k) =
∑

j∈I2

M1(i, j)M2(j, k).

Let us consider a finite set I endowed with an order ≺. A matrix (I, I,M) is lower
triangular if for any i and i′ in I, if M(i, i′) 6= 0 then i′ ≺ i. Let us remark that any
matrix (I, I,M) which is strictly lower triangular is nilpotent : there exists a positive
integer n such that Mn = 0. Indeed, it is enough to consider n = #I. The matrices
that we will consider in the following have departure and arrival sets equal to P(X): we
will omit to specify it in the following.

Definition 2.7. — The matrices of the partial orders ≤b,⊣b,=b are:

– for the geodesic order ≤b: (Gb)p,p′ = δp′≤bp,
– for the coarser-compatible order ⊣b: (Cb)p,p′ = δp′⊣bp,
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– for the finer-admissible order =b: (Sb)p,p′ = δp′=bp.

Let us remark that these matrices are lower triangular when their departure set is en-
dowed with the corresponding order. These matrices satisfy the next important identity.

Theorem 2.2. — The partial orders ≤b,⊣b, and =b are linked by the following equality:

Gb = CbSb.

Proof. — Let us consider p and p′ in P(X). We have:

(CbSb)p,p′ =
∑

p′′∈Pk

δp′′⊣bpδp′=bp′′ .

Thus it is enough to show that p′ ≤b p if and only if there exists p′′ ∈ P(X) such that
p′′ ⊣b p and p′ =b p

′′. Besides we need to show that such partition p′′ is unique: we will
show that it is equal to p ∨ p′.

We have the following equalities:

dfb(p
′, p) = nc(p ∨ b)− nc(p′ ∨ b) + nc(p′)− nc(p ∨ p′)

= [nc(p ∨ b)− nc(p ∨ p′ ∨ b)] + [nc(p ∨ p′ ∨ b)− nc(p′ ∨ b) + nc(p′)− nc(p ∨ p′)]

= dfb(p ∨ p′, p) + dfb(p
′, p ∨ p′).

Thus, p′ ≤b p if and only if p ∨ p′ ≤b p and p′ ≤b p ∨ p′. Yet, p∨ p′ is coarser than p and
p′ is finer than p ∨ p′. Using Lemma 2.1, we see that p′ ≤b p if and only p ∨ p′ ⊣b p and
p′ =b p ∨ p′. The proof of the theorem will be completed if we prove that if p′′ satisfies
p′′ ⊣b p and p′ =b p

′′ then p′ ≤b p and p′′ = p ∨ p′.
Let us consider such a partition p′′, we have:

nc(p′′ ∨ b) = nc(p ∨ b),(2)

nc(p′′)− nc(p′′ ∨ b) = nc(p′)− nc(p′ ∨ b).(3)

Using Lemma 2.1, p′ ≤b p
′′ ≤b p, thus p

′ ≤b p:

nc(p ∨ p′)− nc(p ∨ b) = nc(p′)− nc(p′ ∨ b).(4)

Thus, we have the following equalities:

nc(p ∨ p′) = nc(p ∨ b) + nc(p′)− nc(p′ ∨ b) = nc(p ∨ b) + nc(p′′)− nc(p′′ ∨ b)

= nc(p′′),

where we applied successively the Equations (4), (3) and (2). Since p′′ is coarser than p
and than p′, it is coarser than p ∨ p′ and thus the last equation implies that p′′ is equal
to p ∨ p′.

An other version of 2.2 is given in the following theorem.

Theorem 2.3. — The partition p′ is in [b, p] if and only there exists p′′ ∈ P(X) such
that the two following conditions hold:

1. p′′ ∈ Glb(p),
2. p′ ∈ Spb(p

′′).

If so, then p′′ = p ∨ p′.
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2.4. Hasse diagram of the geodesic order. — Let us consider (T,≤) a finite set
endowed with a partial order. The Hasse diagram of (T,≤) is the oriented graph whose
vertices represent the elements of T : there exists an oriented edge between the vertex
which represents x to the one which represents y if and only if x is directly smaller than
y, which means that x < y and there does not exist any z such that x < z < y.

Theorem 2.4. — The Hasse diagram of (PX ,≤b) is characterized by the following prop-
erty: there exists an oriented edge from p′ to p if and only if

– either p′ is directly finer-admissible than p,
– or p′ is directly coarser-admissible than p.

Proof. — Let p and p′ in PX such that p′ is directly smaller than p for ≤b. Using
Theorem 2.3 and Lemmas 2.1 and 2.2, p′ ≤b p ∨ p′ and p ∨ p′ ≤b p. Since p′ is directly
smaller than p for ≤b, p ∨ p′ is equal either to p or p′. Using again Lemma 2.1, either
p′ =b p or p′ ⊣b p. If there was a partition p′′ /∈ {p, p′} such that p′ =b p′′ =b p,
by Lemma 2.1 it would contradict the fact that p′ is directly smaller than p for ≤b.
The same argument holds for ⊣b. Thus p′ is either directly finer-admissible or directly
coarser-admissible than p.

2.5. Möbius function for the geodesic order. — It would be interesting to com-
pute the Möbius function of ≤b which is roughly the inverse of the matrix Gb.

Definition 2.8. — Let I be a finite set endowed with a partial order. Let M be the
matrix of the order defined as in Definition 2.7. The Möbius function is the function
such that for any a and b in I,

µ(a, b) = (M−1)b,a.

Let us consider M the matrix used in the last definition. The matrix M can be written
as IdI +N with N a matrix which is strictly lower triangular and thus nilpotent. This
allows us to compute the inverse of M :

M−1 = (IdI +N)−1 =

∞
∑

l=0

(−1)lN l,(5)

hence Rota-Hall’s formula:

M−1 (x, y) =

∞
∑

l=0

(−1)l#Cl(x, y),(6)

where Cl(x, y) is the set of sequences of length l which are strictly decreasing between x
and y:

Cl(x, y) = {(i0, ..., il), x = i0 6= ... 6= il = y, i0 ≥ ... ≥ il}.

Let us remark that the matrix M−1 is lower triangular since N l is lower triangular for
any integer l.

Our goal is to compute the Möbius function for (P(X),≤b): we need to compute the
inverse of Gb. In order to do so, we need the following lemma.
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Lemma 2.3. — Let p, p′ and p′′ be three partitions in P(X). Let us suppose that
p′ ⊣b p

′′ and p′′ =b p, then p′′ = p∧ p′, where p∧ p′ is the coarser partition which is finer
than p and than p′.

Proof of Lemma 2.3. — Let us consider p, p′ and p′′, three partitions in Pk which satisfy
the hypotheses. Using the definitions of ⊣b and =b:

nc(p′ ∨ b) = nc(p′′ ∨ b),(7)

nc(p′′)− nc(p′′ ∨ b) = nc(p)− nc(p ∨ b).(8)

Besides, using Lemma 2.1, we know that p′ ≤b p
′′ and p′′ ≤b p. Thus p

′ ≤b p:

nc(p′)− nc(p′ ∨ b) + nc(p ∨ b)− nc(p ∨ p′) = 0.(9)

This allows us to write the following equalities:

nc(p′′) = nc(p′′ ∨ b) + nc(p)− nc(p ∨ b) = nc(p′ ∨ b) + nc(p)− nc(p ∨ b)

= nc(p) + nc(p′)− nc(p ∨ p′),

where we applied successively the Equations (8), (7) and (9). Thus:

nc(p′′) + nc(p ∨ p′)− nc(p)− nc(p′) = 0.(10)

Using the triangle inequality, we know that d(p, p ∧ p′) + d(p ∧ p′, p′) − d(p, p′) ≥ 0,
which is equivalent to:

nc(p ∧ p′) + nc(p ∨ p′)− nc(p)− nc(p′) ≥ 0.(11)

Since p′′ is finer than p′ and than p, p′′ is finer than p ∧ p′: nc(p ∧ p′) ≤ nc(p′′). Using
Equations (10) and (11), we get that nc(p′′) = nc(p ∧ p′): p′′ = p ∧ p′.

We can now compute the inverse of Gb.

Theorem 2.5. — Let p and p′ in P(X). We have:

(G−1
b )p,p′ = δp∧p′=bp δp′⊣bp∧p′ µf (p ∧ p′, p) µf (p ∧ p′, p′),

where for any partition p1 and p2 such that p1 is finer than p2:

µf (p1, p2) = (−1)nc(p1)−nc(p2)

nc(p1)
∏

i=3

((i− 1)!)ri ,

where ri is the number of blocks of p2 which contains exactly i blocks of p1.

Proof. — Using Theorem 2.2, we know that Gb = CbSb. Thus G−1
b = S−1

b C−1
b . Let p

and p′ be two partitions in P(X):

(G−1
b )p,p′ =

∑

p′′∈Pk

(S−1
b )p,p′′(C

−1
b )p′′,p′ .

Since Sb, respectively Cb, is the matrix of the order =b, respectively ⊣b, S
−1
b , respectively

C−1
b , is lower triangular for =b, respectively ⊣b: for any partitions p1 and p2 in Pk:

(S−1
b )p1,p2 = δp2=bp1(S

−1
b )p1,p2 ,

(C−1
b )p1,p2 = δp2⊣bp1(C

−1
b )p1,p2 .
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Thus:

(G−1
b )p,p′ =

∑

p′′∈Pk | p′′=bp, p′⊣bp′′

(S−1
b )p,p′′(C

−1
b )p′′,p′ .

Using Lemma 2.3, we get that:

(G−1
b )p,p′ = (S−1

b )p,p∧p′(C
−1
b )p∧p′,p′.

It remains to compute (S−1
b )p,p∧p′ and (C−1

b )p∧p′,p′. For sake of clarity, untill the end of
the proof, we will forget to specify the base partition b.

Using Rota-Hall’s formula, given by Equation (6), for any p and p′ in P(X):

(

S−1
)

p,p∧p′
=

∞
∑

i=0

(−1)i
∑

(p0,...,pi)∈Pk |p=p0 6=p1 6=... 6=pi=p∧p′

[

i−1
∏

l=0

δpl+1=pl

]

.

Yet, if p ∧ p′ = p, using Remark 2.2, for any positive integer i, for any i + 1-tuple
(p0, ..., pi):

i−1
∏

l=0

δpl+1=pl =

i−1
∏

l=0

δpl+1Epl,

where E was defined at the beginning of Section 2. Thus:

(S−1)p,p∧p′ = δp∧p′=p

∞
∑

i=0

(−1)i
∑

(p0,...,pi)∈Pk |p=p0 6=p1 6=... 6=pi=p∧p′

[

i−1
∏

l=0

δpl+1Epl

]

.

This implies that:
(

S−1
)

p,p∧p′
= δp∧p′=p(F

−1)p,p∧p′,

where F is the matrix such that for any p1, p2 ∈ Pk, Fp1,p2 = δp2Ep1 . The inverse of this
matrix is given by:

(F−1)p1,p2 = µf (p2, p1),

for any p1, p2 ∈ Pk such that p2 E p1 and where µf is the Möbius function for E and is
given in the statement of Theorem 2.5 (see Example 2.9 in [3]).

Similar arguments allow us to compute the inverse of Cb and to obtain that:

(C−1
b )p∧p′,p′ = δp′⊣p∧p′ µf (p ∧ p′, p′).

This allows us to obtain the desired formula for G−1
b .

Theorem 2.6. — The Möbius function for (P(X),≤b), denoted by µ≤b
, is given by the

fact that for any p1 and p2 in P(X):

µ≤b
(p1, p2) = δp1⊣bp1∧p2 δp1∧p2=bp2 µf (p1 ∧ p2, p1) µf (p1 ∧ p2, p2).

Let us remark that, as a by-product of the proof of Theorem 2.5, we computed the
matrices C−1

b and S−1
b , thus we know the Möbius functions for ⊣b, =b and ≤b.

3. The set Pk and the Kreweras complement

3.1. Basic facts. —
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3.1.1. Definitions. — Let k be an integer, let us consider 2k elements which we denote
by: 1, . . . , k and 1′, . . . , k′.

Definition 3.1. — The set of partitions Pk is the set P({1, ..., k, 1′ , ..., k′}).

If k = 0, then Pk = {∅} and nc(∅) = 0. Let p be an element of Pk. When we represent
graphically the partition p, we will consider two rows: k vertices are in the top row,
labeled by 1 to k from left to right and k vertices are in the bottom row, labeled from
1′ to k′ from left to right. An example is given in Figure 2.

Figure 2. The partition p = {{1, 1′}, {2′}, {2, 3′, 5′}, {3, 4, 4′}, {5}}.

There exists a special partition, called the identity, in Pk given by:

idk = {{i, i′}, i = 1...k}.

The diagram of id5 is drawn in Figure 3.

Figure 3. The partition id5.

From now on, we will always suppose that the base partition for the orders is idk.
Besides, we will omit the index which was used to specify the chosen base partition.
Thus, using Section 2, we have three new orders on Pk, ≤, ⊣ and =, the notions of
admissible splits and admissible gluings, three matrices of order G, C and S, and we
know the Möbius function for each order.

3.1.2. Irreducible partitions. — We define the cycles of p as the blocks of p ∨ idk. A
partition p is irreducible if nc(p ∨ idk) = 1. If it is not the case, p is composed. In
particular, since nc(∅∨ id0) = 0, the empty partition is composed. We will need a notion
of weak irreducibility later: this is based on the notions of extraction.

Let J be a subset of {1, . . . , k}∪{1′, . . . , k′}. Let us denote by Js the symmetrization
of J :

Js = J ∪ {j ∈ {1′, . . . , k′},∃i ∈ J ∩ {1, . . . , k}, j = i′} ∪ {i ∈ {1, . . . , k}, i′ ∈ J}.

In order to get the extraction of p to J , denoted pJ , let us take the complete graph which
represents p, let us erase all the vertices which are not in Js and all the edges which are
not between two vertices in Js and at last let us label the remaining vertices from left
to right. This is the graph of pJ .
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Definition 3.2. — The support of p is:

S(p) = {1, . . . , k} \ {i ∈ {1, . . . , k}, {i, i′} ∈ p}.

The partition p is weakly-irreducible if pS(p) is either irreducible or equal to the empty
partition.

In particular, the permutation idk is weakly-irreducible. Let us define a notion of
exclusive-irreducibility. For any integer k, 0k is the partition {1, ..., k, 1′ , ..., k′}.

Definition 3.3. — A partition p is exclusive-irreducible if there exists a cycle c0 of p
such that any other cycle of p is equal to a partition of the form 0l. If the cycle c0 is
unique, it is called the exclusive-support of p and it is denoted by Suppc(p).

3.2. Special subsets of Pk. — Since we have chosen a special set X = {1, ..., k} ∪
{1′, ..., k′} and a special base partition, idk, in order to define the order on Pk, we can
state further results on ≤ and Sp(p).

3.2.1. Definitions. —

Definition 3.4. — There exist some special subsets of Pk:

– Dk, the set of partitions p ∈ Pk which are coarser than idk,
– Bk, the set of Brauer partitions: these are the partitions p ∈ Pk such that for any

block s of p, #s = 2.
– Sk, the set of permutations: these are the partitions p ∈ Pk such that for any block

s of p, #(s ∩ {1, ..., k}) = # (s ∩ {1′, ..., k′}) = 1. For any permutation σ, seen as
a bijection from {1, ..., k} to itself, we can associate the partition σ ∈ Sk:

σ =
{

{i, σ(i)′} | i ∈ {1, ..., k}
}

.

Remark 3.1. — In this section, we focus on these special subsets, yet, in [4], we will
use also the two sets:

– Hk, the set of partitions p such that for any block s of p, #s ∈ 2N,
– Bsk, the set of partitions p such that for any block s of p, #s ≤ 2.

In Bk and Sk some elements are important: the transpositions and the Weyl contrac-
tions. Let i and j be two distinct integers in {1, ..., k}.

Definition 3.5. — The transposition (i, j) in Sk is:

(i, j) = {{i′, j}, {i, j′}} ∪ {{l, l′}, l /∈ {i, j}}.

The Weyl contraction [i, j] in Bk is:

[i, j] = {{i, j}, {i′ , j′}} ∪ {{l, l′}, l /∈ {i, j}}.

Figure 4. The transposition (1, 2) and the Weyl contraction [1, 2].
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Let (1, . . . , k) be the k-cycle in Sk which sends i on i+1 for any i ∈ {1, ..., k− 1} and
which sends k on 1. It is natural to consider the restriction of the geodesic order ≤ to the
two sets [idk, (1, ..., k)]∩Sk and Dk: these can be identified as some well known ordered
sets, repectively the non crossing partitions NCk and the partitions Pk of k elements.

Using Theorem 2.1, we see that the restriction of the distance d on Sk gives the usual
Cayley distance on Sk (Lemma 6.26 of [9]): the order is thus the usual geodesic order.
The reader can understand why we used the name of Cayley graph in Definition 2.1: if
we forget about the partitions not in Sk and replace the paths of length two which join
two elements of Sk by edges, we get the Cayley graph of Sk. P. Biane ([1], [2]) showed
that non-crossing partitions can be described using the geodesic condition in the Cayley
graph of Sk: they are the elements in the geodesics between the identity and the k-cycle
(1, ..., k). We recall that the order E was defined at the beginning of Section 2.

Theorem 3.1. — The ordered set ([idk, (1, ..., k)] ∩Sk,≤) is isomorphic to (NCk,E).

Let us consider the restriction of ≤ to Dk.

Theorem 3.2. — The ordered set (Dk,≤) is isomorphic to (Pk,E).

Proof. — Let p be a partition in Dk. Let us consider φ(p), the partition in Pk which is
obtained by considering the restriction of p to {1, ..., k}: if p1, ..., pr are the blocks of p,

φ(p) = {pi ∩ {1, ..., k}|i ∈ {1, ..., r}}.

It is straightforward to see that the application φ : Dk → Pk is a bijection. Let p and p′

two partitions in Dk. Let us prove that p
′ ≤ p if and only if φ(p′) E φ(p). Using Theorem

2.3, the condition p′ ≤ p is equivalent to the fact that p′ ∨ p ∈ Gl(p) and p′ ∈ Sp(p ∨ p′).
But for any p and p′ in Dk, Gl(p) = {p} and p′ is always in Sp(p ∨ p′). Thus, p′ ≤ p is
equivalent to p′∨p = p which is equivalent to p′ E p. It is easy to see that this condition
is equivalent to φ(p′) E φ(p).

Thus, both partitions and non-crossing partitions of k elements can be seen as subset
of an unique ordered set (Pk,≤).

3.2.2. No Brauer element is smaller than a permutation. — In the following lemma,
we show that the geodesics in the Cayley graph of Pk between two permutations either
stay in the set of permutations or intersect Pk \ Bk.

Lemma 3.1. — Let σ ∈ Sk, then [idk, σ] ∩ Bk = [idk, σ] ∩Sk.

Proof. — We do a proof by contradiction. Let S ⊂ Sk be the set of permutations such
that [idk, σ] ∩ Bk 6= [idk, σ] ∩ Sk. Let σ ∈ S be a permutation such that d(idk, σ) =
min
σ′∈S

d(idk, σ
′). Let us consider b an element of Bk \ Sk such that b ∈ [idk, σ] ∩ Bk.

There exists a geodesic in Bk which goes through b and goes from idk to σ. Let b′ ∈ Bk

be the unique element on this geodesic such that d(idk, b
′) = 1. Let us remark that

b ∈ [b′, σ] ∩ Bk: this implies that b′ can not be a permutation. Indeed, if b′ was a
permutation, then [b′, σ] ∩ Bk 6= [b′, σ] ∩ Sk and thus, [idk, b

′−1σ] ∩ Bk 6= [idk, b
′−1σ] ∩

Sk. Yet d(idk, b
′−1σ) = d(b′, σ) = d(idk, σ) − 1. This would contradict the fact that

d(idk, σ) = minσ′∈S d(idk, σ
′). Thus b′ must be an element of Bk\Sk. Since d(idk, b

′) = 1,
there exist i and j in {1, . . . , k} such that b′ is equal to the Weyl contraction [i, j] in Bk.
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Thus there exist i and j in {1, . . . , k} such that [i, j] ∈ [idk, σ]. Using Theorem 2.3, this
means that [i, j] ∨ σ ∈ Gl(σ): i and j must be in the same cycle of σ. We can suppose
that σ is a cycle of size k. It is not difficult to see graphically that [i, j]∨σ = 0k where we
recall that 0k = {1, ..., k, 1′ , ..., k′}. By Theorem 2.3, [i, j] ∈ Sp(0k): this is not possible
since nc(0k)− nc(0k ∨ idk) = 0 and nc([i, j]) − nc([i, j] ∨ idk) = 1.

Remark 3.2. — The same result holds if one replaces Bk by Bsk.

3.2.3. Admissible splittings. — We will consider the interaction between Brauer ele-
ments and the notion of admissible splitting.

Lemma 3.2. — Let p ∈ Pk, the set Sp(p) ∩ Bk is either empty or has exactly one
element. In particular, for any p ∈ Bk, Sp(p) = {p}.

In order to prove this lemma, an important remark is to see that no partition p ∈ Bk

has a pivotal block. Indeed, let us suppose that a partition p ∈ Bk has a pivotal block
that we will denote by c. We can always suppose that p is irreducible. Since we can
shuffle the columns of p and take the transpose of p, we can always suppose that c is of
the form {i, (i + 1)′} or {i, i + 1}. We can also suppose that when one cuts the block
c, the new partition we get has the form p1 ⊗ p2 where the notion of tensor product is
defined in the next section and where p1 ∈ Pi. The partition p1 must be composed of
blocks of size two except one block which is equal to {i}. This is not possible since p1
must be a partition of 2i elements.

Proof. — Let us consider a partition p ∈ Pk and let b ∈ Bk such that b ∈ Sp(p). We can
suppose that p is irreducible. Let us denote by C(b) the set of cycles of b. By reversing
the orientation of the paths of admissible splittings from p to b, we get a path of gluings
which goes from b to p and we see that there exists:

1. a covering tree of the graph (C(b),C(b)×C(b)) which set of edges is denoted by E,
2. for any edge (c, c′) ∈ E, a couple (ic, ic′) such that ic ∈ c and ic′ ∈ c′,

such that p = b∨ ({{ic, ic′}|(c, c
′) ∈ E}∪{{i}|i /∈ ∪(c,c′)∈E{ic, ic′}}). Using this equality,

we see that the only admissible splittings that we can do is to cut the gluings between
blocks of b: the only other possibility would be to cut a block of b but b does not have
pivotal block, this splitting is not admissible. Thus, Sp(p) = {b}.

This last lemma leads us to the following definition.

Definition 3.6. — For any positive integer k, we define:

Sk = {p ∈ Pk | #(Sp(p) ∩Sk) = 1},

Bk = {p ∈ Pk | #(Sp(p) ∩ Bk) = 1}.

For any p ∈ Bk, we denote by Mb(p) the unique element in Sp(p) ∩ Bk.

The Figure 5 gives an example of partition p in Sk.
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Figure 5. A partition p such that Mb(p) = (1, 2, 3)(4, 5)(6, 7, 8).

3.3. More structures on Pk. — Using the fact that {1, ..., k}∪{1′ , ..., k′} is a disjoint
union of two sets of equal cardinal, one can define operations that one could not on the
general set P(X). The reference article for this section and the partition algebra is the
article [7] of T.Halverson and A.Ram.

Let k and l be two non negative integers, and let p ∈ Pk and p′ ∈ Pl. Let us give
some notions that one can define using a graphical construction: in each construction,
the choice of the diagrams which represent the partitions does not matter.

Tensor product: Let us consider two diagrams: one associated with p, another with
p′. Let p ⊗ p′ be the partition in Pk+l associated with the diagram where one has
put the diagram associated with p on the left of the diagram associated with p′.

Transposition: The transposition of p, denoted by tp, is the partition obtained
by permuting the role of {1, . . . , k} and {1′, . . . , k′}. For example if k = 3, let
p =

{

{1, 1′, 3′}, {2, 3}, {2′}
}

, then tp =
{

{1′, 1, 3}, {2′ , 3′}, {2}
}

. For every diagram
associated with p, the diagram obtained by flipping it according to a horizontal
axis is a diagram associated with tp.

Multiplication ◦: Let us suppose that k = l. Let us put one diagram representing p′

above one diagram representing p. Let us identify the lower vertices of p′ with the
upper vertices of p. We obtain a graph with vertices on three levels, then erase the
vertices in the middle row, keeping the edges obtained by concatenation of edges
passing through the deleted vertices. Any connected component entirely included
in the middle row is then removed. Let us denote by κ(p, p′) the number of such
connected components. We obtain an other diagram associated with a partition
denoted by p ◦ p′. An example is given in Figure 6.

p

p

1

2

p
1
p
2

o

Figure 6. Partition p1 ◦ p2.

Number of erased loops: κ(p, p′) was defined when we defined the multiplication
p ◦ p′. It will be an important number in order to define other multiplications on
partitions.

We can extend these operations on C[Pk] by linearity or bi-linearity. Before we define
a modification of ◦, let us make some remarks on this product. The sets Bk and Sk are
stable by this concatenation operation. Recall that any permutation σ ∈ Sk can be seen
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as a bijection from {1, . . . , k} to itself. For any permutations σ1 and σ2, the bijection
associated with σ1 ◦ σ2 is the composition of the two bijections associated with σ1 and
σ2. Besides, the sub-algebra C[Sk] is not only stable for the ◦ operation: it also satisfies
the following property which can be easily proved.

Lemma 3.3. — Let p and p′ be in Pk, if p ◦ p
′ ∈ Sk then p and p′ are in Sk.

Besides, for any partition σ ∈ Sk and any p ∈ Pk, κ(σ, p) = κ(p, σ) = 0. Let us
remark that idk is a right and left neutral element for ◦. At last, as a consequence of
Lemma 3.3, since idk ∈ Sk, the only invertible elements of Pk are the permutations.
The inverse of a permutation σ is σ−1 = tσ. We can now recall the definition of the
partition algebra C [Pk(N)]. From now on, N is a positive integer.

Definition 3.7. — The partition algebra C [Pk(N)] is the associative algebra over C

with basis Pk endowed with the multiplication defined by:

∀ p1, p2 ∈ Pk, p1p2 = Nκ(p1,p2)(p1 ◦ p2).

3.4. Partitions and representation. — In this section, we recall a natural action of

the partition algebra on
(

C
N
)⊗k

(for more explanations, [7] of T.Halverson and A.Ram).
This action will be useful in order to translate combinatorial properties into linear alge-
braic properties.

Definition 3.8. — For any p ∈ Pk and any k-uples (i1, . . . , ik) and (i1′ , . . . , ik′) of
elements of {1, . . . , N}, we set:

pi1,...,iki1′ ,...,ik′
=







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′} which
are in the same block of p, one has ir = is,

0, otherwise.

We can now define the action of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

. Let

(e1, . . . , eN ) be the canonical basis of CN .

Definition 3.9. — The action of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

is defined

by the fact that for any p ∈ Pk, for any (i1, . . . , ik) ∈ {1, . . . , N}k:

p.(ei1 ⊗ · · · ⊗ eik) =
∑

(i1′ ,...,ik′)∈{1,...,N}k

pi1,...,iki1′ ,...,ik′
ei1′ ⊗ · · · ⊗ eik′ .

This action defines a representation of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

which we denote by ρN :

ρN : C[Pk(N)] 7→ End
(

(

C
N
)⊗k
)

.

Let us define Ej
i be the matrix which sends ej on ei and any other element of the

canonical basis on 0. Let p be a partition in Pk. We can write the matrix of ρN (p) in
the basis (ei1 ⊗ · · · ⊗ eik)(il)kl=1∈{1,...,N}k :

ρN (p) =
∑

(i1,...,ik,i1′ ,...,ik′)/p
i1,...,ik
i
1′

,...,i
k′
=1

Ei1
i1′

⊗ . . .⊗ Eik
ik′
.(12)
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For example, if p is the transposition (1, 2), then:

ρN ((1, 2)) =

N
∑

a,b=1

Eb
a ⊗ Ea

b .

We think that this presentation allows us to understand, in an easier way, the repre-
sentation ρN . In Figure 7, we illustrate how to find the partition which representation
is given by a sum of the form (12). The partition p1 used in Figure 7 is the partition
drawn in Figure 2.

E
i

i

1

1

E
i

i

3

2

E
i

i

4

3

E
i

i

4

4

E
i

i

51

3

Figure 7.
∑

i1,i2,i3,i4,i5
Ei1

i1
⊗ Ei3

i2
⊗ Ei4

i3
⊗ Ei4

i4
⊗ Ei5

i3
= ρN (p).

Let us remark that the natural action of C[Pk(N)] on
(

C
N
)⊗k

behaves well under the
operation of tensor product:

ρN (p⊗ p′) = ρN (p)⊗ ρN (p′).

Let us suppose that N ≥ 2k. Using Theorem 3.6 in [7], the application ρN is injective.
Actually, if one considers only its restriction to the symmetric algebra or the Brauer
algebra, it is enough to ask for N ≥ k. For N = k − 1 this result does not hold, this is
a consequence of the Mandelstam’s identity which asserts that:

∑

σ∈Sk

ǫ(σ)ρk−1(σ) = 0,

where ǫ(σ) is the signature of σ. In the following, we will often need that ρN is injective,
yet, for a sake of clarity, since we are concerned mainly with asymptotics when N goes
to infinity, we will ommit to specify each time that N must be greater than 2k or k.

3.5. The trace on Pk. — Let N be a positive integer. Depending on the context, we

will consider a partition either as an element of Pk or as an element of End
(

(

C
N
)⊗k
)

via the action defined in Definition 3.9. We remind the reader that (e1, . . . , eN ) is the
canonical base of CN . The family {ei1 ⊗· · ·⊗ eik , (i1, . . . , ik) ∈ {1, . . . , N}k} is a basis of
(

C
N
)⊗k

: let Trk be the trace with respect to this canonical basis. We do not renormalize

it, thus Trk
(

Id
(CN )⊗k

)

= Nk. We can define the trace of a partition.

Definition 3.10. — Let p be a partition in Pk. We define:

TrN (p) = Trk (ρN (p)) .

For any integer N , we extend TrN by linearity to C[Pk(N)].

When N is explicit, we will only denote TrN by Tr. The trace allows us to go from
combinatorics arguments to linear algebra arguments since we have the following lemma.
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Lemma 3.4. — Let p be a partition in Pk:

TrN (p) = Nnc(p∨idk).(13)

A generalisation of Equation (13) is that for any partitions p and p′, seen as elements
of C[Pk(N)],

TrN (p tp′) = Nnc(p∨p′).(14)

This equation will be used quite intensively. It is a consequence of Equation (13) and
the combinatorial equality:

nc((p ◦ tp′) ∨ idk) + κ(p, tp′) = nc(p ∨ p′),(15)

which can be understood by flipping the diagram of tp over the one of p′: the flip
transposes tp thus we get the two diagrams of p and p′ one over the other. By definition,
the diagram constructed by putting a diagram representing p′ over one representing p is
associated with p∨ p′. But any block of this diagram either comes from a cycle of p ◦ tp′

or from a loop that we erased while doing the product p ◦ tp′.

3.6. The exclusive basis of C[Pk]. — The basis used to define the partition algebra
C[Pk(N)] is quite natural, yet, it is not always very easy to work with. Indeed, if we

look at the representation ρPk

N of a partition, we see that the condition we used to define
the delta function is not exclusive. It means that we did not use the following exclusive
delta function:

(pi1,...,iki1′ ,...,ik′
)ex =







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′},
ir = is if and only if r and s are in the same block of p,

0, otherwise.

By changing, in Definition 3.9, the delta function defined in Definition 3.8 by this new
exclusive delta function, we define a new function:

ρ̃N : C[Pk(N)] → End
(

(

C
N
)⊗k
)

.

Does it exist, for any partition p ∈ Pk an element pc ∈ C[Pk] such that for any integer

N , ρPk

N (pc) = ρ̃Pk

N (p) ? The answer is given by the following definition, as explained by
Equation (2.3) of [7].

Definition 3.11. — The exclusive partition basis, denoted by (pc)p∈Pk
, is the unique

family of elements in C[Pk] defined by the relation:

p =
∑

pEp′

p′c.

The notion of being coarser defines a partial order on Pk: the relation can be inverted.
The family (pc)p∈Pk

is well defined and it is a basis of the partition algebra C[Pk]. It
satisfies that for any partition p ∈ Pk,

ρN (pc) = ρ̃N (p).
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3.7. Geodesics and tensor product. — The following property, known for Sk and
Bk, is still true for Pk: a geodesic between idk and p1 ⊗ p2 must be the tensor product
of a geodesic between idk and p1 and a geodesic between idk and p2.

Proposition 3.1. — Let k and l be two positive integers. Let p1 ∈ Pk and p2 ∈ Pl.
For any p′ ∈ Pk+l such that p′ ≤ p1 ⊗ p2, there exist p′1 ≤ p1 and p′2 ≤ p2 such that
p′ = p′1 ⊗ p′2.

Proof. — Let us suppose that p′ ≤ p1 ⊗ p2. Using Theorem 2.3, p′ ∨ (p1 ⊗ p2) is an
admissible gluing of p1 ⊗ p2. This proves that there exist p′1 ∈ Pk and p′2 ∈ Pl such that
p′ = p′1 ⊗ p′2. Since:

df(p′1 ⊗ p′2, p1 ⊗ p2) = df(p′1, p1) + df(p′2, p2),

we get that p′1 ≤ p1 and p′2 ≤ p2.

We have seen the consequences that p′ ≤ p1 ⊗ p2. What are the consequences that
p1 ⊗ p2 ≤ p′ ? We will answer this question only when p1 ⊗ p2 is finer than p′. This case
is important in the theory of random matrices which are invariant in law by conjugation
by the symmetric group ([4], [5]). In order to answer, we need to introducte the notions
of left- and right-parts of a partition p. Let k1 and k2 be two positive integers and recall
the notion of extraction that we defined before Definition 3.2.

Definition 3.12. — Let p ∈ Pk1+k2, we denote by plk1 the extraction of p to {1, ..., k1}

and prk1 the extraction of p to {k1 + 1, ..., k1 + k2}. The left-part of p, namely plk1, is in
Pk1 and the right-part of p, namely prk2, is in Pk2.

Proposition 3.2. — Let k1 and k2 be two positive integers and let k = k1 + k2. Let p
be an element of Pk. Let p1 and p2 be respectively in Pk1 and Pk2 such that p1 ⊗ p2 is
finer than p. Then:

df(p1 ⊗ p2, p) = df(p1, p
l
k1) + df(p2, p

r
k1) + df(plk1 ⊗ prk1 , p).(16)

In particular, we have equivalence between:

1. p1 ⊗ p2 = p,
2. p1 = plk1, p2 = prk1 and plk1 ⊗ prk1 = p.

Proof. — The Equation (16) can be proved by a simple calculation, using the fact that
p1 ⊗ p2 is finer than p and the fact that for any partition u and v, respectively in Pk1

and Pk2 ,

nc(u⊗ v) = nc(u) + nc(v),

nc((u⊗ v) ∨ idk) = nc(u ∨ idk1) + nc(v ∨ idk2).

The equivalences are consequences of Equation (16) and Lemma 2.1.
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3.8. The Kreweras complement for Pk. — Let us consider σ and σ′ two permu-
tations in Sk. Since d is a distance:

d(idk, σ) ≤ d(idk, σ
′) + d(σ′, σ).

Any permutation has an inverse and the restriction of d to Sk is invariant by left or
right multiplication by a permutation. The last inequality is then equivalent to:

d(idk, σ) ≤ d(idk, σ
′) + d(idk, σ

′−1σ).(17)

Thus σ′ ≤ σ if and only if there exists σ̃ such that σ = σ′σ̃ and d(idk, σ) = d(idk, σ
′) +

d(idk, σ̃). We recall that σ̃ is then unique and it is called the Kreweras complement of σ′

in σ, denoted in this article Kσ(σ
′) ([8], [13]). In general, any partition does not have

any inverse. It is natural to wonder if an inequality of the form (17) holds and if so, it
is natural to wonder if we can use it to define a Kreweras complement. The answer to
the first question is given by the following theorem.

3.8.1. A new inequality. — Let p and p′ be two partitions in Pk,

Theorem 3.3. — We have

d(idk, p ◦ p
′) ≤ d(idk, p) + d(idk, p

′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).(18)

As we did for the triangular inequality, we define a new defect.

Definition 3.13. — The ≺-defect η(p, p′) is:

η(p, p′) = d(idk, p) + d(idk, p
′)− d(idk, p ◦ p

′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Using a simple calculation, we can give an other form to the ≺-defect.

Lemma 3.5. — For any p and p′ in Pk, η(p, p
′) is equal to:

nc(p)− nc(p ∨ idk) + nc(p′)− nc(p′ ∨ idk)− nc(p ◦ p′) + nc(p ◦ p′ ∨ idk)− κ(p, p′).(19)

For now, we do not know if η(p, p′) ≥ 0 but we can express η(p, p′) using the defect
for ≤.

Theorem 3.4. — Let p0, p1 and p2 be three partitions in Pk, the following quantities
are equal:

1. df(p1 ◦ p2, p0) + η(p1, p2),
2. df(p1, p0) + df(p2,

tp1 ◦ p0),
3. df(p1, p0 ◦

tp2) + df(p2, p0),
4. df(p1 ⊗ p2, (p0 ⊗ idk)τ),

where τ is the permutation in S2k equal to (1, k + 1)(2, k + 2)...(k, 2k). In particular,
taking p0 = p1 ⊗ p2:

η(p1, p2) = df(p1, p1 ◦ p2) + df(p2,
tp1 ◦ p1 ◦ p2)

= df(p1, p1 ◦ p2 ◦
tp2) + df(p2, p1 ◦ p2)

= df(p1 ⊗ p2, ((p1 ◦ p2)⊗ idk)τ).
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Proof. — The proof is done by doing calculations and using intensively the Equation
(14). From now on, we will take the following convention: the ◦ and ⊗ operations are
done first before any ∨ operation, thus p1 ◦ p2 ∨ p3 ⊗ p4 stands for (p1 ◦ p2) ∨ (p3 ⊗ p4).

Let us expand df(p1 ◦p2, p0)+η(p1, p2). Using Equations (1) and (19), df(p1 ◦p2, p0)+
η(p1, p2) is equal to:

nc(p1)− nc(p1 ∨ idk) + nc(p2)− nc(p2 ∨ idk) + nc(p0 ∨ idk)

− nc(p1 ◦ p2 ∨ p0)− κ(p1, p2).

In a similar way df(p1, p0) + df(p2,
tp1 ◦ p0) is equal to:

nc(p1)− nc(p1 ∨ idk) + nc(p2)− nc(p2 ∨ idk) + nc(p0 ∨ idk)

− nc(p1 ∨ p0)− nc(p2 ∨
tp1 ◦ p0) + nc(tp1 ◦ p0 ∨ idk).

For df(p1, p0 ◦
tp2) + df(p2, p0), we get:

nc(p1)− nc(p1 ∨ idk) + nc(p2)− nc(p2 ∨ idk) + nc(p0 ∨ idk)

− nc(p1 ∨ p0 ◦
tp2) + nc(p0 ◦

tp2 ∨ idk)− nc(p2 ∨ p0).

For df(p1 ⊗ p2, (p0 ⊗ idk)τ), we get:

nc(p1 ⊗ p2)− nc(p1 ⊗ p2 ∨ id2k)− nc(p1 ⊗ p2 ∨ (p0 ⊗ idk)τ) + nc((p0 ⊗ idk)τ ∨ id2k),

but nc(p1 ⊗ p2) = nc(p1) + nc(p2), nc(p1 ⊗ p2 ∨ id2k) = nc(p1 ∨ idk) + nc(p2 ∨ idk) and
nc((p0 ⊗ idk)τ ∨ id2k) = nc(p0 ∨ idk). Thus, df(p1 ⊗ p2, (p0 ⊗ idk)τ), is equal to:

nc(p1)− nc(p1 ∨ idk) + nc(p2)− nc(p2 ∨ idk) + nc(p0 ∨ idk)

− nc(p1 ⊗ p2 ∨ (p0 ⊗ idk)τ).

The first lines are all equal, thus it remains to prove that the following numbers are
equal:

1. −nc(p1 ◦ p2 ∨ p0)− κ(p1, p2),
2. −nc(p1 ∨ p0)− nc(p2 ∨

tp1 ◦ p0) + nc(tp1 ◦ p0 ∨ idk),
3. −nc(p1 ∨ p0 ◦

tp2) + nc(p0 ◦
tp2 ∨ idk)− nc(p2 ∨ p0),

4. −nc(p1 ⊗ p2 ∨ (p0 ⊗ idk)τ).

Let us prove that the first one and the second one are equal. The idea is to use
Equation (14) and the fact that we need to prove:

Nnc(p1∨p0)+nc(p2∨tp1◦p0) = Nnc(p1◦p2∨p0)+κ(p1,p2)+nc(tp1◦p0∨idk).

We have:

Nnc(p1∨p0)+nc(p2∨tp1◦p0) = Tr(p1
tp0)Tr(p2 (tp0 ◦ p1))

= Tr(p1
tp0)Tr((

tp0 ◦ p1) ◦ p2)N
κ(p1,p2)

= Tr(tp0 p1)Tr(
tp0 ◦ (p1 ◦ p2))N

κ(p1,p2)

= Tr(tp0 ◦ p1)N
κ(tp0,p1)Tr(tp0 ◦ (p1 ◦ p2))N

κ(p1,p2)

= Tr(tp0 ◦ p1)Tr(
tp0(p1 ◦ p2))N

κ(p1,p2)

= Nnc(tp1◦p0∨idk)Nnc(p1◦p2∨p0)Nκ(p1,p2),
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which allows us to conclude. In order to prove that the third element is equal to the
first one, the proof is similar. Let us show that the first and the forth are equal:

Nnc(p1⊗p2∨(p0⊗idk)τ) = Tr((p1 ⊗ p2)
t((p0 ⊗ idk)τ))

= Tr(p1p2
tp0)

= Nκ(p1,p2)Tr((p1 ◦ p2)
tp0)

= Nκ(p1,p2)+nc(p1◦p2∨p0).

This concludes the proof.

This theorem allows us to prove Inequality (18): since the defect df is always non
negative, η which is a sum of two defects for ≤ is also non negative. In the first place,
Inequality (18) was obtained as a consequence of the triangle inequality for d and an
inequality between d(p, p ◦ p′) and d(idk, p

′) given by the following proposition. This
inequality generalize the invariance of the restiction of d to Sk by left or right multipli-
cation by a permutation.

Proposition 3.3. — Let p and p′ in Pk, we have the following inequality:

d(p, p ◦ p′) ≤ d(idk, p
′)−

k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Proof. — It is a consequence of the triangle inequality:

d
(

p⊗ idk,
(

(p ◦ p′)⊗ idk
)

τ
)

≤ d(p ⊗ idk, p⊗ p′) + d
(

p⊗ p′,
(

(p ◦ p′)⊗ idk
)

τ
)

.(20)

and computations similar to what we did in order to prove Theorem 3.4.

3.8.2. The Kreweras complement. —

Definition 3.14. — Let p and p′ be two elements of Pk. We will say that p′ is an
admissible prefixe of p if and only if:

1. there exists p′′ such that p = p′ ◦ p′′,
2. we have the equality:

d(idk, p) = d(idk, p
′) + d(idk, p

′′)−
k + nc(p)− nc(p′)− nc(p′′)

2
− κ(p′, p′′).

It p′ is an admissible prefixe of p, we write p′ ≺ p and the set of p′′ which satisfy 1. and
2. is called the Kreweras complement of p′ in p. We denote it Kp(p

′).

If p′ ≺ p does not hold, the Kreweras complement of p′ in p is set to be equal to ∅.
Now, let us suppose that p′ ≺ p. The set Kp(p

′) is not empty but in general it is not
reduced to a unique partition. For example, one can show that if p′ = {{1, 2, 1′ , 2′}} and
p = {{1′, 2′}, {1}, {2}} then:

Kp(p
′) =

{{

{1}, {2}, {1′}, {2′}
}

,
{

{1}, {2}, {1′ , 2′}
}}

.

Let us remark that for any σ ∈ Sk, {σ
′ ∈ Sk, σ

′ ≺ σ} = [idk, σ] ∩Sk. This is due to
the fact that κ(σ, σ′) = 0 for any couple of permutations, the fact that nc is constant on
the set of permutations and the fact that any permutation is invertible. Using similar
arguments and Lemma 3.3, one can have the better result.
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Lemma 3.6. — Let σ ∈ Sk:

{p ∈ Pk, p ≺ σ} = [idk, σ] ∩Sk.

Besides, for any p ∈ Pk, {σ ∈ Sk, σ ≺ p} = [idk, p] ∩Sk.

We have seen, in Theorem 3.1, that the poset of non-crossing partitions over {1, . . . , k}
is isomorphic to ([idk, (1, . . . , k)]∩Sk,≤). From now on, we will consider any non-crossing
partition over {1, . . . , k} as an element of [idk, (1, .., k)]∩Sk. Our notion generalizes the
usual notion of Kreweras complement since for any σ ∈ [id, (1, ..., k)] ∩ Sk, K(1,...,k)(σ)
is the Kreweras complement of the non-crossing partition corresponding to σ. In the
general case, as a direct consequence of the definitions and Theorem 3.4, we get the
following theorem.

Theorem 3.5. — Let p0, p1 and p2 be three partitions in Pk. The following assertions
are equivalent:

1. p1 ◦ p2 ≤ p0 and p2 ∈ Kp1◦p2(p1),
2. p1 ≤ p0 and p2 ≤

tp1 ◦ p0,
3. p1 ≤ p0 ◦

tp2 and p2 ≤ p0,
4. p1 ⊗ p2 ≤ (p0 ⊗ idk)τ .

Thus, by specifying p0 = p1 ◦ p2, we have the equivalences:

1. p2 ∈ Kp1◦p2(p1),
2. p1 ≤ p1 ◦ p2 and p2 ≤

tp1 ◦ p1 ◦ p2,
3. p1 ≤ p1 ◦ p2 ◦

tp2 and p2 ≤ p1 ◦ p2.
4. p1 ⊗ p2 ≤ (p1 ◦ p2 ⊗ idk)τ .

3.8.3. The order ≺. — In the previous section, we have defined a relation ≺ that we
are going to study a little in this section. As explained in the beginning of Section 3.8,
≺ and ≤ are equivalent when we restrict them to Sk. In general, we have the following
result.

Proposition 3.4. — For any partitions p and p′ in Pk, p
′ ≺ p implies that p′ ≤ p.

Proof. — Indeed, if p′ ≺ p, there exists p′′ such that p = p′ ◦p′′ and p′′ ∈ Kp′◦p′′(p
′). The

result is then a consequence of Theorem 3.5.

This will allow us to prove the following result.

Theorem 3.6. — The relation ≺ defines a new order on Pk.

Proof. — The fact that ≺ is reflexive is due to the fact that for any p, p can be decom-
posed as p ◦ idk: using the fact that κ(p, idk) = 0, we see that p′ is a admissible prefixe
of p. The antisymmetry is a consequence of Proposition 3.4 and the antisymmetry of
≤. It remains to prove the transitivity which is proved in the upcoming Proposition 5.3.
At last, we can see that ≺ is not equal to ≤ since it is easy to find some p and p′ in Pk

such that p′ ≤ p but p can not be decomposed as p ◦ p′′.

Let us state a consequence of Proposition 3.4: the factorization property for ≺.

Lemma 3.7. — Let k and l be two positive integers. Let p1 ∈ Pk and p2 ∈ Pl. For any
p′ ∈ Pk+l such that p′ ≺ p1 ⊗ p2, there exist p′1 ≺ p1 and p′2 ≺ p2 such that p′ = p′1 ⊗ p′2.
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Proof. — It is a consequence of Proposition 3.4 and the factorization property for the
geodesics stated in Proposition 3.1.

4. Structures on (
⊕∞

k=0C[Pk])
∗

Using the definitions of ≤, ≺ and the Kreweras complement, we can define some new
structure on (

⊕∞
k C[Pk])

∗ which have a similar flavor than the structures constructed
in [11] for linear forms on permutations. Let us remark that we have the canonical
isomorphisms:

(

∞
⊕

k=0

C[Pk]

)∗

≃
∞
∏

k=0

C[Pk] ≃
∞
⋃

k=0

C
Pk .

Thus, the structures we are going to define on (
⊕∞

k=0C[Pk])
∗ can also be seen on the

two other spaces.

Remark 4.1. — It is important to notice, when reading this section, that most of
the definitions or notions and results (in fact all except the one about characters, in-
finitesimal characters and ⊞-convolutions) can be restricted to the space of linear forms
(C[Pk])

∗: this will be useful in Section 5.

4.1. Some transformations. —

Definition 4.1. — The M-transform is the application M : (
⊕∞

k=0C[Pk])
∗ →

(
⊕∞

k=0C[Pk])
∗ such that for any φ ∈ (

⊕∞
k=0C[Pk])

∗, any k and any p ∈ Pk:

(M(φ))(p) =
∑

p′≤p

φ(p′).(21)

Let us consider a positive integer k. The application M can be restricted to the space
(C[Pk])

∗ seen as a subspace of (
⊕∞

k=0C[Pk])
∗. But the space (C[Pk])

∗ is isomorphic

to C[Pk] or C
Pk . The M-transform induces an application on C

Pk which is only the
multiplication by the matrix G of the geodesic order ≤. Since G = CS (Theorem 2.2), it
is natural to consider the M→c-transform (resp. the Mc→-transform) which is defined
in the same way as M but using the order = (resp. ⊣) in Equation (21). The equation
G = CS then implies the following equality:

M = Mc→M→c.(22)

Since G is invertible, the M-transform is a bijection: we can consider its inverse.

Definition 4.2. — The R-transform is the inverse of the M-transform: R = M−1.

4.2. Convolutions. — In this section, we will only consider the subspace of linear

forms which are invariant by the action of the permutations, namely
(

(
⊕∞

k=0C[Pk])
∗)S,

which is equal to:
{

φ ∈

(

∞
⊕

k=0

C[Pk]

)∗

| ∀k ∈ N,∀σ ∈ Sk,∀p ∈ Pk, φ(σ ◦ p ◦ σ−1) = φ(p)

}

,
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or
(

∞
⊕

k=0

C[Pk/Sk]

)∗

,

where Pk/Sk = {{σ ◦p◦σ−1 , σ ∈ Sk}, p ∈ Pk}. We do so since it allows us to clarify the
explanations, but the same results hold for the general space (

⊕∞
k=0C[Pk])

∗ by slightly
changing the definitions. From now on, p is a partition and p or [p] are the orbit of p in
Pk/Sk.

Let us remark that
⊕∞

k=0C[Pk/Sk] can be endowed with the multiplication given by
([p], [p′]) → [p ⊗ p′]. This multiplication, that we denote also by ⊗, does not depend
of the choice or the representant of the orbits and its neutral element is given by {∅}.
Besides, the M, R, M→c and Mc→ are invariant by the action of the symmetric group:
they are well defined on (

⊕∞
k=0C[Pk/Sk])

∗.

4.2.1. Additive structure. —

Definition 4.3. — Let p be in Pk/Sk. We can suppose that p has the form p1⊗ ...⊗pr
with pi an irreducible partition for any i ∈ {1, ..., r}. We define:

∆⊞(p) =
∑

I⊂{1,...,r}

[(⊗i∈Ipi)]⊗ [⊗i/∈Ipi] ∈

(

∞
⊕

k=0

C[Pk/Sk]

)

⊗

(

∞
⊕

k=0

C[Pk/Sk]

)

.

We extend by linearity ∆⊞ to
⊕∞

k=0C[Pk/Sk]:

∆⊞ :

∞
⊕

k=0

C[Pk/Sk] →

(

∞
⊕

k=0

C[Pk/Sk]

)

⊗

(

∞
⊕

k=0

C[Pk/Sk]

)

.

Proposition 4.1. — Let ǫ⊞ be the linear form on
⊕∞

k=0C[Pk/Sk] wich sends p on
δp={∅}: (

⊕∞
k=0C[Pk/Sk],⊗, ∅,∆⊞, ǫ⊞) is a graded connected Hopf algebra.

Proof. — It is easy to see that (
⊕∞

k=0C[Pk/Sk],⊗, {∅},∆⊞, ǫ⊞) is an associative and
co-associative bi-algebra. Besides, if p is a partition in Pk, we define dg(p) = k:
⊕∞

k=0C[Pk/Sk] becomes a graded bi-algebra which is connected. Thus it is a graded
connected Hopf algebra.

Definition 4.4. — The convolution of φ1 and φ2 in (
⊕∞

k=0C[Pk/Sk])
∗ is given by:

φ1 ⊞ φ2 = (φ1 ⊗ φ2)∆⊞.

Let us remark that ǫ⊞ is the neutral element for ⊞.

4.2.2. Multiplicative structure. —

Definition 4.5. — Let p be in Pk/Sk. We define:

∆⊠(p) =
∑

p1◦p2=p,p2∈Kp1(p1◦p2)

[p1]⊗ [p2] ∈

(

∞
⊕

k=0

C[Pk/Sk]

)

⊗

(

∞
⊕

k=0

C[Pk/Sk]

)

.
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We extend by linearity ∆⊠ to
⊕∞

k=0C[Pk/Sk]:

∆⊠ : C[Pk/Sk] →

(

∞
⊕

k=0

C[Pk/Sk]

)

⊗

(

∞
⊕

k=0

C[Pk/Sk]

)

.

In the following proposition, we use the notation that id0 = ∅

Proposition 4.2. — Let ǫ⊠ be the linear form on
⊕∞

k=0C[Pk/Sk] wich sends, for any
k ∈ N, idk on 1, and any other partition p on 0: (

⊕∞
k=0C[Pk/Sk],⊗, ∅,∆⊠, ǫ⊠) is an

(associative, co-associative) bi-algebra.

Proof. — The two main problems are to prove the fact that ∆⊠ is a morphism and that
it is co-associative. The other facts can be verified easily.

Let p1 and p2 be two partitions. We need to show that:

∆⊠([p1]⊗ [p2]) = ∆⊠([p1])⊗∆⊠([p2]).

This is a direct consequence of Lemma 3.7.
For the co-associativity, we need to prove that:

(∆⊠ ⊗ id)∆⊠ = (id ⊗∆⊠)∆⊠.(23)

Using the definitions, if p ∈ Pk:

(∆⊠ ⊗ id)∆⊠([p]) =
∑

p1,p2,p3∈Pk|p1◦p2◦p3=p,p3∈Kp1◦p2◦p3 (p1◦p2),p2∈Kp1◦p2 (p1)

[p1]⊗ [p2]⊗ [p3].

Using the upcoming Equation (38),

(∆⊠ ⊗ id)∆⊠([p]) =
∑

p1,p2,p3∈Pk|p1◦p2◦p3=p,p2◦p3∈Kp1⊗p2⊗p3(p1),p3∈Kp2◦p3(p2)

[p1]⊗ [p2]⊗ [p3],

hence Equation (23).

It is easy to see that (
⊕∞

k=0C[Pk/Sk],⊗, ∅,∆⊠, ǫ⊠) is not a Hopf algebra: the antipode
does not exist.

Definition 4.6. — The convolution of φ1 and φ2 in (
⊕∞

k=0C[Pk/Sk])
∗ is given by:

φ1 ⊠ φ2 = (φ1 ⊗ φ2)∆⊠.

Let us remark that ǫ⊠ is the neutral element for ⊠. We will need to understand
the action of the M-transform on the ⊠-convolution. This is given by the following
proposition.

Proposition 4.3. — Let φ1 and φ2 in (
⊕∞

k=0C[Pk/Sk])
∗:

M(φ1 ⊠ φ2) = M(φ1)⊠
m
g φ2 = φ1 ⊠

m
d M(φ2),(24)

where ⊠m
g and ⊠m

d are the convolutions associated with ∆⊠m
g

and ∆⊠m
d

given by:

∆⊠m
g
(p) =

∑

p1≤p

[p ◦ tp1]⊗ [p1], ∆⊠m
d
(p) =

∑

p1≤p

[p1]⊗ [tp1 ◦ p].
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Proof. — Actually, it is easier to prove the same equations in the setting of
(
⊕∞

k=0C[Pk])
∗, where ⊠, ⊠m

g and ⊠m
d are defined similarly except that we do not

use the brakets [ ]. The special case of (
⊕∞

k=0C[Pk/Sk])
∗ is then a consequence.

Let k be an integer. For any p ∈ Pk, we denote by p∗ the linear form which gives the
coordinate on p. By bi-linearity, we only need to prove Equation (24) for φ1 = p∗1 and
φ2 = p∗2 where p1 and p2 are two partitions in Pk. In this case, Equation (24) boils down
to the fact that for any p0 ∈ Pk:

δp1◦p2≤p0δp2∈Kp1◦p2(p1)
= δp1≤p0δp2≤ tp1◦p0

and

δp1◦p2≤p0δp2∈Kp1◦p2 (p1)
= δp1≤p0◦ tp2δp2≤p0 .

These Equalities are consequences of Theorem 3.5.

4.3. Characters, infinitesimal characters and moment maps. —

4.3.1. Character and infinitesimal characters. —

Definition 4.7. — A character of
⊕∞

k=0C[Pk/Sk] is a element of (
⊕∞

k=0C[Pk/Sk])
∗

such that:

1. φ(∅) = 1,
2. for any p1 and p2 in Pk/Sk, φ(p1 ⊗ p2) = φ(p1)φ(p2).

The set of characters is denoted by X [P].

Notation 4.1. — In the following, the results hold either for ⊞ or ⊠. This leads us to
use the following notation: by ⊡, we denote either ⊞ or ⊠.

Proposition 4.4. — The set of characters is stable by ⊡.

Proof. — Let φ1 and φ2 be two characters. Let k1 and k2 be two integers, let us consider
two elements p1 and p2, respectively in Pk1 and Pk2 . Let us remark that ⊗ is used for two
different notations: as an inner law for

⊕∞
k=0C[Pk/Sk] and as the tensor product of two

elements of
⊕∞

k=0C[Pk/Sk] seen as an element of (
⊕∞

k=0C[Pk/Sk])⊗(
⊕∞

k=0C[Pk/Sk]).
For sake of clarity, the tensor product in the latter sense will be denoted by

⊗

.
Using the definitions and the fact that ∆⊡ is a morphism for ⊗:

φ1 ⊡ φ2(p1 ⊗ p2) = (φ1

⊗

φ2)∆⊡(p1 ⊗ p2) = (φ1

⊗

φ2) [∆⊡(p1)⊗∆⊡(p2)] .

Let us use the Sweedler notations: ∆⊡(p1) =
∑

p
(1)
1

⊗

p
(2)
1 and ∆⊡(p2) =

∑

p
(1)
2

⊗

p
(2)
2 . Then:
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(φ1

⊗

φ2) [∆⊡(p1)⊗∆⊡(p2)] = (φ1

⊗

φ2)
[

∑

(p
(1)
1 ⊗ p

(1)
2 )

⊗

(p
(2)
1 ⊗ p

(2)
2 )
]

=
∑

φ1(p
(1)
1 ⊗ p

(1)
2 )φ2(p

(2)
1 ⊗ p

(2)
2 )

=
∑

φ1(p
(1)
1 )φ1(p

(1)
2 )φ2(p

(2)
1 )φ2(p

(2)
2 )

= (
∑

φ1(p
(1)
1 )φ2(p

(2)
1 ))(

∑

φ1(p
(1)
2 )φ2(p

(2)
2 ))

= (φ1 ⊡ φ2(p1))(φ1 ⊡ φ2(p2)),

where, in the third equality, we used the multiplicativity property of φ1 and φ2.

After this proposition, it is natural to study semi-groups of elements in X [P] and to
study the set of generators of these semi-groups.

Definition 4.8. — The set of ⊡-infinitesimal characters is the subset of (
⊕∞

k=0C[Pk/Sk])
∗

such that for any partitions p1 and p2,

φ(p1 ⊗ p2) = φ(p1)ǫ⊡(p2) + ǫ⊡(p1)φ(p2).

The set of ⊡-infinitesimal characters is denoted by X⊡[P]

Using the definitions of ǫ⊠ and ǫ⊞, the set of ⊞-infinitesimal characters is the set
of linear forms φ such that φ(p) = 0 for any composed partition p, and the set of
⊠-infinitesimal characters is the set of linear forms φ such that φ(p) = 0 for any non
weakly-irreducible partition p and φ(idk) = kφ(id1) for any integer k ∈ N. In particular,
since we took the convention that ∅ was composed, any ⊡-infinitesimal character is equal
to 0 on [∅].

In order to study semi-groups of characters and infinitesimal characters, we need a
new order and a notion of height. Recall that d(p) is the unique integer such that p ∈ Pk.

Definition 4.9. — Let us endow ∪∞
k=0Pk/Sk with two orders:

– if ⊡ = ⊞, p ≤⊞ p′ if dg(p) < dg(p′) or p = p′,
– if ⊡ = ⊠, p ≤⊠ p′ if there exist an integer k, p1 and p2 in Pk such that p = [p1],

p′ = [p2] and p1 ≤ p2.

Definition 4.10. — The height of (p1,p2):

– if ⊡ = ⊞, h⊞(p1,p2) = dg(p1) + dg(p2),
– if ⊡ = ⊠, h⊠(p1,p2) = d(iddg(p1),p1) + d(iddg(p2),p2).

We have now gathered all the notions in order to prove the following result.

Theorem 4.1. — Let φ ∈ (
⊕∞

k=0C[Pk/Sk])
∗. There exists, for any t ≥ 0, a unique

element e⊡tφ of (
⊕∞

k=0C[Pk/Sk])
∗ such that:

d

dt |t=t0
e⊡tφ = φ⊡ e⊡t0φ,

and e⊡0φ = ǫ⊡. Besides, the following assertions are equivalent:

1. φ is a ⊡-infinitesimal character,
2. for any t ≥ 0, e⊡tφ ∈ X [P].
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Proof. — Let us consider φ ∈ (
⊕∞

k=0C[Pk/Sk])
∗. The system of differential equations:

d

dt |t=t0
e⊡tφ(p) =

(

φ⊡ e⊡t0φ
)

(p)

is triangular when we consider the order ≤⊡ on ∪k(Pk/Sk): it implies that the system
admits a unique solution. For ⊡ = ⊠, this is a consequence of Theorem 3.5 where we
proved that p2 ∈ Kp(p1) implies that p2 ≤ p.

Let us prove the equivalence between the condition 1 and the condition 2. Let p1 and p2
be two partitions such that h(p1,p2) > 0. Let us suppose that for any couple of partitions
(p′1, p

′
2) such that h⊡(p

′
1,p

′
2) < h⊡(p1,p2), φ(p

′
1⊗p′

2) = ǫ⊡(p
′
1)φ(p

′
2)+φ(p′

1)ǫ⊡(p
′
2) and

for any t ≥ 0, e⊡t0φ(p′
1 ⊗ p′

2) = e⊡t0φ(p′
1)e

⊡t0φ(p′
2).

Let t0 ≥ 0:

d

dt |t=t0
etφ(p1 ⊗ p2) =

∑

φ(p
(1)
1 ⊗ p

(1)
2 )et0φ(p

(2)
1 ⊗ p

(2)
2 )

= φ(e1 ⊗ e2)e
t0φ(p1 ⊗ p2) + φ(p1 ⊗ p2)e

t0φ(e1 ⊗ e2)

+
∑

p
(1)
1 ⊗p

(1)
2 /∈{e1⊗e2,p1⊗p2}

φ(p
(1)
1 ⊗ p

(1)
2 )et0φ(p

(2)
1 ⊗ p

(2)
2 )

where (e1, e2) = ([∅], [∅]) if ⊡ = ⊞ and (e1, e2) = ([iddg(p1)], [iddg(p2)]) if ⊡ = ⊠. We can

apply the hypothese about φ and e⊡t0φ, d
dt |t=t0

etφ(p1 ⊗ p2) is equal to:

φ(e1 ⊗ e2)e
t0φ(p1 ⊗ p2) + φ(p1 ⊗ p2)e

t0φ(e1 ⊗ e2)

+
∑

φ(p
(1)
1 )ǫ⊡(p

(1)
2 )et0φ(p

(2)
1 )et0φ(p

(2)
2 ) +

∑

ǫ⊡(p
(1)
1 )φ(p

(1)
2 )et0φ(p

(2)
1 )et0φ(p

(2)
2 )

− φ(p1)ǫ⊡(p2)e
t0φ(e1)e

t0φ(e2)− φ(e1)ǫ⊡(e2)e
t0φ(p1)e

t0φ(p2)

− ǫ⊡(p1)φ(p2)e
t0φ(e1)e

t0φ(e2)− ǫ⊡(e1)φ(e2)e
t0φ(p1)e

t0φ(p2).

But,
∑

φ(p
(1)
1 )ǫ⊡(p

(1)
2 )et0φ(p

(2)
1 )et0φ(p

(2)
2 ) = (φ⊡ et0φ(p1))(ǫ⊡ ⊡ et0φ(p2))

= et0φ(p2)
d

dt |t=t0
etφ(p1),

Using the fact that φ(e1 ⊗ e2) = φ(e1)ǫ⊡(e2) + ǫ⊡(e1)φ(e2) and et0φ(e1 ⊗ e2) =
et0φ(e1)e

t0φ(e2), we get that d
dt |t=t0

(

etφ(p1 ⊗ p2)− etφ(p1)e
tφ(p2)

)

is equal to:

φ(e1 ⊗ e2)
(

et0φ(p1 ⊗ p2)− et0φ(p1)e
t0φ(p2)

)

+ et0φ(e1 ⊗ e2) (φ(p1 ⊗ p2)− φ(p1)ǫ⊡(p2)− φ(p2)ǫ⊡(p1)) .

It is easy to see that this result allows us to prove, by recurrence on the height of the
couple (p1,p2), the equivalence between conditions 1 and 2.

Remark 4.2. — Let us remark that when ⊡ = ⊞ and if we suppose that φ() = 0 these
results are already known ([10]). But when ⊡ = ⊠, the usual theory can not be applied
since (

⊕∞
k=0C[Pk/Sk],⊗, ∅,∆⊠, ǫ⊠) is not a filtered (connected Hopf) algebra.
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4.3.2. Characters, infinitesimal characters and transformations. — We will study char-
acters and infinitesimal characters using the different transformations that we defined
on (

⊕∞
k=0C[Pk/Sk])

∗.

Proposition 4.5. — The M, R, M→c and Mc→-transforms are bijections from X [P]
to itself.

Proof. — Let us prove that the M-transform is a bijection from X [P] to itself: it will
implies that the R-transform is a bijection, and using the same arguments, we can prove
that the M→c and Mc→-transforms are bijections.

Let φ be an element of (
⊕∞

k=0C[Pk/Sk])
∗, let p1 and p2 be two partitions, respectively

in Pk1 and Pk2 . Let us suppose that for any (p′1, p
′
2) ∈ Pk1 ×Pk2 such that h⊠(p

′
1,p

′
2) <

h⊠(p1,p2), we know that φ(p′
1 ⊗ p′

2) = φ(p′
1)φ(p

′
2). We have the equality:

(M(φ))(p1 ⊗ p2)− (M(φ))(p1)(M(φ))(p2) = φ(p1 ⊗ p2)− φ(p1)φ(p2).(25)

This is a simple consequence of Proposition 3.1, the definition of M and the hypothesis
on φ.

This allows us to prove by recurrence on the height of (p1,p2) that M is a bijection
on the set of characters.

In order to state a similar result for the infinitesimal characters, we need to define the
set of additive characters and the set Xc

⊠[P]. Recall Definition 3.3 and the notation 0k.

Definition 4.11. — An element φ ∈ (
⊕∞

k=0C[Pk/Sk])
∗ is an additive character if for

any partitions p1 and p2:

φ(p1 ⊗ p2) = φ(p1) + φ(p2).

The set of additive characters is denoted by X+[P].
Let ǫc⊠ be the linear form in (

⊕∞
k=0C[Pk/Sk])

∗ which sends, for any k ∈ N, 0k on 1,
and any other partition p on 0. We recall that 0k = {{1, ..., k, 1′ , ..., k′}}. The set Xc

⊠[P]
is the set of linear forms in (

⊕∞
k=0C[Pk/Sk])

∗ such that φ(p1 ⊗ p2) = ǫc⊠(p1)φ(p2) +
φ(p1)ǫ

c
⊠(p2) for any partitions p1 and p2.

Using the definition of ǫc⊠ and Definition 3.3, the set Xc
⊠[P] is the set of linear forms

φ such that φ(p) = 0 for any non exclusive-irreducible partition p.

Theorem 4.2. — The M-transform is a bijection from :

1. X⊞[P] to itself,
2. X⊠[P] to X+[P].

In particular, the R-transform is a bijection from X⊞[P] to itself and from X+[P] to
X⊠[P].

Proof. — The proof uses the same arguments as the proof of Proposition 4.5. We only
explains which equation is used instead of Equation (25).
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1. In order to study the assertion on X⊞[P], it is enough to see that if for any (p′1, p
′
2)

such that h⊠(p
′
1,p

′
2) < h⊠(p1,p2), we know that φ(p′

1 ⊗ p′
2) − ǫ⊞(p

′
1)φ(p

′
2) −

φ(p′
1)ǫ⊞(p

′
2) = 0, then:

(M(φ))(p1 ⊗ p2)− ǫ⊞(p1)(M(φ))(p2)− (M(φ))(p1)ǫ⊞(p2)

= φ(p1 ⊗ p2)− ǫ⊞(p1)φ(p2)− φ(p1)ǫ⊞(p2).

This is a simple consequence of Proposition 3.1, the definition of M and the fact
that

∑

p′≤p ǫ⊞(p
′) = ǫ⊞(p) for any partition p.

2. In order to study the assertion on X⊠[P], it is enough to see that if for any (p′1, p
′
2)

such that h⊠(p
′
1,p

′
2) < h⊠(p1,p2), we know that φ(p′

1 ⊗ p′
2) − ǫ⊠(p

′
1)φ(p

′
2) −

φ(p′
1)ǫ⊠(p

′
2) = 0, then:

M(φ)(p1 ⊗ p2)−M(φ)(p1)−M(φ)(p2)

= φ(p1 ⊗ p2)− ǫ⊠(p1)φ(p2)− φ(p1)ǫ⊠(p2).

This is a simple consequence of Proposition 3.1, the definition of M and the fact
that

∑

p′≤p ǫ⊠(p
′) = 1 for any partition p.

Theorem 4.3. — The M→c-transform is a bijection from:

1. X⊞[P] to itself,
2. X⊠[P] to Xc

⊠[P].

Proof. — The proof uses the same arguments as the proof of Proposition 4.5. Again we
only explain which equation is used instead of Equation (25).

1. In order to study the assertion on X⊞[P], it is enough to see that if for any (p′1, p
′
2)

such that h⊠(p
′
1,p

′
2) < h⊠(p1,p2), we know that φ(p′

1 ⊗ p′
2) − ǫ⊞(p

′
1)φ(p

′
2) −

φ(p′
1)ǫ⊞(p

′
2) = 0, then:

(M→c(φ))(p1 ⊗ p2)− ǫ⊞(p1)(M
→c(φ))(p2)− (M→c(φ))(p1)ǫ⊞(p2)

= φ(p1 ⊗ p2)− ǫ⊞(p1)φ(p2)− φ(p1)ǫ⊞(p2).

This is a simple consequence of Proposition 3.1, the definition of M→c and the fact
that

∑

p′=p ǫ⊞(p
′) = ǫ⊞(p) for any partition p.

2. In order to study the assertion on X⊠[P], it is enough to see that if for any (p′1, p
′
2)

such that h⊠(p
′
1,p

′
2) < h⊠(p1,p2), we know that φ(p′

1 ⊗ p′
2) − ǫ⊠(p

′
1)φ(p

′
2) −

φ(p′
1)ǫ⊠(p

′
2) = 0, then:

(M→c(φ))(p1 ⊗ p2)− ǫc⊠(p1)(M
→c(φ))(p2)− (M→c(φ))(p1)ǫ

c
⊠(p2)

= φ(p1 ⊗ p2)− ǫ⊠(p1)φ(p2)− φ(p1)ǫ⊠(p2).

This is a simple consequence of Proposition 3.1, the definition of M→c and the fact
that

∑

p′=p ǫ⊠(p
′) = ǫc⊠(p) for any partition p.

4.4. Study of (
⊕∞

k=0C[Ak])
∗. —



PARTITIONS AND GEOMETRY 33

4.4.1. Projections. — Recall the definitions in Section 3.2.1. Let us consider A in
{S,B,Bs,H}. Since for any integer k, Ak is a subset of Pk, any element of (

⊕∞
k=0C[Pk])

∗

can be restricted to
⊕∞

k=0C[Ak].

Definition 4.12. — Let φ be an element of (
⊕∞

k=0C[Pk])
∗, its restriction to

⊕∞
k=0C[Ak] is denoted by RA(φ). We can extend canonically an element of (

⊕∞
k=0C[Ak])

∗

by defining for any φ ∈ (
⊕∞

k=0C[Ak])
∗, EA(φ) as the unique element of (

⊕∞
k=0C[Pk])

∗

such that for any p ∈ ∪∞
k=0Pk, (EA(φ)) (p) = δp∈∪∞

k=0Ak
φ(p).

This definition allows us to define a MA and a RA-transforms.

Definition 4.13. — The MA-transform is given by: MA = RA ◦ M ◦ EA. It is a
bijection from (

⊕∞
k=0C[Ak])

∗ to itself, whose inverse is the RA-transform.

In order to be more pedagogical, let us explain the equality MA = RA ◦M ◦ EA: for
any φ in (

⊕∞
k=0C[Ak])

∗, for any k and any b ∈ Ak:

(MA(φ))(b) =
∑

b′∈Ak|b≤b

φ(b′).

Remark 4.3. — The definitions of characters, ⊡-convolutions, ⊡-infinitesimal charac-
ters and the results which concern these notions and the MA, RA-transforms can be
extended to (

⊕∞
k=0C[Ak])

∗.

The application EA ◦ RA is a projection which “erases” the values for p /∈ ∪kAk. Let
us define three new interesting projections.

Definition 4.14. — Let Cκ
A, Cm

A and Cm
A be the three applications on (

⊕∞
k=0C[Pk])

∗

given by:

Cκ
A = EA ◦ RA ◦ RA ◦M,

Cm
A = M◦ Cκ

A ◦ R,

Cmc

A = M→c ◦ Cκ
A ◦ (M→c)−1.

The application Cκ
A is called the cumulant-projection on A, the application Cm

A is called
the moment-projection on A and the application Cmc

A is called the exclusive-projection
on A.

These applications are projections and Im(Cκ
A) = EA((

⊕∞
k=0C[Ak])

∗), Im(Cm
A ) = M◦

EA((
⊕∞

k=0C[Ak])
∗) and Im(Cmc

A ) = M→c◦EA((
⊕∞

k=0C[Ak])
∗). These remarks are direct

consequences of the following straightforward equality:

RA ◦M ◦ EA ◦ RA = Id(
⊕

∞

k=0 C[Ak])∗ .

Notation 4.2. — In the following, for any A, G(A) will denote the letter given in the
following table.
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A S B Bs H P

G(A) U O B H S

Table 1. Notation G(A).

Let us consider an element φ of (
⊕∞

k=0C[Pk])
∗.

Definition 4.15. — We say that φ is G(A)-invariant if φ is a fixed point of Cm
A .

Since Cm
A is a projection and using Equation (22), we get the following lemma.

Lemma 4.1. — The linear form φ is G(A)-invariant if and only if one of the following
conditions is satisfied:

1. φ ∈ M ◦ EA((
⊕∞

k=0C[Ak])
∗),

2. R(φ) ∈ EA((
⊕∞

k=0C[Ak])
∗),

3. (Mc→)−1(φ) ∈ M→c ◦ EA((
⊕∞

k=0C[Ak])
∗).

The sets EA((
⊕∞

k=0C[Ak])
∗) and M→c ◦ EA((

⊕∞
k=0C[Ak])

∗) are easy to understand.
Recall Definition 3.6 where we defined Mb(p).

Lemma 4.2. — We have the following characterizations:

1. The set EA((
⊕∞

k=0C[Ak])
∗) is the set of linear forms φ such that for any p /∈ ∪kAk,

φ(p) = 0.
2. When A ∈ {S,B}, the set M→c ◦ EA((

⊕∞
k=0C[Ak])

∗) is the set of linear forms φ
such that for any p ∈ ∪kPk, φ(p) = δp∈∪kAk

φ(Mb(p)).

Proof. — The first assertion is straightforward. The second is a direct consequence of
Lemma 3.2. Indeed, if φ ∈ M→c ◦ EA((

⊕∞
k=0C[Ak])

∗), there exists φ′ in (
⊕∞

k=0C[Ak])
∗

such that for any p ∈ Pk:

φ(p) =
∑

p′∈Ak |p′=p

φ′(p′).

Using Lemma 3.2, for any p ∈ Pk, φ(p) = δp∈∪kAk
φ′(Mb(p)) = δp∈∪kAk

φ(Mb(p)). Using

similar arguments, the other implication is straitforward.

4.4.2. The moment map and (
⊕∞

k=0C[Sk])
∗. — We will explain in this section that the

RS-transform is in fact the usual R-transform in free probabilies ([15], [16], [14]). Let
us begin with a straightfoward lemma.

Lemma 4.3. — The affine space X [S] can ben identified with the affine space C1[[z]]
of formal power series which constant term is equal to 1 by the following isomorphism :

Ψ : X [S] → C1[[z]]

φ 7→
∑

k∈N

φ((1, ..., k))zk ,

where we recall that (1, ..., k) is the k-cycle in Sk.
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Let us recall the notion of R-transform in free probabilities, defined on C1[[z]], which
we will call the Ru-transform.

Definition 4.16. — Let M(z) be a formal power serie in C1[[z]], that is a formal power
serie of the form:

M(z) = 1 +
∞
∑

n=1

anz
n.

Let C(z) be the formal power serie C(z) = 1 +
∑∞

n=1 knz
n such that C[zM(z)] = M(z).

The Ru-transform of M is C.

Theorem 4.4. — Using the identification X [S] ≃ C1[[z]] via the application Ψ ex-
plained in Lemma 4.3, the following diagram is commutative:

X [S]
RS

//

Ψ

��

X [S]

Ψ

��

C1[[z]]
Ru

// C1[[z]]

Proof. — The assertion is equivalent to the fact that for any φ ∈ X [S], any integer k,
any σ ∈ Sk,

φ(σ) =
∑

σ′∈Sk|σ′≤σ

∏

c cycle of σ

Ru(Ψ(φ))#c.

When σ = (1, ..., k), this is a consequence of the bijection between non-crossing par-
titions of k elements and the set [idk, (1, . . . , k)] ∩ Sk and Theorem 2.7 of [12]. In
the general case is a consequence of this special case by using the factorization of the
geodesics (Lemma 3.1).

5. Observables and convergences of partitions

In this section, we motivate the definition of the structures in Section 4: these struc-

tures appear when one studies limits of elements in
∞
∏

N=1
C[Pk(N)]. The notion of con-

vergence we are going to use is the good notion to consider when one wants to apply
the results to the study of random matrices which are invariant in law by conjugation
by the symmetric group ([4], [5]).

5.1. Definitions. — In order to define the notion of convergence on
∞
∏

N=1
C[Pk(N)],

we define observables.

Definition 5.1. — Let N ∈ N, let p be a partition in Pk and E ∈ C[Pk(N)]. The
p-moment of E is:

mp(E) =
1

TrN (p)
TrN (E tp),

where the product is seen in C[Pk(N)].
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Let p be a partition in Pk and p′ be a partition seen in C[Pk(N)], using the Equalities
(13) and (14), we have:

mp(p
′) = Nnc(p∨p′)−nc(p∨idk).(26)

From now on, (EN )N∈N is an element of
∞
∏

N=1
C[Pk(N)].

Definition 5.2. — The sequence (EN )N∈N converges in moments if for any p ∈ Pk,
mp(EN ) converges when N goes to infinity. If so, we denote by mp(E) the limit of
mp(EN ) and we denote by φm

E the linear form in (C[Pk])
∗ such that φm

E (p) = mp(E) for
any p ∈ Pk.

In the next section, we give a condition on the coordinates of (EN )N∈N which is
equivalent to the convergence in moments of (EN )N∈N.

5.2. Cumulants and the key result. — For any p ∈ Pk and any F ∈ C[Pk(N)], we
denote by Fp the coodinate of Fp on the partition p: F =

∑

p∈Pk
Fpp.

Definition 5.3. — Let p be a partition in Pk and let F ∈ C[Pk(N)]. The cumulant of
F on p is:

κp(F ) = Nnc(p)−nc(p∨idk)Fp.

Theorem 5.1. — The sequence (EN )N∈N converges in moments if and only if for any
p ∈ Pk, κp(EN ) converges as N goes to infinity to a number that we denote by κp(E).

Let us suppose that (EN )N∈N converges in moments, for any p ∈ Pk:

mp(E) =
∑

p′≤p

κp′(E),(27)

Remark 5.1. — Let us suppose that (EN )N∈N converges in moments, let φκ
E be the

linear form in (C[Pk])
∗ such that φκ

E(p) = κp(E) for any p ∈ Pk: the theorem asserts
that φm

E = M(φκ
E), where we recall that M was defined in Definition 4.1.

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Pk(N)], let p ∈ Pk and let N be a

positive integer. Using the cumulants of EN , we can calculate the p-normalized moment
of EN :

mp(EN ) =
∑

p′∈Pk

κp′(EN )
1

Nnc(p′)−nc(p′∨idk)
mp

(

p′
)

=
∑

p′∈Pk

κp′(EN )Nnc(p∨p′)−nc(p∨idk)−nc(p′)+nc(p′∨idk),

where we used the Equality (26). Hence, using Definition 1:

mp(EN ) =
∑

p′∈Pk

κp′(EN )N−df(p′,p).(28)
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Let us suppose that for any p′ ∈ Pk, κp′(EN ) converges to a limit κp′(E). The triangle
inequality for d shows that for any p ∈ Pk, mp(EN ) converges when N goes to infinity
and:

lim
N→∞

mp(EN ) =
∑

p′≤p

κp′(EN ).

Now, let us suppose that it converges in moments. We can write the Equation (28) as:

mN = GNκN ,

wheremN =(mp(EN ))p∈Pk(N) , κN =(κp(EN ))p∈Pk(N) , and GN =
(

N−df(p′,p)
)

p,p′∈Pk(N)
.

The sequence (GN )N∈N converges to the matrix G of the order ≤: since G is invertible,

κN = G−1
N mN converges to G−1m where m =

(

lim
N→∞

mp(EN )
)

p∈Pk
.

From now on, we will say that (EN )N∈N converges if it converges in moments. Besides,
for any set of partitions P ⊂ Pk, we will use the notation:

κP (E) =
∑

p∈P

κp(E).(29)

Using Theorem 3.5, we can generalize easily Equation (27): we give one of these
generalizations in the following proposition.

Proposition 5.1. — Let us suppose that (EN )N∈N converges. For any partitions p0
and p1 in Pk such that p1 ≤ p0:

mtp1◦p0(E) =
∑

p′≤p0

κKp′ (p1)
(E).(30)

Proof. — By linearity, it is enough to prove that Equation (30) holds for EN =
1

Nnc(p2)−nc(p2∨idk) p2 for any integer N and for a given partition p2 ∈ Pk. For this choice of

(EN )N∈N, for any p ∈ Pk,

mp(E) = δp2≤p

κp(E) = δp=p2 .

Thus Equation (30) is equivalent to:

δp1≤p0δp2≤ tp1◦p0 = δp1◦p2≤p0δp2∈Kp1◦p2 (p1)

which was proved in Theorem 3.5.

5.3. The exclusive world. — In Section 3.4, we defined an other basis of C[Pk],
namely the exclusive basis. We can define the exclusive moments and the exclusive
cumulants in the same way that we defined the moments and the cumulants but using
pc instead of p. Let N ∈ N, let p be a partition in Pk and E ∈ C[Pk(N)].

Definition 5.4. — The p-exclusive moment of E is:

mpc(E) =
1

TrN (p)
TrN (E tpc).
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Let p be a partition in Pk and p′ be a partition seen in C[Pk(N)],

TrN (p t(p′c)) = δpEp′
N !

(N − nc(p′))!
.(31)

Definition 5.5. — The exclusive cumulant of E on p is:

κpc(E) = Nnc(p)−nc(p∨idk))(E)pc ,

where (E)pc is the coordinate of E on pc in the exclusive basis (pc)p∈Pk
.

The Theorem 5.1 can be extended to the following theorem. Let (EN )N∈N be in
∏∞

N=1C[Pk(N)].

Theorem 5.2. — The sequence (EN )N∈N converges if and only if one of the two con-
ditions holds:

1. for any p ∈ Pk, mpc(EN ) converges as N goes to infinity to a number that we
denote by mpc(E).

2. for any p ∈ Pk, κpc(EN ) converges as N goes to infinity to a number that we denote
by κpc(E).

Let us suppose that (EN )N∈N converges, for any p ∈ Pk:

mp(E) =
∑

p′⊣p

mp′c(E),(32)

κpc(E) =
∑

p′=p

κp′(E).(33)

Remark 5.2. — Let us suppose that (EN )N∈N converges, let φmc

E be the linear form in
(C[Pk])

∗ such that φmc

E (p) = mpc(E) for any p ∈ Pk: the theorem asserts that φm
E =

Mc→(φmc

E ).

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Pk(N)]. For any positive integer N :

EN =
∑

p∈Pk

κp(EN )

Nnc(p)−nc(p∨idk)
p

=
∑

p∈Pk

κp(EN )

Nnc(p)−nc(p∨idk)

∑

p′∈Pk|pEp′

p′c

=
∑

p∈Pk,p′∈Pk|pEp′

κp(EN )N−nc(p)+nc(p∨idk)+nc(p′)−nc(p′∨idk)
p′c

Nnc(p′)−nc(p′∨idk)
,

and using Equation (1):

EN =
∑

p′∈Pk





∑

p∈Pk,pEp′

κp(EN )N−df(p,p′)





p′c

Nnc(p′)−nc(p′∨idk)
.
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Thus, for any integer N , for any p′ ∈ Pk

κp′c(EN ) =
∑

p∈Pk,pEp′

κp(EN )N−df(p,p′).(34)

Besides, it is easy to see that:

mp(EN ) =
∑

pEp′

Nnc(p′∨idk)−nc(p∨idk)mp′c(EN ).

Using the same arguments as the one we used for Theorem 5.1, we deduce the equivalence
of the conditions for convergence. Besides we have that:

mp(E) =
∑

pEp′,p′≤p

mp′c(E),

κpc(EN ) =
∑

p′≤p,p′Ep

κp′(E).

Using Lemma 2.1, we deduce the Equalities (32) and (33).

Using Theorem 5.2, we deduce the following theorem. From now on, let us suppose
that (EN )N∈N converges.

Theorem 5.3. — For any p ∈ Pk, mpc(E) = κpc(E).

Proof. — Let φκc

E be the linear form in (C[Pk])
∗ such that φκc

E (p) = κpc(E) for any p ∈
Pk. Using Theorems 5.1, 5.2 and Equation (22), φκc

E = M→c(φκ
E) = M→cM−1(φm

E ) =
(Mc→)−1(φm

E ) = φmc

E .

This result implies the equality φmc

E = M→c(φκ
E) which can be stated also in the

following form.

Theorem 5.4. — For any p ∈ Pk, mpc (E) =
∑

p′=p κp′(E).

From this result, we get that if p is a partition in Pk which does not have any pivotal
block, then:

mpc (E) = κp (E) .(35)

In particular, for any p ∈ Bk, the Equality (35) is satisfied.

5.4. The special case:
∏∞

N=1C[Ak(N)]. —

5.4.1. Generalization. — Using the same notations as in Section 4.4.1, we consider
A ⊂ {S,B,Bs,H,P}. When we consider an element (EN )N∈N of

∏∞
N=1C[Ak(N)], we

can consider the following notion of convergence.

Definition 5.6. — The sequence (EN )N∈N converges in A-moments if for any p ∈ Ak,
mp(EN ) converges when N goes to infinity.

Then, following a similar proof, Theorem 5.1 can be generalized easily.



40 FRANCK GABRIEL

Theorem 5.5. — The sequence (EN )N∈N converges in A-moments if and only if for
any p ∈ Ak, κp(EN ) converges as N goes to infinity. Let us suppose that (EN )N∈N

converges in A-moments, for any p ∈ Ak:

mp(E) =
∑

p′∈Ak |p′≤p

κp′(E).

Remark 5.3. — If we use the same notations as before for φκ
E,A and φm

E,A, except that

they are elements of (C[Ak])
∗, then φm

E,A = MA(φ
κ
E,A).

Theorem 5.6. — Let us suppose that (EN )N∈N converges in A-moments then it con-
verges in moments: for any p ∈ Pk, the limit of mp(EN ) exists. Besides, for any p ∈ Pk,
the following equality holds:

mp(E) =
∑

p′∈Ak ,p′≤p

κp′(E).

Proof. — Indeed, if (EN )N∈N ∈
∏

N∈N
C[Ak(N)] converges in A-moments then, by The-

orem 5.5, for any p ∈ Ak, κp(EN ) converges. By definition, for any p /∈ Ak and any
integer N , κp(EN ) = 0: for any p ∈ Pk, κp(EN ) converges and by Theorem 5.1, for any
p ∈ Pk, the limit of mp(EN ) exists. The Equation (27) allows us to conclude.

Using Definition 3.6 and Lemma 3.2, when A ∈ {S,B}, the limit of the exclusive
moments of (EN )N∈N are easy to compute.

Theorem 5.7. — Let us suppose that A ∈ {S,B} and that (EN )N∈N converges in A-
moments. For any p ∈ Pk:

mpc(E) = δp∈Ak
κMb(p)(E).

5.4.2. Projection by integration. — In this section, we motivate the definitions and
results obtained in Section 4.4.1. The notation G(A) was set in Section 4.4.1 (Table 1).

Notation 5.1. — For any integer N , the notation:

– U(N) stands for the unitary group of size N ,
– O(N) stands for the orthogonal group of size N ,
– H(N) stands for the hyperoctahedral group of size N , which consists of matrices

which have exactly one nonzero enty in each row and each column which is equal
to ±1,

– B(N) stands for the orthogonal bistochastic group of size N , which consists of
orthogonal matrices having sum 1 in each row and each column.

Let (EN )N∈N be an element of
∏

N∈NC[Pk(N)] which converges when N goes to
infinity. For any positive integer N , we define

E
G(A)
N =

∫

G(A)(N)
g⊗kρN (EN )(g∗)⊗kdg,

where dg is the Haar probability measure on G(A)(N) and ρN was defined in Section 3.4.
Recall Remark 4.1.
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Proposition 5.2. — There exists a sequence (EN )N∈N ∈
∏

N∈NC[Ak(N)] such that for

any positive integer N : ρN (EN ) = E
G(A)
N . The sequence (EN )N∈N converges as N goes

to infinity and the three following equalities hold:

φκ
E = Cκ

A (φκ
E) , φm

E = Cm
A (φm

E ) , φmc

E = Cmc

A

(

φmc

E

)

.(36)

Proof. — The first part of the proof is a direct consequence of the Schur-Weyl duality
for the unitary, orthogonal groups [6]. Let us prove that (EN )N∈N converges as N goes
to infinity and that Equations 36 holds. Let p be in Ak and let N be a positive integer.
Using the traciality of Trk, mp(EN ) is equal to:

1

Nnc(p∨idk)
Trk

(

ρN (En)ρN (tp)
)

=
1

Nnc(p∨idk)

∫

G(A)(N)
Trk

(

ρPk

N (EN )(g∗)⊗kρN (tp)g⊗k
)

dg.

For any g ∈ G(A)(N), (g∗)⊗kρN (tp)g⊗k = ρN (tp), thus mp(EN ) = mp(EN ). It implies
that for any p ∈ Ak, mp(EN ) converges as N goes to infinity: by Theorem 5.6, (EN )N∈N

converges and:

RA(φ
m
E ) = RA(φ

m
E ).

Let us recall that φκ
E
= EA◦RA(φ

κ
E
) since (EN )N∈N ∈

∏

N∈NC[Ak(N)], besides RA(φ
κ
E
) =

RA ◦ RA(φ
m
E
), thus:

φκ
E = EA ◦ RA(φ

κ
E)=EA ◦ RA ◦ RA(φ

m
E ) = EA ◦ RA ◦ RA(φ

m
E ) = EA ◦ RA ◦ RA ◦M(φκ

E)

= Cκ
A(φ

κ
E).

The two other equalities can be proved with the same kind of computations.

5.5. Convergence of the modified algebras. — Let us define a deformation of the
partition algebra C[Pk(N)] by modifying the multiplication which was set in Definition
3.7. This deformation is motivated by the fact that for any p ∈ Pk, the sequence in
∏∞

N=1 C[Pk(N)] which is constant and equal to p does not converge. Thus, the basis
(p)p∈Pk

is not a good basis for the study of the asymptotic of the partition algebra
C[Pk(N)].

Definition 5.7. — We define the application:

MN : Pk → Pk

p 7→
1

Nnc(p)−nc(p∨idk)
p.

This application can be extended as an isomorphism of vector spaces from C[Pk] to itself.

The definition of MN was set such that for any E ∈ C[Pk(N)],
(

MN
k

)−1
(E) is simply

equal to
∑

p∈Pk
κp(E)p: a sequence (EN )N∈N ∈

∏∞
N=1C[Pk(N)] converges if and only if

(MN )−1(EN ) converges for the usual convergence in finite dimensional vector spaces.
Let us remark also that for any p in Pk and any p′ in Pk′ ,

MN (p⊗ p′) = MN (p)⊗MN (p′).(37)

We can now define the deformed algebra C[Pk(N,N)].
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Definition 5.8. — We endow C[Pk] with a structure of associative algebra by taking
the pullback of the structure of algebra of C[Pk(N)] by MN . For any p1, p2 in Pk the
new product of p1 with p2 is given by:

p1.N p2 = (MN )−1 [MN (p1)MN (p2)
]

.

This is the deformed algebra C[Pk(N,N)].

The application MN can be extended as an isomorphism of algebra from C[Pk(N,N)]
to C[Pk(N)]. Its extension will be also denoted by MN . In the following, we study the
limit of the deformed algebras in the following sense.

Definition 5.9. — Let C be a finite set of elements. For any N ∈ N ∪ {∞}, let AN

be an algebra such that C is a linear basis of LN . For any elements x and y of C, for
each N ∈ N ∪ {∞}, we denote the product of x with y in LN by x.

N
y. The algebra AN

converges to the algebra A∞ when N goes to infinity if for any x and y in C,

x.
N
y −→

N→∞
x.

∞
y in C[C],

for the usual notion of convergence in finite dimensional linear spaces.

Theorem 5.8. — The deformed algebra C[Pk(N,N)] converges, when N goes to infin-
ity, to the deformed algebra C[Pk(∞,∞)] which is the associative algebra over C with
basis Pk endowed with the multiplication defined by:

∀p, p′ ∈ Pk, p.
∞
p′ = δp′∈Kp◦p′ (p)

(p ◦ p′),

where the Kreweras complement was defined in Definition 3.14.

Proof. — For any N ∈ N ∪ {∞}, Pk is a linear basis of C[Pk(N,N)]. It is enough to
prove that for any p and p′ in Pk, p.N p

′ converges to δp≺p◦p′p ◦ p
′. By a straightforward

computation:

p.
N
p′ = Nd(idk,p◦p

′)−d(idk,p)−d(idk,p
′)+ k+nc(p◦p′)−nc(p)−nc(p′)

2
+κ(p,p′)(p ◦ p′) = N−η(p,p′)(p ◦ p′).

Using Inequality 18 and Definition 3.14, p.
N
p′ −→

N→∞
δp′∈Kp◦p′(p)

(p ◦ p′).

5.6. Some consequences. —

5.6.1. Combinatorial consequences. — Using the associativity of the product .
N
and its

limit when N goes to infinity, one can deduce the folllowing proposition.

Proposition 5.3. — The relation ≺, defined in Definition 3.14, is transitive.

Proof. — Let p1, p2, p3 be three partitions in Pk. Let us consider the product p1.N p2.N p3.
We can compute the limit of this product in two ways by looking either at (p1.N p2).N p3
or p1.N (p2.N p3). We get two limits which are equal and considering the coefficients, we
get:

δp2∈Kp1◦p2 (p1)
δp3∈Kp1◦p2◦p3(p1◦p2)

= δp3∈Kp2◦p3 (p2)
δp2◦p3∈Kp1◦p2◦p3 (p1)

.(38)
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Let us consider p1, p
′ and p′′ in Pk such that p1 ≺ p′ and p′ ≺ p′′. There exists p2 and

p3 such that p1 ◦ p2 = p′, p1 ◦ p2 ◦ p3 = p′′, p2 ∈ Kp1◦p2(p1) and p3 ∈ Kp1◦p2◦p3(p1 ◦ p2).
Using Equation (38), we get that:

δp3∈Kp2◦p3(p2)
δp2◦p3∈Kp1◦p2◦p3(p1)

6= 0.

In particular, p2 ◦ p3 ∈ Kp1◦p2◦p3(p1). Let p̃ be equal to p2 ◦ p3, then p̃ ∈ Kp′′(p1) and
p1 ◦ p̃ = p′′: it proves that p1 ≺ p′′.

5.6.2. Convergence of the product. — A consequence of Theorem 5.8 is the continuity
of the product for the notion of convergence in moments.

Theorem 5.9. — Let (EN )N∈N and (FN )N∈N be two elements of
∏

N∈N
C[Pk(N)]. Let

us suppose that (EN )N∈N and (FN )N∈N converge (in moments), then the sequence
(

ENFN

)

N∈N
converges (in moments). Besides:

φκ
EF = φκ

E ⊠ φκ
F , φm

EF = φκ
E ⊠m

d φm
F , φm

EF = φm
E ⊠m

g φκ
F .(39)

Remark 5.4. — Using the notations κp and mp, the Equations (39) can be written in
the following form: for any p0 ∈ Pk:

κp0(EF ) =
∑

p∈Pk,p≺p0

κp(E)κKp0 (p)
(F ),(40)

mp0(EF ) =
∑

p∈Pk,p≤p0

κp(E)mtp◦p0(F ),(41)

mp0(EF ) =
∑

p∈Pk,p≤p0

mp0◦tp(E)κp(F ).(42)

Proof. — By definition for any integerN , (MN )−1(ENFN ) = (MN )−1 (EN ).
N
(MN )−1 (FN ).

But (MN )−1 (EN ) and (MN )−1 (FN ), seen as elements of C[Pk], converge when N goes
to infinity. Besides, the algebra C[Pk(N,N)] converges to C[Pk(∞,∞)], as it was proved
in Theorem 5.8. Thus (MN

k )−1(ENFN ) converges when N goes to infinity. Again this
shows that (ENFN )N∈N converges. Besides:

(MN )−1(ENFN ) =
∑

p∈Pk

κp0(ENFN )p0,

(

MN
)−1

(EN ).N (MN )−1 (FN ) =
∑

p∈Pk,p′∈Pk

κp(EN )κp′(FN )p.
N
p′.

Using the formula for the limit of .
∞

in Theorem 5.8, for any p0 ∈ Pk:

κp0(EF ) =
∑

p∈Pk,p≺p0

κp(E)κKp0 (p)
(F ),

which gives us the first equality of (39) (or equivalently Equation (40)).
The other equalities are consequences of the Equation (24) since, by Theorem 5.1,

φm
EF = M(φκ

EF ), φ
m
E = M(φκ

E) and φm
F = M(φκ

F ).
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5.6.3. Convergence of multiplicative semi-groups. —

Definition 5.10. — A family
(

(EN
t )N

)

t≥0
of elements of

∏

N∈NC[Pk(N)] is a semi-

group if there exists (HN )N∈N ∈
∏

N∈NC[Pk(N)], called the generator, such that for any
t ≥ 0, for any integer N :

d

dt |t=t0
EN

t = HNEN
t0 .

Let us suppose that
(

(EN
t )N

)

t≥0
is a semi-group in

∏

N∈NC[Pk(N)] whose generator

is (HN )N∈N.

Definition 5.11. — The semi-group
(

(EN
t )N

)

t≥0
converges if and only if for any t ≥ 0,

EN
t converges as N goes to infinity.

The next theorem shows that a semi-group in
∏

N∈N C[Pk(N)] converges if the initial
condition and the generator converge.

Theorem 5.10. — The semi-group
(

(EN
t )N

)

t≥0
converges if the sequences (EN

0 )N∈N

and (HN )N∈N converge as N goes to infinity. Besides, we have the three differential
systems of equations: for any t0 ≥ 0:

d

dt |t=t0
φκ
Et

= φκ
H ⊠ φκ

Et0
,

d

dt |t=t0
φm
Et

= φκ
H ⊠

m
d φm

Et0
,

d

dt |t=t0
φm
Et

= φm
H ⊠

m
g φκ

Et0
.(43)

Remark 5.5. — Using the notations κp and mp, the Equations (43) can be written in
the following form: for any p ∈ Pk, for any t0 ≥ 0:

d

dt |t=t0
κp(Et) =

∑

p1∈Pk ,p1≺p

κp1(H)κKp(p1)(Et0),(44)

d

dt |t=t0
mp(Et) =

∑

p1∈Pk ,p1≤p

κp1(H)mtp1◦p(Et0),(45)

d

dt |t=t0
mp(Et) =

∑

p1∈Pk ,p1≤p

mp◦tp1(H)κp1(Et0).(46)

Proof. — Let us suppose that (EN
0 )N∈N and (HN )N∈N converge. For any integer N

and any t ≥ 0, we define EN
t = (MN )−1(EN

t ) and HN = (MN )−1(HN ). Since MN is a
morphism of algebra, the family

(

(EN
t )N∈N

)

t≥0
is a semi-group in

∏

N∈N
C[Pk(N,N)] and

its generator is
(

HN

)

N∈N
. For any t0 ≥ 0:

d

dt |t=t0

∑

p0∈Pk

κp0(E
N
t )p0 =

(

∑

p∈Pk

κp(HN )p

)

.
N

(

∑

p′∈Pk

κp′(E
N
t0 )p

′

)

.

Thus, for any p0 ∈ Pk:

d

dt |t=t0
κp0(E

N
t ) =

∑

p,p′∈Pk, p◦p′=p0

κp(HN )κp′(E
N
t )N−η(p,p′).



PARTITIONS AND GEOMETRY 45

When N goes to infinity, because of the hypotheses and since the ≺-defect is always
positive, this differential system converges: κp(E

N
t ) converges for any p ∈ Pk and any

real t ≥ 0. Besides, for any t0 ≥ 0, for any p ∈ Pk:

d

dt |t=t0
κp(Et) =

∑

p1∈Pk ,p1≺p

κp1(H)κKp(p1)(Et0).

This gives us the first equation in (43). The other equations are again consequences of
Proposition 24.

Remark 5.6. — Let the letter A stand either for S or B. If ((EN
t )N∈N)t≥0 is a semi-

group in
∏

N∈NC[Ak(N)], we can state a more general result: if the sequences (EN
0 )N∈N

and (HN )N∈N converge in A-moments as N goes to infinity then ((EN
t )N∈N)t≥0 converges

in P-moments.

6. Fluctuations

In this section, we generalize Section 5 in order to study the asymptotic developments
of the moments and cumulants. This would allow us to generalize the notions of M-,
R-transforms, ⊠ and ⊞ convolutions which would be defined on (

⊕∞
k=0C[(Pk/Sk) ×

{0, ..., n}])∗ : the definitions are straightfoward after reading this section. Yet the char-
acters of (

⊕∞
k=0C[(Pk/Sk)× {0, ..., n}])∗ are not interesting in the asymptotic study of

random matrices which are invariant in law by conjugation by the symmetric group thus
we will not spend more time to explain these generalizations, only will we give short
definitions in 6.2 in order to simplify results in the following article [4]. This section can
also be easily generalized for the sets of partitions A when A ∈ {S,B,Bs,H}.

Let (EN )N∈N be an element of
∏

N∈NC[Pk(N)]. We define and study a notion of

strong convergence up to the nth order of fluctuations.

Definition 6.1. — The sequence (EN )N∈N converges in moments up to the nth order
of fluctuations if for any p ∈ Pk, for any i ∈ {0, ..., n}, there exist a real mi

p(E) such
that:

Nn

(

mp(EN )−
n−1
∑

i=0

mi
p(E)

N i

)

−→
N→∞

mn
p(E)

6.1. Cumulants of higher orders and the key result. — The generalization of
Theorem 5.1 is given in the following theorem.

Theorem 6.1. — The sequence (EN )N∈N converges in moments up to the nth order of
fluctuations if and only if for any p ∈ Pk, for any i ∈ {0, ..., n}, there exists a real κip(E)
such that for any p ∈ Pk:

Nn

(

κp(EN )−
n−1
∑

i=0

κip(E)

N i

)

−→
N→∞

κnp (E)(47)
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Let us suppose that (EN )N∈N converges in moments up to the nth order of fluctuations,
for any p ∈ Pk, for any i0 ∈ {0, . . . , n}:

mi0
p (E) =

∑

p′∈Pk ,df(p′,p)≤i0

κ
i0−df(p′,p)
p′ (E).(48)

Proof. — Let us suppose that for any p ∈ Pk, for any i ∈ {0, ..., n}, there exist a real
κip(E) such that:

κnp (EN ) := Nn

(

κp(EN )−
n−1
∑

i=0

κip(E)

N i

)

−→
N→∞

κnp (E)(49)

Let us denote for any i ≤ n − 1 and any p ∈ Pk, κ
i
p(EN ) = κip(E). This change of

notations allows us to write the Equation (49) as following:

EN =
∑

p∈Pk

n
∑

i=0

κip(EN )

N i

p

Nnc(p)−nc(p∨idk)
.

We can compute the p-moment of EN :

mp(EN ) =
1

TrN (p)
TrN (EN

tp) =
∑

p′∈Pk

n
∑

i=0

κip′(EN )
1

N i+df(p′,p)

=

n−1
∑

j=0





∑

(p′,i)∈Pk×{0,...,n−1},i+df(p′,p)=j

κip′(EN )





1

N j

+





∑

(p′,i)∈Pk×{0,...,n},i+df(p′,p)≥n

κip′(EN )

N i+df(p′,p)−n





1

Nn
.

For any N ∈ N, any j ∈ {0, . . . , n− 1} and any p ∈ Pk:

mj
p(EN ) =

∑

(p′,i)∈Pk×{0,...,n−1},i+df(p′,p)=j

κip′(EN )

and

mn
p (EN ) =

∑

(p′,i)∈Pk×{0,...,n},i+df(p′,p)≥n

κip′(EN )

N i+df(p′,p)−n
,

so that, for any p ∈ Pk and any N ∈ N:

mp(EN ) =
n−1
∑

j=0

mi
p(EN )

N j
+

mn
p (EN )

Nn
.

For any p ∈ Pk and any i ≤ n−1, mi
p(EN ) does not depend on N and mn

p(EN ) converges
to

∑

p′∈Pk ,df(p′,p)≤n

κ
n−df(p′,p)
p′ (E)

when N goes to infinity. This shows that (EN )N∈N converges in moments up to the nth

order of fluctuations and Equation (48) holds.
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Let us suppose now that (EN )N∈N converges in moments up to the nth order of
fluctuations. We prove that Equations (47) and (48) hold by recurrence on n. Since
(EN )N∈N converges, by Theorem 5.1, κp(EN ) converges to κp(E). Let us suppose that
Equation (47) holds for l < n: for any p ∈ Pk, any i ∈ {0, ..., l}, there exists κip(E) and

for any N there exists κlp(EN ) which converges to κlp(E) such that:

EN =
∑

p∈Pk





l−1
∑

j=0

κjp(E)

N j
+

κlp(EN )

N l



 p,

Using the computations we already did:

mp(EN ) =

l−1
∑

j=0





∑

(p′,i)∈Pk×{0,...,l−1},i+df(p′,p)=j

κip′(E)





1

N j

+





∑

(p′,i)∈Pk×{0,...,l},i+df(p′,p)≥l

κip′(EN )

N i+df(p′,p)−l





1

N l
.

Using Equation (48) for i0 ≤ l, we get:

mp(EN ) =

l
∑

j=0

mj
p(E)

N j
+

∑

p′∈Pk ,df(p′,p)=0

κlp′(EN )− κlp′(E)

N l

+
∑

(p′,i)∈Pk×{0,...,l},i+df(p′,p)−l=1

κip′(EN )

N l+1
+ o

(

1

N l+1

)

.

Since (EN )N∈N converges in moments up to the order l + 1 of fluctuations: for any
p′ ∈ Pk,

N l+1



mp(EN )−
l
∑

j=0

mj
p(E)

N j





converges as N goes to infinity. This implies that for any p ∈ Pk,
∑

p′∈[idk,p]

N(κlp′(EN )− κlp′(E))

converges as N goes to infinity. By inverting the order ≤, for any p ∈ Pk:

N(κlp′(EN )− κlp′(E))

converges as N goes to infinity. Thus Equation (47) holds for n = l + 1, and using the
first part of the proof, Equation (48) holds for n = l+1. A recurrence allows us to finish
the proof.

From now on, we will say that (EN )N∈N converges up to the nth order of fluctuations
if it converges in moments up to the nth order of fluctuations. Let us remark that
Theorems 5.5 and 5.6 are easily generalized in this setting of fluctuations.
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6.2. The N-development algebra of order n. —

6.2.1. Definition. — We can also generalize the algebra C[Pk(N,N)] in order to study
the algebraic fluctuations. We need to consider a formal variable X.

Definition 6.2. — The N -development algebra of order n of Pk, denoted by
C(n)[Pk(N)], is the associative algebra generated by the elements of the form: p

Xi ,
where p ∈ Pk and i ∈ {0, . . . , n}. The product is defined such that, for any p and p′ in
Pk, and any i and j in {0, . . . , n}:

p

Xi
.
p′

Xj
=

1

Nmax(i+j+η(p,p′)−n,0)

p ◦ p′

Xmin(i+j+η(p,p′),n)
.

The ≺-defect is non-negative, thus for any i, j ∈ {0, . . . , n} and any p, p′ ∈ Pk, min(i+

j + η(p, p′),m) ≥ 0. This implies that p◦p′

Xmin(i+j+η(p,p′),m) is an element of the canonical

basis of C(n)[Pk(N)]. This shows that the product is well defined.
When n = 0, we recover the algebra C[Pk(N,N)]: the application Φ : Pk →

C(n)[Pk(N)] which sends p on p
X0 can be extended as an isomorphism of algebra

between C[Pk(N,N)] and C(0)[Pk(N)]. Indeed if p and p′ are two partitions in Pk,

Φ(p)Φ(p′) =
p

X0

p′

X0
=

1

Nη(p,p′)

p ◦ p′

X0
=

1

Nη(p,p′)
Φ(p ◦ p′) = Φ(p.

N
p′).

Notation 6.1. — For any E ∈ C[Pk(N,N)], we denote by κip(E) the coordinate of E
on p

Xi .

We will use a slight modification of the usual notion of convergence.

Definition 6.3. — A sequence (EN )N∈N in
∏

N∈NC(n)[Pk(N)] converges if and only

if for any i ∈ {0, . . . , n−1}, and any p ∈ Pk, κ
i
p(EN ) does not depend on N and for any

p ∈ Pk, κ
n
p (EN ) converges when N goes to infinity. We denote then κnp (E) the limit of

κnp (EN ).

6.2.2. Convergence of C(n)[Pk(N)]. — As for C[Pk(N,N)], the algebra C(n)[Pk(N)]
converges as N goes to infinity. Recall Definition 5.9 where we define the notion of
convergence of a sequence of algebras. Theorem 5.8 has the following generalization.

Theorem 6.2. — The algebra C(n)[Pk(N)] converges, when N goes to infinity, to the
∞-development algebra of order n, denoted by C(n)[Pk(∞)], which is the associative
algebra over C with basis ( p

Xi )i∈{0,...,n},p∈Pk
, endowed with the multiplication defined by:

∀p, p′ ∈ Pk,∀i, j ∈ {0, . . . , n},
p

Xi

p′

Xj
= δi+j+η(p,p′)≤n

p ◦ p′

Xi+j+η(p,p′)
.

Proof. — Let p and p′ be two partitions in Pk and let i and j be two positive integers.

p

Xi

p′

Xi′
=

1

Nmax(i+j+η(p,p′)−n,0)

p ◦ p′

Xmin(i+j+η(p,p′),n)
−→
N→∞

δi+j+η(p,p′)≤n
p ◦ p′

Xi+j+η(p,p′)
,

where the first product is seen in C(n)[Pk(N)].
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6.2.3. Convergences: C(n)[Pk(N)], multiplication and semi-groups. — Using Theorem
6.2 and using similar ideas as for the n = 0 case, we deduce the two followings results.

Proposition 6.1. — Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈NC(n)[Pk(N)]
which converge. The sequence (ENFN )N∈N converges. For any i0 ∈ {0, . . . , n} and
for any p0 ∈ Pk:

κi0p0(EF ) =
∑

p,p′∈Pk ,i,i′∈N|p◦p′=p0,i+i′+η(p,p′)=i0

κip(E)κi
′

p′(F ).

The good behavior of the product, given by Proposition 6.1, implies a criterion for
the convergence of semi-groups in

∏

N∈N C(n)[Pk(N)]. Let
(

(EN
t )N

)

t≥0
be semi-group in

∏

N∈N C(n)[Pk(N)], which generator is denoted by (HN )N∈N. By definition, it converges

if and only if for any t ≥ 0,
(

EN
t

)

N∈N
converges.

Proposition 6.2. — The semi-group
(

(EN
t )N

)

t≥0
converges if the sequences (EN

0 )N∈N

and (HN )N∈N converge. Besides, for any t0 ≥ 0, for any p ∈ Pk and any i ∈ {0, . . . , n},

d

dt |t=t0
κi0p0(Et) =

∑

p,p′∈Pk,i,i′∈N|p◦p′=p0,i+i′+η(p,p′)=i0

κip(H)κi
′

p′(Et0).

6.2.4.
∏∞

N=1C(n)[Pk(N)] and
∏∞

N=1C[Pk(N)]. — Let us consider an element (EN )N∈N

in
∏∞

N=1 C[Pk(N)] which converges up to the nth order of fluctuations. Using Theorem
6.1, we can associate a real number κip(E) for any p ∈ Pk and any i ∈ {0, ..., n} such
that for any p ∈ Pk, Equation (47) holds. Let us denote by κnp (EN ) the left hand side
of Equation (47).

Definition 6.4. — The lift of the sequence (EN )N∈N in
∏

N∈NC(n)[Pk(N)], denoted by
(EN )N∈N is:

EN =
∑

p∈Pk

((

n−1
∑

i=0

κip(E)
p

Xi

)

+ κnp (EN )
p

Xn

)

.

By definition, (EN )N∈N converges as N goes to infinity and for any N ∈ N, one has
EN
(n)(EN ) = EN , where EN

(n) is the evaluation morphism:

EN
(n) : C(n)[Pk(N)] → C[Pk(N)]

∑

p∈Pk

n
∑

i=0

κip(E)
p

Xi
7→
∑

p∈Pk

n
∑

i=0

κip(E)
1

N i

p

Nnc(p)−nc(p∨idk))
.

The fact that EN
(n) is a morphism of algebra follows from a simple calculation. Besides, by

definition, if a sequence (EN )N∈N in
∏∞

N=1Cn[Pk(N)] converges then EN
(n)(EN ) converges

up to the nth order of fluctuations.
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6.3. Convergences: C[Pk(N)], multiplication and semi-groups. — Using the
discussion in Section 6.2.4, we can use Section 6.2.3 in order to state results for C[Pk(N)].
Let us consider (EN )N∈N and (FN )N∈N two elements of

∏

N∈N C[Pk(N)] which converge

up to the nth order of fluctuations.

Theorem 6.3. — The sequence (ENFN )N∈N converges up to the nth order of fluctua-
tions. Besides, for any i0 ∈ {0, . . . , n}, for any p0 ∈ Pk:

κi0p0(EF ) =
∑

p,p′∈Pk,i,i′∈N|p◦p′=p0,i+i′+η(p,p′)=i0

κip(E)κi
′

p′(F ),(50)

mi0
p0(EF ) =

∑

p∈Pk

∑

i+j+df(p,p0)=i0

κip(E)mj
tp◦p0

(F ),(51)

mi0
p0(EF ) =

∑

p∈Pk

∑

i+j+df(p,p0)=i0

mj
p0◦ tp(E)κip(F ).(52)

Proof. — Let (EN )N∈N (respectively (FN )N∈N) be the lifts of (EN )N∈N (resp. (FN )N∈N)
in
∏

N∈N C(n)[Pk(N)]. The two sequences (EN )N∈N and (FN )N∈N converge. According
to Proposition 6.1, the sequence (ENFN )N∈N converges. For any i0 ∈ {0, . . . , n} and for
any p0 ∈ Pk:

κi0p0(EF) =
∑

p,p′∈Pk ,i,i′∈N|p◦p′=p0,i+i′+η(p,p′)=i0

κip(E)κi
′

p′(F).(53)

This implies that the sequence
(

EN
(n)(ENFN )

)

N∈N
converges in moment up to the

nth order of fluctuations. Since EN
(n) is a morphism of algebra, EN

(n)(EN ) = EN and

EN
(n)(FN ) = FN , for any N ∈ N, EN

(n)(ENFN ) = ENFN . We deduce that (ENFN )N∈N

converges up to the nth order of fluctuations. The Equation (50) is a consequence of
Equation (53). The Equations (51) and (52) are consequences of Theorem 3.4.

Let us suppose that
((

EN
t

)

N

)

t≥0
is a semi-group in

∏

N∈NC[Pk(N)] whose generator

is (HN )N∈N. We say that
((

EN
t

)

N

)

t≥0
converges up to the nth order of fluctuations

if and only if for any t ≥ 0,
(

EN
t

)

N∈N
converges up to the nth order of fluctuations.

The following result is a generalization of Theorem 5.10: it is a direct consequence of
Proposition 6.2 and some usual arguments.

Theorem 6.4. — The semi-group
((

EN
t

)

N

)

t≥0
converges up to the nth order of fluctu-

ations if the sequences (EN
0 )N∈N and (HN )N∈N converge up to the nth order of fluctua-

tions. Besides, we have the two differential systems of equations: for any p0 ∈ Pk, for
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any t0 ≥ 0, for any i0 ∈ {0, . . . , n}:

d

dt |t=t0
κi0p0(Et) =

∑

p,p′∈Pk ,i,i′∈N|p◦p′=p0,i+i′+η(p,p′)=i0

κip(H)κi
′

p′(Et0),(54)

d

dt |t=t0
mi0

p0(Et) =
∑

p∈Pk

∑

i+j+df(p,p0)=i0

κip(H)mj
tp◦p0

(Et0),(55)

d

dt |t=t0
mi0

p0(Et) =
∑

p∈Pk

∑

i+j+df(p,p0)=i0

mj
p0◦ tp(H)κip(Et0).(56)

The Remark 5.6 can be generalized to fluctuations.

Notation 6.2. — As explained at the beginning of Section 6, for sake of clarity, in the
following article [4], we will use some ⊞ and ⊠ convolutions in the setting of fluctuations
of higher order. We will define them on (

⊕∞
k=0C[Pk])

∗.
For any set X, E(X) is the notation for the set of sets of X. For any I ∈ E(X), let

Ic be the complement of I in X. Recall that pI is the extraction of p to I defined in
the beginning of Section 3.1.2. Let k be an integer and p ∈ Pk, the set of factorizations
F2(p) is the set of (p1, p2, I) ∈ P ×P × E({1, ..., k, 1′ , ..., k′}) such that pI = p1, pIc = p2
and nc(p1) + nc(p2) = nc(p).

Let φ1 and φ2 in (
⊕∞

k=0C[Pk])
∗, for any p0 ∈ ∪kPk and any i ∈ {0, ..., n}:

φ1 ⊞ φ2(p0, i0) =
∑

(p1,p2,I)∈F2(p)

∑

i1,i2∈N|i1+i2=i0

φ1(p1, i1)φ2(p2, i2),

φ1 ⊠ φ2(p0, i0) =
∑

p1,p2∈Pk ,i1,i2∈N|p1◦p2=p0,i1+i2+η(p1,p2)=i0

φ1(p1, i1)φ2(p2, i2).

7. Conclusion

By introducing a distance and a new order on partitions, we defined new structures on
P = ∪kPk and on (C[P])∗. In [4], we will define the notion of P-tracial algebras which
are algebras endowed with multi-linear observables. These observables are compatible
with the product and are indexed by the partitions in P. The structures defined and
studied in this article will allow us to study P-tracial algebras and to define a notion of
P-freeness.

Besides, we emulated in this article the theory of randommatrices. Using these results,
we will define in [4] the notion of finite dimensional cumulants for random matrices. This
will allow us to get various results on asymptotics of random matrices.

In [5], we will use these results in order to study the asymptotic of general random
walks on the symmetric group. This will allow us to define the S(∞)-master field which
is in some sense the limit of the S(N)-Yang-Mills measure.
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