Upscaling of mass and thermal transports in porous media with heterogeneous combustion reactions
Chen Yang, Jean-François Thovert, Gérald Debenest

To cite this version:
Chen Yang, Jean-François Thovert, Gérald Debenest. Upscaling of mass and thermal transports in porous media with heterogeneous combustion reactions. International Journal of Heat and Mass Transfer, Elsevier, 2015, vol. 84, pp. 862-875. <10.1016/j.ijheatmasstransfer.2015.01.043>. <hal-01128226>

HAL Id: hal-01128226
https://hal.archives-ouvertes.fr/hal-01128226
Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Any correspondence concerning this service should be sent to the repository administrator:
staff-oatao@inp-toulouse.fr

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 13608

Identification number: DOI:10.1016/j.ijheatmasstransfer.2015.01.043
Official URL: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.043

To cite this version:
Upscaling of mass and thermal transports in porous media with heterogeneous combustion reactions

Chen Yang a,*, Jean-François Thovert b, Gérald Debenest a
a Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), 31400 Toulouse, France
b Institut Pprime, CNRS, SP2MI, BP 30179, 86962 Futuroscope Cedex, France

ABSTRACT

The present paper aims at an upscaled description of coupled heat and mass processes during solid–fluid combustion in porous media using volume-averaging theory (VAT). The fluid flows through the pores in a porous medium where a heterogeneous chemical reaction occurs at the fluid–solid interface. The chemical model is simplified into a single reaction step with Arrhenius kinetic law, but no assumption of local thermal equilibrium is made. An array of horizontal channels is chosen for the microstructure. The corresponding effective properties are obtained by solving analytically the closure problems over a representative unit cell. For a range of Péclet and Damköhler numbers, the results of the upscaled model are compared with microscale computations found in the literature. The results show that, under the same circumstances, the upscaled model is capable of predicting the combustion front velocity within an acceptable discrepancy, smaller than 1% when compared to the analytical solution. Furthermore, it has been found that for the Péclet and Damköhler numbers considered in this study, the fluid concentration and temperature profiles that stem from the present upscaled model are in accordance with those obtained using a microscale model.

1. Introduction

The propagation of combustion fronts in reactive porous media, which is usually referred to as smouldering or filtration combustion (FC), is a subject of interest for many applications. These include oil recovery using in situ combustion, coal gasification, fire safety, and foam combustion in a variety of situations. A broad review of all these domains is provided by Rein [1]. In all cases, an oxidation reaction is involved between an immobile fuel and an oxidizer, conveyed by a gas flow through the pore space.

Many contributions referring to this topic have been published in the past 40 years, such as the pioneer work of Aldushin et al. [2] where the structure of the filtration combustion wave was analyzed in one-dimensional geometries, followed by a series of papers using asymptotic methods for rapid, diffusive, co-current or counter-current filtration combustion waves [3–6]. All these contributions investigated the macroscale behaviors and the structure of solutions in effective porous media. More complex multicomponent, multiphysical, reactive problems were studied in this framework. For instance, Moallemi et al. [7] studied the smouldering in a two-dimensional scale solid material. They assumed a global single-step combustion reaction, and the associated transport problem was formulated via conservation equations for mass, species, linear momentum, and energy on the Darcy scale. Limits of flammability were compared to experimental tests. Rostami et al. [8] investigated the combustion of a porous biomass fuel, with a transient two-dimensional model without thermal equilibrium hypothesis and a complex multi-step chemistry. They showed the existence of a steady combustion regime depending on the ratio of oxygen to fuel contents. Rein et al. [9] studied the propagation of combustion fronts using a simplified transport model and complex chemistry of gas and solid components. Lapene et al. [10] developed a coupled simplified-transport model with chemistry to determine, by an optimization procedure, the effective multi-step reaction scheme of heavy-oil combustion in porous media. Fadaei et al. [11] investigated the combustion of reactive carbon in carbonate reservoirs by varying several parameters (flow rates, fraction of carbon and fraction of carbonates). No explicit link was made between local-scale phenomena and the heuristic macroscale model.

Local-scale solid–gas combustion was described in the review paper of Ohlemiller [12]. The structure and couplings were explained in detail, with a realistic description of a porous medium. The chemical coupling, the local-scale effects — i.e., local scale temperature effects — were addressed. According to Ohlemiller [12], all
of the existing models in the literature were overly simplified and while they could be used for obtaining trends in front-velocity estimates and maximum-temperature approximations, for instance, they could not be predictive because of the lack of details in the description. Few references of studies on this scale can be found in the literature. Microscale or pore-scale studies are usually done to investigate the details of all the phenomena and to determine local effects, local thermal non-equilibrium, reaction shape, and speed, depending on the local properties. For example, based on a dual lattice, Lu and Yortsos [13] developed a pore-network model to investigate the dynamics of forward filtration combustion in porous media. The pore-scale results showed that the overall macroscopic behavior of this process strongly depends on microscopic features, such as heterogeneity. Debenest et al. [14,15] performed 3D numerical calculations of smouldering processes in a detailed discretized image of porous medium, to demonstrate the ability of a numerical model proposed by Debenest et al. [16] to handle a variety of situations. Since combustion in porous media with heterogeneous chemical reactions is a complex phenomenon, which involves the transports of mass and heat as well as various chemical reactions, the numerical computations based on microscale structure are challenging. Upscaling approaches that treat a porous medium as an equivalent continuum have proved useful to overcome these limitations.

The published upscaling studies of reactive transport in porous media mainly focus on the mass or heat transfer. In an important reference paper, Oliveira and Kaviany [17] identified the length and time scales involved in heat and mass transports during combustion in porous media and determining the conditions for local equilibrium. Yet, they did not upscale the local-scale system of equations. Akkutlu and Yortsos [18] addressed theoretically in situ combustion and the explicit coupling between heat and mass transports with Arrhenius-type functions. Using a non-dimensional system, they obtained solutions for forward-filtration combustion and determined the effect of heat losses on the stability of the process. The link between the local-scale system of equations and the one pertaining to the macroscale has been addressed in detail in the pioneering works of Ryan [19] and Whitaker [20] on mass transfer
phenomena and coupled heterogeneous reactions. Related to our topic, Sahraoui and Kaviany [21] compared the volume-averaged treatment of adiabatic, premixed flame with direct numerical simulation in a porous medium. They showed that in spite of some shortcomings, the flame structure, thickness, speed, and excess temperature can be well predicted by volume-averaged treatments. Whitaker [22] upscaled the diffusion process in porous media with heterogeneous reactions. Moreover, Quintard and Whitaker [23] analyzed the coupled, nonlinear diffusion problem to derive the volume-averaged, multicomponent mass transport equations. Battiato et al. [24] upscaled the reaction–diffusion equations and compared the predictions of the macroscale equations to pore-scale results. More recently, Valdés-Parada and Aguilar-Madera [25] and Valdés-Parada et al. [26] carried out the upscaling process of mass transfer with both homogeneous and heterogeneous chemical reactions in porous media. The results showed that for the homogeneous case, the effective reaction rate is simply the product of its microscopic counterpart with the porosity, whereas the effective reaction rate can only be obtained by solving the corresponding closure problems for the heterogeneous case. All these studies were carried out in an isothermal case. Considering thermal transport in porous media with homogeneous and heterogeneous heat sources, Quintard and Whitaker [27,28] developed an upscaling analysis based on volume-averaging theory. The assumptions of local thermal equilibrium or non-equilibrium between the solid and fluid phases were discussed extensively. However, the heat source they treated was assumed to be constant and uniform, which is generally not realistic for combustion in porous media, where the coupling with chemical reactions involves highly non-linear Arrhenius-type kinetic laws.

In the present paper, we do not make such assumptions and derive a more general model by applying the volume-averaging theory of Quintard and Whitaker [27]. The heterogeneous chemical reaction, which is assumed to be of the first order Arrhenius-type, occurs at the interface between the solid and fluid phases. Moreover, local thermal equilibrium between the solid and fluid phases is not assumed a priori. The transport coefficients in the upscaled model are obtained by solving the corresponding closure problems in a stratified system. Eventually, the verification of the present upscaled model is conducted for a horizontal channel by comparison with direct numerical simulations on the pore-scale.

2. Upscaling of two-phase media with heterogeneous chemical reaction

In this study, we consider a rigid and immobile porous medium, saturated by a fluid phase as sketched in Fig. 1. We consider convection and diffusion in the mass transport equation, with reaction at the interface of the two phases, which is covered by the reactive material. The convection and conduction equations for heat transport are applied in the whole space with no contribution of convection within the solid phase. Radiative exchanges between the grains that face each other are not considered. The validity of this approximation depends on the typical pore size and on the expected range of temperature, and it can be assessed a priori for a particular application as discussed in Appendix A. We concentrate on studying the link between heat and mass transports and non-linear reactivity depending on Arrhenius-type kinetic functions. In all forthcoming developments, the subscript _m_ refers to the solid phase, fully filled with inert solid, and subscript _f_ refers to the fluid phase.

2.1. Microscale momentum, mass, and heat transfer equations

We assume that the fluid properties do not strongly depend on the temperature and concentrations; therefore, the momentum equation may be solved independently from the other transport equations. We also assume that the velocity is such low, i.e., the Reynolds number is small, so that Stokes equations may be used in the channels. Those assumptions are the same as those of Debenest et al. [16] and Yang and Debenest [32].

\[\nabla \cdot \mathbf{V}_f = 0 \quad \text{in} \quad V_f \]
(1)

\[-\nabla p_f + \mu_f \nabla^2 \mathbf{V}_f + \rho_f g = 0 \quad \text{in} \quad V_f \]
(2)

\[\mathbf{V}_f = 0 \quad \text{at} \quad A_m \]
(3)

Neglecting the variation of gas density strong approximation, which cannot be formally justified but whose consequences have been quantified and found acceptable in some cases. Yang and Debenest [32] performed numerical simulations of smouldering in a channel for both compressible and incompressible flows. The variations of density and dynamic viscosity of the gaseous mixture were taken into account in the compressible flow. The comparison between the two cases indicated that ignoring the variations of density and dynamic viscosity could result in significant discrepancies, but that for low values of _A_ such as 0.1 and 0.5, the agreement between the incompressible and compressible results are acceptable. Since accounting for compressibility effects dramatically increases the computational time, the incompressible model is used in a first approximation.

The transport equation for the oxidizer conveyed by the fluid and the two energy transport equations in the solid and fluid phases read on the microscale:

\[\frac{\partial C_f}{\partial t} + \nabla \cdot (\mathbf{V}_f C_f) = \nabla \cdot (D_f \nabla C_f) \quad \text{in} \quad V_f \]
(4)

\[(\rho c_p)_m \frac{\partial T_m}{\partial t} = \nabla \cdot (k_m \nabla T_m) \quad \text{in} \quad V_m \]
(5)

\[(\rho c_p) \mathbf{V}_f \cdot \frac{\partial T_f}{\partial t} + (\rho c_p)_f \nabla \cdot (\mathbf{V}_f T_f) = \nabla \cdot (k_f \nabla T_f) \quad \text{in} \quad V_f \]
(6)

![Fig. 1. Averaging volume for solid and fluid phases in the representative elementary volume (REV).](Image)
It is important to notice that we use the assumption of diluted species for the oxidizer transport equation. Multicomponent effects actually generate a diffusion matrix that is a function of the binary diffusion coefficients, the activity coefficients, and the mass fractions (see Quintard et al. [23]), but we simplify here the approach by specifying a constant value for the diffusion coefficient.

Combustion in porous media is complex and involves various chemical processes, as pointed out by Martins et al. [34]. For simplicity, we use the “one-film model” described by Turans [35], lumping all reactions in a single global one. The oxidizer in the gas phase reacts with the fuel located at the interface between the inert solid and fluid phases, and the reaction takes place as long as the fuel is not exhausted. The whole chemical scheme is summarized by a global exothermal reaction.

\[
C + O_2 \rightarrow CO_2 + \Delta H_0
\]

with \(\Delta H_0 = 395 \text{ kJ/mol}\). The reaction products are regarded as passive and the description of their transport does not need to be included in the model. The kinetic law of reaction (7) is supposed to be of first order with respect to the oxidizer concentration \(C_o\), with a rate coefficient given by Arrhenius law

\[
s_{rxn} = A_0H_e e^{-E/kT}C_o\]

(8)

\(A_0\) is the pre-exponential factor, \(H_e\) is a Heaviside step function accounting for the fuel exhaustion, \(E\) is the activation energy, and \(R\) is the universal gas constant. The first order Arrhenius-type reaction rate is commonly used for the heterogeneous chemical reactions of carbon and oxygen (see for instance, Dutta et al. [36] and Zajdlik et al. [37]). The reaction rate depends on both the temperature and oxidizer concentration at the interface. Therefore, the oxidizer transport is fully coupled with the thermal problems.

The interfacial boundary conditions are

\[
-n_m \cdot \nabla \nabla C_i = s_{rxn} \quad \text{at} \quad A_{mn}\]

(9)

\[
dC_{l,m}/dt = -s_{rxn} \quad \text{at} \quad A_{mn}\]

(10)

\[
T_m = T_f \quad \text{at} \quad A_{mn}\]

(11)

\[
\n_m \cdot k_l \nabla T_f = n_m \cdot k_m \nabla T_m + s_{rxn} \times H \quad \text{at} \quad A_{mn}\]

(12)

where \(H\) is the heat of reaction, which is regarded as constant and independent of temperature. Theoretically, \(H\) depends on temperature, as do the heat capacity of the gas which is also regarded here as a constant. However, these approximations are milder than that regarding the gas incompressibility. Therefore, addressing the former without first curing the latter would result in an illusionary gain in accuracy. All these issues should be addressed simultaneously, possibly in a future work.

2.2. Upscaling procedure

The upscaling process involves many steps that have been discussed at length in the literature. The details for the most well-known aspects can be found in Whitaker [22] and they are not repeated here. Under the assumption of scale separation, usually expressed as \(l, l_m \ll r_s \ll l\), macroscale temperatures and concentrations are defined by averages over the representative elementary volume (REV, Bear [38]) sketched in Fig. 1 as

\[
\langle \psi_m \rangle = \frac{1}{V} \int_{V_m} \psi_m dV, \quad \langle \psi_n \rangle = \frac{1}{V_m} \int_{V_m} \psi_n dV
\]

(13a)

\[
\langle \psi_m \rangle = \psi_m \langle \psi_n \rangle
\]

(13b)

where

\[
\psi_m = V_m/V
\]

All local variables are related to their intrinsic phase averages and corresponding deviations according to Gray’s [39] spatial decomposition.

\[
V_f = \langle V_f \rangle + \nabla \cdot \langle \nabla \rangle F_f\]

\[
N_f = \langle N_f \rangle + \nabla \cdot \langle \nabla \rangle N_f
\]

\[
T_m = \langle T_m \rangle + \nabla \cdot \langle \nabla \rangle T_m
\]

\[
T_f = \langle T_f \rangle + \nabla \cdot \langle \nabla \rangle T_f
\]

Equation (16) is Darcy’s law in which the permeability tensor \(K_i\) is given by a small-scale closure problem described explicitly in Whitaker [41], or in a different form more suitable for computations in Lassieux et al. [42]. Similarly, the macroscopic transport equations for solute (oxidizer) transport in the fluid and for energy transport in the solid and fluid phases result from volume-averaging theory (VAT) as

\[
\frac{\partial \langle C_i \rangle}{\partial t} + \nabla \cdot \langle \nabla \rangle C_i = 0
\]

(15)

\[
\langle V_f \rangle = -\frac{K}{\mu_f} \cdot (\nabla \langle p_f \rangle - \rho_f \nabla \langle h \rangle)
\]

(16)

The reader could refer to Quintard and Whitaker [23,28] for more details behind the deviations of Eqs. (17)-(19). In order to close Eqs. (17)-(19), i.e., to eliminate any reference to the fluctuating variables, we need to (1) develop balance equations for the concentration and temperature deviations, \(C_s\), \(T_s\), and \(T_m\), and (2) express these deviations as functions of macroscopic concentrations and temperatures. The first step is realized by applying decomposition Eq. (14) in the microscopic Eqs. (4)-(6) and subtracting the macro-scale Eqs. (17)-(19). The resulting governing equations for the fluctuating quantities can be simplified owing to the following inequalities which result from the scale separation \((l, l_m \ll l)\)

\[
\nabla \cdot (D_i \nabla C_i) \gg \epsilon_f \nabla \cdot \left(\frac{D_f}{\nabla} \int_{V_m} \psi_m \nabla dV \right)
\]

(20a)

\[
\nabla \cdot (\kappa_m \nabla T_m) \gg \epsilon_m \nabla \cdot \left(\frac{\kappa_m}{\nabla} \int_{V_m} \psi_m \nabla dV \right)
\]

(21)

\[
\nabla \cdot (\kappa_f \nabla T_f) \gg \epsilon_f \nabla \cdot \left(\frac{\kappa_f}{\nabla} \int_{V_m} \psi_m \nabla dV \right)
\]

(22a)

Eventually, the simplified governing equations for the spatial fluctuations of oxidizer concentration, fluid and solid temperature read
\[
\frac{\partial \tilde{C}_f}{\partial t} + V_f \cdot \nabla \tilde{C}_f + V_f \cdot \nabla (\tilde{C}) = \nabla \cdot (D_f \nabla \tilde{C}_f) - \frac{c_{\text{template}}}{V} \int_{A_{\text{template}}} n_{\text{template}} \cdot D_f \nabla \tilde{C}_f dA \quad \text{in} \quad V_f
\] (23)

\[
(\rho c_p)_m \frac{\partial T_m}{\partial t} = \nabla \cdot (k_m \nabla T_m) - \frac{c_{\text{template}}}{V} \int_{A_{\text{template}}} n_{\text{template}} \cdot k_m \nabla T_m dA \quad \text{in} \quad V_m
\] (24)

\[
(\rho c_p) \frac{\partial \tilde{T}_f}{\partial t} + (\rho c_p) \nabla \cdot (V_f) \frac{\partial \tilde{T}_f}{\partial t} + (\rho c_p) \nabla \cdot (V_f (T_f))
= \nabla \cdot (k_f \nabla \tilde{T}_f) - \frac{c_{\text{template}}}{V} \int_{A_{\text{template}}} n_{\text{template}} \cdot k_f \nabla \tilde{T}_f dA \quad \text{in} \quad V_f
\] (25)

The associated interfacial boundary conditions are expressed as follows

\[
-n_{\text{template}} \cdot D_f \nabla \tilde{C}_f = n_{\text{template}} \cdot D_f \nabla (\tilde{C}) + s n_m \quad \text{at} \quad A_{\text{template}}
\] (26a)

\[
\tilde{T}_m = T_f + (T_f)^m - (T_m)^m \quad \text{at} \quad A_{\text{template}}
\] (26b)

\[
-n_{\text{template}} \cdot k_f \nabla \tilde{T}_f = n_{\text{template}} \cdot k_m \nabla (T_m) + s n_m H \quad \text{at} \quad A_{\text{template}}
\] (26c)

In practice, we assume the closure problem to be quasi-steady, i.e., the time derivatives in Eqs. (23)–(25) are discarded. Dynamic closures can be formulated by introducing time convolution products [43, 44], but Davit et al. [44] showed that they can be approximated by the quasi-steady closures after some relaxation time.

2.3. Specific treatment for the reaction rate

So far, the reaction rate \(s_{\text{template}} \) which depends on the interfacial temperature and oxidizer concentration via Eq. (8) has not been explicitized. This is done in the following, by expressing it as a function of the deviations \(T_f - T_m \) or \(\tilde{T}_f \) from the mean phase temperature, and eliminating them by use of the matching condition Eq. (26b).

An expression is eventually obtained, where only the concentration deviation \(\tilde{C}_f \) is involved. This mathematical treatment can avoid the complex coupling of interface temperature and oxidizer concentration during the resolution of closure problems, and make it possible to obtain the analytical solutions of effective coefficients for some simple unit cells. This is the key for the account of a non-constant reaction rate in the upscaled procedure, which is the main contribution of the present work.

An arbitrary function \(F \) of the state variable can be expressed by using Taylor’s theorem for multivariate functions truncated to first order as

\[
F(T_{f,m}, \tilde{C}_f) = F(T_m, \tilde{C}_f) + \left[\frac{\partial F}{\partial T_f} |_{T_m} (T_{f,m} - T_m) + \frac{\partial F}{\partial \tilde{C}_f} |_{T_m} (\tilde{C}_f - \tilde{C}_f) \right] + \cdots
\] (27)

Using the decomposition laws Eq. (14), this reads

\[
F(T_{f,m}, \tilde{C}_f) = F(T_m, \tilde{C}_f) + \left[\tilde{T}_f \frac{\partial F}{\partial \tilde{T}_f} |_{T_m=\tilde{T}_f} (T_{f,m} - \tilde{T}_f) + \tilde{C}_f \frac{\partial F}{\partial \tilde{C}_f} |_{T_m=\tilde{T}_f} (\tilde{C}_f - \tilde{C}_f) \right] + \cdots
\] (28)

Application of the expansion Eq. (28) to \(s_{\text{template}} \) as given by Eq. (8), in terms of the deviations \(\tilde{C}_f \) and \(T_m \) of the interfacial conditions from the mean oxidizer concentration and solid temperature yields

\[
s_{\text{template}} = A_d H_d e^{-E/R(T_m)^n} (\tilde{C}_f)^{\alpha} + \tilde{T}_m A_d H_d \frac{E}{R(T_m)^m} e^{-E/R(T_m)^n} (\tilde{C}_f)^{\beta}
+ \tilde{C}_f A_d H_d e^{-E/R(T_m)^n} (\tilde{C}_f)^{\gamma} + O \left(\frac{T_m^2}{\tilde{C}_f^2} \right)
\] (29)

A similar expansion in terms of the deviation \(\tilde{T}_f \) of the interfacial temperature from \((T_f)^m \) leads to

\[
s_{\text{template}} = A_d H_d e^{-E/R(T_f)^n} ((T_f)^m - (T_f)^m) + \tilde{T}_f A_d H_d \frac{E}{R(T_f)^m} e^{-E/R(T_f)^n} ((T_f)^m - (T_f)^m)
+ \tilde{T}_f A_d H_d e^{-E/R(T_f)^n} (\tilde{T}_f)^{\gamma} + O \left(\frac{T_f^2}{\tilde{T}_f^2} \right)
\] (30)

Equating Eqs. (29) and (30) while taking the matching condition Eq. (26b) into account yields the following expression for the deviation \(\tilde{T}_m \)

\[
\tilde{T}_m = \frac{E}{R(T_f)^m} e^{-E/R(T_f)^n} ((T_m)^m - (T_f)^m) - \left(e^{-E/R(T_m)^n} - e^{-E/R(T_f)^n} \right)
\] (31)

Finally, substituting Eq. (31) into Eq. (29), provides an expression for the chemical reaction rate which only depends on the concentration fluctuation \(\tilde{C}_f \), in addition to the mean phase state variables,

\[
s_{\text{template}} = H_1 w_1 (\tilde{C}_f)^{\alpha} + H_2 w_2 \tilde{C}_f
\] (32a)

where

\[
w_1 = c_1 A_d e^{-E/R(T_m)^n}, \quad w_2 = c_2 A_d e^{-E/R(T_m)^n}
\] (32b)

\[
c_1 = \left(1 + \frac{E}{R(T_f)^m} e^{-E/R(T_f)^n} \left((T_m)^m - (T_f)^m \right) - \left(e^{-E/R(T_m)^n} - e^{-E/R(T_f)^n} \right) \right)
\] (32d)

and

\[
c_2 = \left(1 + \frac{E}{R(T_f)^m} e^{-E/R(T_f)^n} \left((T_m)^m / (T_f)^m \right)^{\beta} - \left(e^{-E/R(T_m)^n} - e^{-E/R(T_f)^n} \right) \right)
\] (32e)

In view of the mass flux boundary condition Eq. (26a), the surface integral in Eq. (23) can be expressed as

\[
\frac{1}{V} \int_{A_{\text{template}}} n_{\text{template}} \cdot D_f \nabla \tilde{C}_f dA = -\frac{1}{V} \int_{A_{\text{template}}} s_{\text{template}} dA = -a \nabla \langle s_{\text{template}} \rangle_m
\] (33a)

where

\[
\langle s_{\text{template}} \rangle_m = w_1 \langle H_1 \rangle (\tilde{C}_f)^{\alpha} + w_2 \frac{1}{A_{\text{template}}} \int_{A_{\text{template}}} H_1 \tilde{C}_f dA
\] (33b)

(\langle H \rangle) is the average of \(H \) over the surface \(A_{\text{template}} \).

Even if \(H \) varies continuously in space, we will assume that the active surface of a REV is either fully active or completely depleted. It means that \((H) \) is treated as a binary function denoted \(H_{\text{act}} \). It could take the following values:

\[
H_{\text{act}} = 0 \quad \text{when the surface is not active (carbon exhausted)}
\]
\[
H_{\text{act}} = 1 \quad \text{when the surface is active (initial carbon content)}
\] (33c)

Then we can rewrite Eq. (33b) using Eq. (33c) to obtain the average surface reaction rate...
\[\langle s_{\text{cm}} \rangle_{hn} = H[I] \left[w_1(C) + w_2 \frac{1}{A_{hn}} \int_{A_{hn}} \tilde{C}_f dA \right] \]

(33d)

Furthermore, the two surface integrals in Eqs. (24) and (25) can be related by exploiting the heat flux boundary condition Eq. (26c).

\[\frac{1}{V} \int_{A_{hn}} n_{hm} \cdot k_{m} \nabla \tilde{T}_m dA = \frac{1}{V} \int_{A_{hn}} n_{hm} \cdot k_{m} \nabla \tilde{T}_m dA + \left[1 - \frac{1}{V} \int_{A_{hn}} \tilde{s}_{\text{cm}} \times H dA \right] \frac{1}{V} \int_{A_{hn}} n_{hm} \cdot k_{m} \nabla \tilde{T}_m dA + a_{\nu} q_{hn} \]

(34)

where

\[q_{hn} = \langle s_{\text{cm}} \rangle_{hn} H \]

At this stage, the non-linear contributions of the fluctuating parts of the state variables have been eliminated from the governing equations. The upscaled transport equations, in terms of the locally phase averaged variables read

\[\frac{\partial (C_{Cm})}{\partial t} + \nabla \cdot \left((D_{Cm} \cdot \nabla (C_{Cm})) + \nabla \cdot \left(u_{m} (C_{Cm}) \right) \right) = -a_{\nu} \langle s_{\text{cm}} \rangle_{hn} \]

(35)

\[\frac{\partial (C_{m})}{\partial t} = -a_{\nu} \langle s_{\text{cm}} \rangle_{hn} \]

(36)

\[\epsilon_{m} \frac{\partial}{\partial t} \left(\rho_{p} c_{m} \right) + \nabla \cdot \left(\rho_{p} c_{m} u_{m} \right) = -a_{h} \left(T_{m} \right) + a_{\nu} \langle s_{\text{cm}} \rangle_{hn} \]

(37)

They involve macroscopic effective coefficients \(K_{m} \) and \(u_{m} \) (with \(\alpha, \beta = m \text{ or } f \)), \(\epsilon_{m}, \tilde{\epsilon}_{m}, \tilde{f}_{m}, D_{m}, u_{m}, \) and \(h \), which can be determined by solving closure problems as described in Appendix B. It is important to note that the effective reaction rate in Eqs. (35)–(38) is the average reaction rate multiplied by the effective surface \(a_{\nu} \). The effective coefficients \(\epsilon_{m} \) and \(\tilde{\epsilon}_{m} \) in Eqs. (37) and (38) are the volumetric repartition coefficients for the heat produced at the interface between the two phases.

3. Application to stratified porous media

This section is devoted to the application of the foregoing theoretical developments to a particular model of porous medium. We consider a medium made of periodic cells and calculate the effective parameters by solving the associated closure problems reported in Appendix B over this representative part of the medium. This assumption has been extensively discussed in several papers, but readers could refer to Chryssikopoulos et al. [45] or Eames and Bush [46]. It does not mean that the medium is seen as physically periodic but that the representative unit cell allows capturing the essential physical features of the involved processes.

A variety of unit-cell geometries have been used in the literature. Souto and Moyne [47] studied the dispersion tensor of two-dimensional periodic porous media is investigated numerically using the volume averaging method to calculate the dispersion tensor for ordered and disordered media. Yang and Nakayama [48] investigated analytically the effects of tortuosity and dispersion on the effective thermal conductivity of fluid-saturated porous media based on a 3D unit cell model, which embraces rectangular solids with connecting arms in an in-line arrangement. Kuwahara et al. [49] conducted exhaustive numerical experiments with in-line arrangement of square rods in order to determine the convective heat-transfer coefficient. Moreover, a numerical determination was performed by de Lemos and Saito [50] in cellular materials, in which the solid matrix is treated as an ordered array of elliptic rods. In the present study, however, the unit cell geometry shown in Fig. 2 is chosen to derive the effective properties. Furthermore, periodic boundary conditions are imposed on the unit-cell model, which can provide excellent agreement between theory and experiment for disordered systems, as claimed by Nozad et al. [51]. Recently, Yang and Debenest [32] studied on the microscale the combustion in a solid/gas system using the same geometry. It is important to note that microscale simulations are time-consuming, even for these simple geometries, as stated also by Debenest et al. [15].

In this geometry, analytical solutions for the transport coefficients in the energy equations Eqs. (37) and (38) can be readily found [52,28] and we simply report below the resulting macroscopic transport coefficients.

\[\mathbf{j} \cdot \langle \mathbf{K}_{mm} \rangle / \mathbf{j} / k_f = \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39a)

\[\mathbf{j} \cdot \langle \mathbf{K}_{mf} \rangle / \mathbf{j} / k_f = \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39b)

\[\mathbf{j} \cdot \langle \mathbf{K}_{ff} \rangle / \mathbf{j} / k_f = \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39c)

\[\mathbf{i} \cdot \langle \mathbf{K}_{ff} \rangle / \mathbf{i} = \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39d)

\[\mathbf{j} \cdot \langle \mathbf{K}_{ff} \rangle / \mathbf{j} / k_f = \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39e)

\[\frac{\langle \mathbf{u} \rangle}{\mathbf{i}} / k_f = \frac{2}{5} k_{mf}^2 \frac{1}{q} k_m + \epsilon_{mf} k_f \]

(39f)

\[\frac{\langle \mathbf{u} \rangle}{\mathbf{i}} / k_f = \frac{1}{5} \frac{k_{mf}^2}{q} k_m + \epsilon_{mf} k_f \]

(39g)

\[\frac{a_{h} h (l_f + l_m)^2}{k_f} = \frac{12 k_m}{q} k_m + \epsilon_{mf} k_f \]

(39h)

![Fig. 2. Unit cell of a stratified system.](image-url)
The last two terms describe the repartition of the heat between the two phases. They depend both on porosity and local scale conductivities. When dealing with solid/gas systems like rock/air, there is a strong contrast of conductivity between the two phases and so most of the heat produced by the reaction will be contained in the solid phase.

The original contribution of this study is the derivation of analytical solutions for the transport coefficients in the oxidizer transport equation in the stratified system, which read

\[
\mathbf{i} \cdot \left(\mathbf{D}_{xh} \right) \cdot \mathbf{j}/D_f = \frac{\epsilon_f C_P}{\epsilon_f k_m + \epsilon_o k_y} \frac{\epsilon_m}{\epsilon_f k_m + \epsilon_o k_y} \cdot \left(1 - \frac{\epsilon_f k_y}{\epsilon_f k_m + \epsilon_o k_y} \right) \left(C_{p_h} - C_{p_l} \right) \frac{\epsilon_f}{\epsilon_f k_m + \epsilon_o k_y} \left(\frac{\epsilon_f}{\epsilon_f k_m + \epsilon_o k_y} \right) \left(\frac{\epsilon_m}{\epsilon_f k_m + \epsilon_o k_y} \right)
\]

\[
\mathbf{i} \cdot \left(\mathbf{D}_{xy} \right) \cdot \mathbf{j}/D_f = \frac{e_f C_P}{10(e_f C_P + 2)(e_f C_P + 6)} Pe_D
\]

\[
\mathbf{j} \cdot \left(\mathbf{D}_{xy} \right) \cdot \mathbf{j}/D_f = \epsilon_f \frac{C_P}{5(e_f C_P + 6)} Pe_D
\]

\[
(\mathbf{u}_c) \cdot \left(\mathbf{i} + l_m \right)/D_f = -\epsilon_f C_P \left(\frac{\epsilon_f}{e_f C_P + 2} - \frac{\epsilon_f}{e_f C_P + 6} \right) Pe_D
\]

where the cell Thiele modulus \(\varphi \) is defined as

\[
\varphi = \sqrt{\frac{\epsilon_f C_P}{\epsilon_f k_m + \epsilon_o k_y} \frac{\epsilon_m}{\epsilon_f k_m + \epsilon_o k_y} \left(1 - \frac{\epsilon_f k_y}{\epsilon_f k_m + \epsilon_o k_y} \right) \left(\frac{\epsilon_f}{\epsilon_f k_m + \epsilon_o k_y} \right) \left(\frac{\epsilon_m}{\epsilon_f k_m + \epsilon_o k_y} \right)}
\]

Note that the dispersion coefficient in Eq. (40a) is similar to the Taylor–Aris dispersion coefficient in the case of planar Poiseuile flow, which is a function of the square of the cell Péclet number \(Pe_D \). However, the dispersion coefficient obtained here also depends on the cell Thiele modulus \(\varphi \) because of the heterogeneous chemical reaction. Valdés-Parada et al. [26] investigated the dependence of the effective diffusivity on the cell Thiele modulus for four types of microscopic structures. The results showed that the microstructures has only a moderate influence on the effective diffusivity for \(\varphi < 1 \). Whitaker [22] claimed that the convective transport term in Eq. (40d) generated by the heterogeneous reaction can be neglected in the case of diffusion in porous media. But, the contribution of this term to convective transport could be significant when convection itself is important, as pointed out by Paine et al. [53]. Moreover, the two surface-integral terms in Eq. (A5) which relates the mean reaction rate to the local average state variables are obtained as follows

\[
(\mathbf{C}_b) \cdot \mathbf{i}/(l_f + l_m) = \frac{\epsilon_f C_P}{10(e_f C_P + 2)(e_f C_P + 6)} Pe_D
\]

\[
(\mathbf{C}_b) \cdot \mathbf{j}/(l_f + l_m) = \frac{\epsilon_f}{e_f C_P + 2} - \frac{\epsilon_f}{e_f C_P + 6} \frac{\epsilon_f C_P}{5(e_f C_P + 6)} Pe_D
\]

\[
C_i = -\frac{\epsilon_f C_P}{6(e_f C_P + 6)}
\]

The transport coefficients which are not listed in the above are equal to zero. In these equations, the two cell Péclet numbers shown in Eqs. (39) and (40) are defined as:

\[
Pe_D = \frac{(\mathbf{u}_c) \cdot (l_f + l_m)}{D_f}
\]

\[
Pe_T = \frac{(\rho C_P) \cdot (l_f + l_m)}{k_f}
\]

4. Comparison of the macroscopic model with microscopic DNS calculations

4.1. Geometrical and physical setting

A comparison of the predictions of the present upscaled model with a direct numerical simulation (DNS) on the microscopic scale is conducted here, in order to validate the approach developed in this study. The physical geometry of the microscopic model is illustrated in Fig. 3. The system of equations to be solved is given by Eqs. (1)–(12). We base our analysis on the results of a previous study conducted by Yang and Debenest [32]. Moreover, the properties for oxygen and char combustion in the direct numerical simulation are presented in Table 1. Note that the activation energy is assumed to be constant. It has been pointed out by Tesner [54] that activation energy depends on temperature. However, Field et al. [55] showed that a constant activation energy for carbon oxidation is observed if temperature does not exceed 1650 K. Moreover, the channel width \(W \) is set to be \(1 \times 10^{-3} \text{ m} \), which is within the range of the experimental samples used by Fadaei [56].

A general analytical solution exists in a simplified 1D approach as illustrated in Debenest et al. [14]. A set of governing parameters, which has been defined in Debenest et al. [14,15] and Yang and Debenest [32], is briefly recalled here. Let us consider in a first step a one-dimensional situation in a very long domain. We suppose that the smouldering process has already run for an arbitrarily long time and that a steady regime has been reached. A reaction zone propagates with a velocity \(U_s \), which defines the positive orientation of the \(x \)-axis. According to Fig. 3, we denote by \(\epsilon_f \) and \(\epsilon_o \) the volume fractions of the fluid and solid phases, with volumetric heat capacities \((\rho C_P)_f \) and \((\rho C_P)_o \). All the state variables are functions of the position, but, because of the stationary hypothesis, the temperature and the concentrations of the chemical species tend toward constant values on either side as \(x \) tends to \(\pm \infty \). Hence, we introduce the two corresponding temperatures \(T_{-\infty} \) and \(T_{+\infty} \), the oxidizer concentrations \(C_{f,\text{in}} \) at the inlet and \(C_{f,\text{in}} - \Delta C_f = C_{f,\text{out}} \) and the initial fuel concentrations \(C_{l,\text{in}} = C_{l,\text{in}} = C_{l,\text{in}} \). The subscript \(f \) refers to inlet concentrations and the subscript \(f \) refers to outlet concentrations. The adiabatic temperature \(T_{ad} \) can be obtained from the ratio of the volumetric heat release to the volumetric heat capacity

\[
T_{ad} = \frac{\epsilon_f \Delta C_f}{(\epsilon_f \rho C_P)_f + \epsilon_o \rho C_P)_o}
\]

The front velocity can be deduced from a global mass balance based on simple volumetric and stoichiometric arguments,

\[
U_f = \frac{\epsilon_f \Delta C_f}{\epsilon_f \rho C_P}_f + \epsilon_o \rho C_P)_o\text{ (}v_f\text{)}
\]

A global heat balance implies that

\[
(\epsilon_f \rho C_P)_f + \epsilon_o \rho C_P)_o\text{ (}T_{-\infty} - T_{+\infty}\text{)} + (\epsilon_f \rho C_P)_f\text{ (}v_f\text{)}
\]

\[
= \epsilon_f \rho C_P H U_f
\]

The temperature increment across the reaction front can be obtained from Eq. (46) as

\[
(T_{-\infty} - T_{+\infty}) = \frac{T_{ad}}{\Delta - 1} \text{ with } \Delta = \frac{\epsilon_f \rho C_P)_f\text{ (}v_f\text{)}}{(\epsilon_f \rho C_P)_f + \epsilon_o \rho C_P)_o U_f}
\]

We can then deduce that two regimes can exist, with a hot region upstream or downstream of the front region. They are called the reaction-leading and reaction-trailing cases by Schult et al. [5].
Table 1

Properties in the direct numerical simulations (DNS).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_m)</td>
<td>2100 kg/m³</td>
</tr>
<tr>
<td>(\langle c_p \rangle_m)</td>
<td>800 J/kg K</td>
</tr>
<tr>
<td>(k_m)</td>
<td>1 W/m K</td>
</tr>
<tr>
<td>(H)</td>
<td>391.9 kJ/mol</td>
</tr>
<tr>
<td>(A_0)</td>
<td>10 m/s</td>
</tr>
<tr>
<td>(W)</td>
<td>(1 \times 10^{-2}) m</td>
</tr>
</tbody>
</table>

respectively. For \(\Lambda > 1 \), most of the heat produced in the reaction zone passes through the front and a plateau temperature \(T_p \) is then reached on the downstream side. The regime with \(\Lambda < 1 \) leads to a plateau temperature upstream of the front zone. \(T_p \) can be deduced from Eq. (47) and is expressed as follows:

\[
T_p = \frac{T_{ad}}{\Lambda - 1} \tag{48}
\]

A detailed description of the analytical developments can be found in Debenest et al. [14], but the main results have been summarized here in order to provide a background to the readers. The last important parameter is the thermal Péclet number \(Pe_T \) based on the combustion front velocity and defined as follows:

\[
Pe_T = \frac{(\rho c_p)_m u_f W}{k_m} \tag{49}
\]

As shown by Debenest et al. [14], increasing \(Pe_T \) increases the local thermal disequilibrium between the solid and fluid phases in the reaction zone.

Since all the effective properties in the upscaled model are determined, the macroscale numerical simulations are performed over a 1D geometry with the same length, initial, and boundary conditions as those of the DNS geometry. The initial and boundary conditions are set as follows:

\[
t = 0: \quad \langle T_f \rangle^i = \langle T_m \rangle^i = 500 \text{ K}, \quad \langle C_f \rangle^i = 0 \text{ mol/m}^3, \quad \langle C_i \rangle^m = 1954.4 \text{ mol/m}^3
\]

inlet: \(\langle T_f \rangle^i = 500 \text{ K}, \quad d\langle T_m \rangle^i/dx = 0 \)

\[
\langle C_f \rangle^i = 4.188(\Delta = 0.1), 0.8376(\Delta = 0.5), 0.2792(\Delta = 1.5) \text{ mol/m}^3
\]

outlet: \(d\langle T_f \rangle^i/dx = 0 \), \(d\langle T_m \rangle^m/dx \), \(d\langle C_f \rangle^i/dx = 0 \)

It should be mentioned that, as shown in the inlet boundary conditions, the different values of \(\Delta \) are obtained by varying the inlet oxidizer concentration while the fuel content remains constant. The adiabatic temperature \(T_{ad} \) can be easily deduced from Eq. (44) and is found equal to 455.8 K.

4.2. Results

The upscaled model is solved by using the COMSOL Multiphysics® package. The convergence criteria are set so that the residuals of all equations are less than \(10^{-7} \). Furthermore, a sensitivity analysis was conducted in order to guarantee that all of the results in the present study are independent of the grid step size.

First, the combustion front velocity predicted by the macroscale model is compared in Table 2 with those from the analytical formulation and from the DNS, for various values of \(Pe_0 \) and \(\Delta \). It is seen that the present upscaled model is capable of predicting the location of the combustion front, which is defined as the abscissa value where the fuel content remaining in the solid phase is half of its initial value. The reaction zone can be broad, as shown by Debenest et al. [14], and this arbitrary definition of its position is chosen for the purpose of comparing the different approaches.

Since the prediction error of the combustion front velocity is close to zero, it can be ignored and the subsequent comparisons are performed at identical combustion front position rather than identical time.

Table 2

Comparison of combustion front velocities.

<table>
<thead>
<tr>
<th>(Pe_0)</th>
<th>Analytical</th>
<th>DNS</th>
<th>Error DNS/analytical (%)</th>
<th>Macro</th>
<th>Error Macro/analytical (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5, (\Delta = 0.1)</td>
<td>0.48</td>
<td>2.85 \times 10^{-4}</td>
<td>2.88 \times 10^{-4}</td>
<td>1.05</td>
<td>2.857 \times 10^{-4}</td>
</tr>
<tr>
<td>2.5, (\Delta = 0.1)</td>
<td>4.8</td>
<td>2.85 \times 10^{-3}</td>
<td>2.79 \times 10^{-3}</td>
<td>2.10</td>
<td>2.840 \times 10^{-3}</td>
</tr>
<tr>
<td>2.5, (\Delta = 0.5)</td>
<td>0.96</td>
<td>5.7 \times 10^{-4}</td>
<td>5.66 \times 10^{-4}</td>
<td>0.70</td>
<td>5.684 \times 10^{-4}</td>
</tr>
<tr>
<td>2.5, (\Delta = 1.5)</td>
<td>0.32</td>
<td>1.9 \times 10^{-4}</td>
<td>1.9 \times 10^{-4}</td>
<td></td>
<td>1.896 \times 10^{-4}</td>
</tr>
</tbody>
</table>
Fig. 5. Temperature profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 2.5$ and $\Delta = 0.1$.

Fig. 6. Concentration profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 0.1$.

Fig. 7. Temperature profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 0.1$.

Fig. 8. Concentration profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 0.5$.

Fig. 9. Temperature profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 0.5$.

Fig. 10. Concentration profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 1.5$.
The oxidizer concentration and temperature profiles in both the fluid and solid phases based on the macroscale model and DNS are plotted in Figs. 4 and 5 in the case of $Pe_D = 2.5$ and $\Delta = 0.1$. The comparisons show that the predictions of DNS and upscaled model are in good agreements. Moreover, the temperature difference between the solid and fluid phases is so small that the local thermal equilibrium assumption is valid in this case. It is important to notice that the predicted plateau temperature T_p is obtained, which gives an important indication of the ability of the upscaling procedure to ensure a good representation of the complex and coupled phenomena.

In a first variant, Pe_D is increased while keeping Δ constant. Comparisons of the fluid concentration and temperature profiles from the macroscale model and DNS are illustrated in Figs. 6 and 7 for the case of $Pe_D = 25$ and $\Delta = 0.1$. The overall agreement is good, although slight discrepancies are visible. In the front region, the upscaled approach predicts the correct level of temperature, and the peak (above plateau temperature) is reproduced. The local thermal equilibrium assumption is invalid in this case in view of the significant temperature difference between the fluid and solid phases observed in Fig. 7. This emphasizes the necessity to use a two-temperature model such as the one developed here. The two-equation model provides a good approximation of the local scale problem because it captures more characteristic times. This is a necessary condition to reach accurate predictions of the reaction rate, which depends on both the temperature level and oxidizer concentration.

The increase of the Pécelt number Pe_D with constant $\Delta = 0.1$ causes the rise of $Pe_{F,s}$ (see Table 2), and accordingly, differences between the solid and fluid phase temperatures are becoming noticeable, which indicates a thermal disequilibrium. The estimation of interfacial temperature deviation is required in the upscaling process, in order to correctly predict the effective reaction rate. For large values of $Pe_{F,s}$, the neglect of two high order terms in Eqs. (29), (30) during the estimation of the spatial deviation of the temperature of the solid phase at the interface would increase the prediction error of the effective reaction rate. This explains the larger discrepancy between the DNS and upscaled model observed in Fig. 7 than in Fig. 5. However, this discrepancy remains moderate.

Fig. 11. Temperature profiles of the DNS and macroscale models in the direction of the combustion front propagation for $Pe_D = 25$ and $\Delta = 1.5$.

Fig. 12. Interfacial temperatures obtained using DNS compared to the average solid temperatures for the 4 cases.
and the macroscale model mimics the DNS results both in terms of temperature levels and form of the profiles.

In the next variants, the value of \(\Delta \) is increased while keeping \(P_{\text{Th}} = 25 \). The oxidizer concentration and temperature profiles from the macroscale model and from DNS are presented in Figs. 8 and 9 for the case of \(P_{\text{Th}} = 25 \) and \(\Delta = 0.5 \). The oxidizer concentration from the macroscale model matches fairly well with that of DNS (Fig. 8). Moreover, the macroscale model reproduces with accuracy the temperatures obtained by DNS. The plateau temperature is barely reached when the reaction front has traveled 160W. The upscaled model demonstrates here its ability to accurately describe transient regimes and capture the local scale dynamics.

All the foregoing simulations were conducted with \(\Delta < 1 \) and accordingly, most of the heat produced at the interface between the solid and fluid phases is left upstream of the reaction zone, as can be seen in Figs. 5, 7 and 9. This is called a reaction-leading structure. The last test addresses the case of \(\Delta > 1 \). The fluid concentration and temperature profiles from the macroscale model and DNS are plotted in Figs. 10 and 11 for \(P_{\text{Th}} = 25 \) and \(\Delta = 1.5 \). Note that most of the heat released by the heterogeneous reaction is taken away downstream (Fig. 11), contrary to the previous observations for \(\Delta < 1 \). This is called a reaction-trailing structure (see Debenest et al. [14]). The plateau temperature appears downstream rather than upstream.

A good agreement between the results of DNS and upscaled model is obtained. In the front region, both models predict a peak of the solid temperature. The forms of the temperature profiles are exactly the same, which indicates that the effective parameters, and mainly the effective conduction for all phases, are acceptable with respect to the upsampling procedure.

In summary, in view of the comparisons between the microscale model and macroscale approach performed for various \(P_{\text{Th}} \) and \(\Delta \) in this section, several important facts have been noted:

- The combustion front velocity is well predicted by the upscaled approach, when compared to both analytical solution and microscale simulations. In all cases, errors are limited to 0.4% in the whole range of parameters covered by the tests.
- In all cases, the temperatures profiles from the microscale and macroscale approaches match fairly well. The most significant errors occur when \(P_{\text{Th},s} \) is much larger than unity (second case in Table 2), suggesting that the amplitude of the local scale disequilibrium has an effect on the estimations of effective quantities. At the local scale, the values of temperature on the fluid/solid interface are those used to calculate the reaction rate. In Fig. 12, we compared those local scale temperature with the mean interfacial solid temperature. We observe a good agreement in all cases, except for \(P_{\text{Th},s} \) greater than one. Then, this suggests to use local non-equilibrium model.

Possible avenues to improve the accuracy of the upscaled model might consist in (1) reconsider the simplifications made during the upsampling procedure; (2) include higher-order terms in the expansion for the heterogeneous reaction rate in Eq. (29), which would introduce some other closure variables.

5. Conclusions

In this study, we have presented the coupled system of equations describing solid–gas combustion at the local scale in porous media, in order to explore the possibility of deriving a corresponding set of equations on the Darcy scale. The main challenge was to express the local scale boundary condition for the heat and mass transport problems. This was achieved by using a first order Taylor’s expansion theorem for multivariate functions. Then, a macroscale model in a general non-equilibrium form was obtained in the framework of volume-averaging theory. A set of closure variables have been chosen, and the associated additional closure problems have been written.

For the purpose of determining the closure variables, a simple unit-cell model was chosen, namely the stratified system. In this simple geometry, all the effective properties could be calculated analytically, i.e., effective dispersion tensor, effective conduction tensor, and effective reaction rate.

Then, the predictions of the macroscale formulation have been compared to those of direct microscale simulations and to analytical results stemming from global balance arguments, in various conditions characterized by the Péclet number and the parameter \(\Delta \) which determines the combustion regime. The front velocities are in perfect agreement. The concentration and temperature profiles have been confronted. Their overall features are correctly predicted and the expected values are nearly obtained in all cases, even when \(\Delta \) is greater than one. Noticeable errors in the temperature profiles occur only in situations of strong local thermal disequilibrium, associated with large values of the thermal Péclet number.

An avenue for their correction is the improvement of the linearization procedure in the treatment of the heterogeneous reaction rate governed by Arrhenius law, by including higher-order terms. This would require in turn the solution of additional closure problems for the determination of new closure variables. Another possibility is the implementation of a mixed model, coupling macroscale equations – for instance, for describing transport in the fluid phase – with a microscale equation in the other phase. This mixed approach would be similar to the one of Golfier et al. [57]. The other advantage of this method could be a correct treatment of the Arrhenius function, in its original form at the local scale without any linearization.

Conflict of interest

None declared.

Appendix A. Radiative heat transfers

Recent studies such as Leroy et al. [29] or Yang et al. [30] focused on the description of radiative heat transfers in porous media coupled with conduction and convection. Under certain circumstances, they can be described by the classical Rosseland approximation, whereby the radiative transfers are incorporated in a macroscopic description in the form of an equivalent radiative conductivity coefficient (see e.g., Sano et al. [31]). During a combustion process, these transfers can be expected to be particularly intense in the hot region where the exothermic reactions take place and therefore to influence the smouldering process. They can for instance reduce the temperature in the hottest spots, contribute to spread the heat released by the reaction over a wider region, and thereby cause the reaction front to thicken.

These effects are not included in the present modelisation, in view of the ranges of temperature and pore sizes. Note first that because of heat storage in the solid phase, the temperatures involved in smoldering processes are smaller than in open flames. On the other hand, the heat transfer between solid surfaces separated by a distance \(d \) is of the order of \(4 \sigma d T^4 \Delta \), i.e., the equivalent conductivity \(k_{\text{rad}} \) is \(O(4 \sigma d T^4) \). If it is much smaller than the thermal conductivity of usual mineral materials (\(k_m \sim 1 \text{ W/m K} \)) or gases (\(k_y \sim 0.1 \text{ W/m K} \)) in this range of temperature, the contribution of radiative transfers is small and can be neglected in a first approach. In view of Eq. (48), the criterion for the validity of this approximation reads

\[
k_{\text{rad}} \approx 4 \sigma d \left(T_m + \frac{T_{\text{rad}}}{\Delta - 1} \right)^3 \ll \min(k_y, k_m) \approx 0.1 \text{ W/m K}
\]
Note that the prediction Eq. (48) of the peak temperature results from global balance arguments and does not depend on the microstructure geometry. Therefore, this criterion is not restricted to stratified media. It involves a typical pore size \(d \), the initial temperature \(T_{in} \), and the parameters \(T_{ad} \) and \(\Delta \) which depend on the solid and gas compositions and heat capacities. All these quantities can be estimated and the criterion can be checked a priori. Alternatively, it can be checked in a posteriori view of the actual maximal temperature obtained in the simulations. It can then be assessed on a per case basis whether the dimensionless results in the present work can be safely applied with dimensional values of the parameters. The influence of \(\Delta \) is particularly crucial, since \(\Delta \sim 1 \) corresponds to the superadiabatic conditions where temperature raises to very large values and radiative transfers are of primary importance.

For instance, with a typical pore size of \(d \sim 0.1 \, \text{mm}, T_{in} = 500 \, \text{K}, T_{ad} = 456 \, \text{K} \) and \(\Delta = 0.1 \) (Figs. 5 and 7), the temperature does not exceed 1000 K, \(k_{rad} \sim 0.02 \, \text{W/m/°K} \) and the criterion is reasonably satisfied. Conversely, T reaches 1400 K if \(\Delta = 0.5 \) or 1.5 (Figs. 9 and 11), \(k_{rad} \approx 0.06 \, \text{W/m/°K} \) and the approximation is very questionable. However, with the same materials (\(T_{ad} = 456 \, \text{K} \) and \(\Delta = 0.5 \) or 1.5) but a lower initial temperature \(T_{in} = 300 \, \text{K} \) and a tighter medium with \(d \sim 0.05 \, \text{mm}, k_{rad} \) is again \(\sim 0.02 \, \text{W/m/°K} \).

Note that the arbitrary choice of the aperture \(W = 1 \, \text{mm} \) adopted in the simulations has no influence on the dimensionless results (assuming that radiative transfers can indeed be neglected). It is only a convenience for an easier comparison with the results of Fadæi [56]. Fadæi did not either consider radiation in his simulations, but in spite of a lower temperature range which never exceeds 500 °C in his simulations, the large aperture \(W = 1 \, \text{mm} \) causes \(k_{rad} \) to reach \(\sim 0.10 \, \text{W/m/°K} \) which is of the order of the gas thermal conductivity and therefore probably plays a significant role.

Appendix B. Closure problems

This appendix is devoted to the resolution of closure problems, and then, the effective properties determination. According to Quintard and Whitaker [27], this form of the closure problem suggests the following representations for \(C_r, T_m \), and \(T_f \). We will use the assumption that the REV is either fully active or depleted. All the closure problems written here are expressed using \(H_{3/4} = 1 \).

\[
\tilde{C}_f = \mathbf{b}_f \cdot \nabla (C_g)^{1/3} + \zeta_C (C_g)^{1/3} + \zeta_C \\
\tilde{T}_m = \mathbf{b}_m \cdot \nabla (T_m)^{m} + \mathbf{b}_m \cdot \nabla (T_f)^{1/3} + \mathbf{b}_m \cdot \left((T_m)^{m} - (T_f)^{1/3} \right) \\
\quad + r_m q_{lm} + \zeta_m \\
\tilde{T}_f = \mathbf{b}_m \cdot \nabla (T_m)^{m} + \mathbf{b}_f \cdot \nabla (T_f)^{1/3} - s_f (T_f)^{1/3} - (T_m)^{m} \\
\quad + r_f q_{lm} + \zeta_f
\]
(A1)
(A2)
(A3)

where \(\zeta_C, \zeta_m \), and \(\zeta_f \) are arbitrary functions, \(b_c, b_m, b_m, b_f, s_c, s_m, \) and \(s_f \) are known as the closure variables. Moreover, \(r_m \) and \(r_f \) are the specific closure variables for the heterogeneous chemical reaction case, which determine how the heterogeneous heat source is distributed between the solid and fluid phases.

In order to evaluate the surface integral in Eq. (33d), Eq. (A1) is substituted into Eq. (33d) to obtain

\[
\langle \delta_v \rangle_{lm} = w_l H_{3/4} (C_g)^{1/3} + H_{3/4} (C_g)^{1/3} + C_h \nabla (C_g)^{1/3} \rangle w_2
\]
(A4)

where

\[
\langle C_g \rangle_{lm} = \frac{1}{A_{lm}} \int_{A_{lm}} s_c \, dA \quad \text{and} \quad \langle b_c \rangle_{lm} = \frac{1}{A_{lm}} \int_{A_{lm}} b_c \, dA
\]
(A5)

Note that \(\langle b_{geo} \rangle_{lm} \) is the effective heterogeneous reaction rate, which embraces the effects of two surface integrals of closure variables. Valdés-Parada et al. [26] also studied the effect of surface integral of closure variable on the effective heterogeneous rate coefficient with the consideration of diffusion and found that the effective heterogeneous rate coefficient decreases with the rise of Thiele modulus, and has a weak and moderate dependency with the pore-scale structure and porosity, respectively.

Problem 1

Substitution of Eqs. (A1)–(A3) into Eqs. (23)–(25) leads to the governing differential equations of closure variables. The first closure problem is associated with \(\nabla (C_g)^{1/3} \) and takes the following form.

\[
V_f \cdot \nabla \mathbf{b}_c + V_f = D_f \nabla^2 \mathbf{b}_c + \mathbf{b}_c \, \sigma_0 \omega_{0f} c_{bf} \quad \text{in} \quad V_f
\]
(A6)

\[
-m_n \cdot \nabla \mathbf{b}_c = n_m \omega_{nf} c_{bf} \quad \text{at} \quad A_{jn}
\]
(A7)

Periodicity: \(\mathbf{b}_c(r + \ell_i) = \mathbf{b}_c(r), \quad i = 1, 2, 3 \)
(A8)

Average: \(\langle \mathbf{b}_c \rangle^{1/3} = 0 \)
(A9)

Problem 2

The term \(\nabla (C_g)^{1/3} \) is also a source in the closure problem for \(C_g \). The boundary value problem associated with the closure variable for \((C_g)^{1/3} \) is given by

\[
V_f \cdot \nabla \mathbf{b}_c + V_f = D_f \nabla^2 \mathbf{b}_c + \mathbf{b}_c \, \sigma_0 \omega_{0f} c_{bf} \quad \text{in} \quad V_f
\]
(A10)

\[
-m_n \cdot \nabla \mathbf{b}_c = n_m \omega_{nf} c_{bf} \quad \text{at} \quad A_{jn}
\]
(A11)

Periodicity: \(s_c(r + \ell_i) = s_c(r), \quad i = 1, 2, 3 \)
(A12)

Average: \(\langle s_c \rangle^{1/3} = 0 \)
(A13)

Problem 3

In what follows, the first closure problem for the temperatures is associated with \(\nabla (T_m)^{m} \) and takes the form

\[
k_m \nabla^2 \mathbf{b}_{mm} = \varepsilon_{mm} C_{mm} \quad \text{in} \quad V_m
\]
(A14)

\[
\mathbf{b}_{mm} = \mathbf{b}_m \quad \text{at} \quad A_{jm}
\]
(A15)

\[
\mathbf{n}_{mm} \cdot \nabla \mathbf{b}_{mm} = \mathbf{n}_{mm} \cdot \kappa_m \nabla \mathbf{b}_m - \mathbf{n}_{mm} \cdot \kappa_m \quad \text{at} \quad A_{jm}
\]
(A16)

\[
(\rho \mathbf{c}_p)_m \cdot V_f \cdot \nabla \mathbf{b}_m = \mathbf{k}_m \nabla^2 \mathbf{b}_m + \varepsilon_{mm} C_{mm} \quad \text{in} \quad V_f
\]
(A17)

Periodicity: \(\mathbf{b}_{mm}(r + \ell_i) = \mathbf{b}_{mm}(r), \quad i = 1, 2, 3 \)
(A18)

Average: \(\langle \mathbf{b}_{mm} \rangle^{1/3} = 0 \)
(A19)

where \(\mathbf{C}_{mm} \) is the unknown integral represented by

\[
\mathbf{C}_{mm} = \frac{1}{V} \int_{A_{mm}} \mathbf{n}_{mm} \cdot \kappa_m \nabla \mathbf{b}_{mm} \, dA
\]
(A20)

A detailed description of the evaluation of this unknown integral is given by Quintard et al. [50].

Problem 4

The term \(\nabla (T_r)^{1/3} \) is also a source in the closure problem for \(T_m \) and \(T_f \). The boundary value problem associated with the closure variable for \(\nabla (T_r)^{1/3} \) is given by

\[
k_m \nabla^2 \mathbf{b}_{nr} = \varepsilon_{nr} C_{nr} \quad \text{in} \quad V_m
\]
(A21)

\[
\mathbf{b}_{nr} = \mathbf{b}_m \quad \text{at} \quad A_{jm}
\]
(A22)
\[\mathbf{n}_{mf} \cdot k_m \nabla \mathbf{b}_{mf} = \mathbf{n}_{mf} \cdot k_f \nabla \mathbf{b}_f + \mathbf{n}_{mf} k_f \quad \text{at} \quad A_{fm} \]
\[\langle \rho c_p \rangle \nabla \mathbf{V}_f + \langle \rho c_p \rangle \nabla \mathbf{b}_f = k_f \nabla^2 \mathbf{b}_f + \varepsilon_f^{-1} \mathbf{c}_{mf} \quad \text{in} \quad V_f \]
\[\text{Periodicity:} \quad \mathbf{b}_{mf}(r + \ell_i) = \mathbf{b}_{mf}(r), \quad \mathbf{b}_f(r + \ell_i) = \mathbf{b}_f(r), \quad i = 1, 2, 3 \]
\[\text{Average:} \quad (\mathbf{b}_{mf})^m = 0, \quad (\mathbf{b}_f)^m = 0 \]
where \(\mathbf{c}_{mf} \) is the unknown integral represented by
\[\mathbf{c}_{mf} = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla \mathbf{b}_{mf} dA \]

Problem 5. Moving on to the source represented by \((T_m)^m - (T_f)^m \) in Eq. (26b), we construct the following boundary problem for the closure scalars \(s_m \) and \(s_f \):

\[0 = k_m \nabla^2 s_m + \varepsilon_m^{-1} (\alpha_v h) \quad \text{in} \quad V_m \]
\[s_f = s_m + 1 \quad \text{at} \quad A_{fm} \]
\[\mathbf{n}_{mf} \cdot k_m \nabla s_m = \mathbf{n}_{mf} \cdot k_f \nabla s_f \quad \text{at} \quad A_{fm} \]
\[\langle \rho c_p \rangle \nabla s_f = k_f \nabla^2 s_f - \varepsilon_f^{-1} (\alpha_v h) \quad \text{in} \quad V_f \]
\[\text{Periodicity:} \quad s_m(r + \ell_i) = s_m(r), \quad s_f(r + \ell_i) = s_f(r), \quad i = 1, 2, 3 \]
\[\text{Average:} \quad (s_m)^m = 0, \quad (s_f)^m = 0 \]
In this closure problem, the undetermined constant is represented by
\[\alpha_v h = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla s_m dA \]

Problem 6. Therefore, the focus in the following part is to determine how the heterogeneous heat source is distributed between the matrix and fracture. The corresponding closure problem takes the form
\[k_m \nabla^2 r_m = \alpha_v \varepsilon_m^{-1} \xi_m \quad \text{in} \quad V_m \]
\[r_f = r_m \quad \text{at} \quad A_{fm} \]
\[\mathbf{n}_{fm} \cdot k_f \nabla r_f = \mathbf{n}_{fm} \cdot k_m \nabla r_m + 1 \quad \text{at} \quad A_{fm} \]
\[\langle \rho c_p \rangle \nabla r_f = k_f \nabla^2 r_f - \alpha_v \varepsilon_f^{-1} \xi_f \quad \text{in} \quad V_f \]
\[\text{Periodicity:} \quad r_m(r + \ell_i) = r_m(r), \quad r_f(r + \ell_i) = r_f(r), \quad i = 1, 2, 3 \]
\[\text{Average:} \quad (r_m)^m = 0, \quad (r_f)^m = 0 \]
where \(\xi_m \) and \(\xi_f \) are given by
\[\xi_m = \frac{1}{A_{mf}} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla r_m dA, \quad \xi_f = \frac{1}{A_{fm}} \int_{A_{mf}} \mathbf{n}_{fm} \cdot k_f \nabla r_f dA \]
According to the boundary condition Eq. (A37), we can get
\[\xi_f + \xi_m = 1 \]
After determining the terms associated with the spatial deviation temperatures, we can obtain the closed form of macroscopic governing equations given by
\[\frac{\partial (C_f)^m}{\partial t} + \varepsilon_f (\mathbf{V}_f)^m \cdot \nabla (C_f)^m = \nabla \cdot \left(\mathbf{D}_{mf} - \varepsilon_f (C_f)^m \right) \]
\[+ \nabla \cdot \left(\mathbf{u}_c (C_f)^m \right) - av_s (s_m)^m \]
for the concentration transport equation in the fluid phase, and
\[\varepsilon_m (\rho c_p) \frac{\partial (T_m)^m}{\partial t} = \nabla \cdot \left(\mathbf{K}_{mm} - \nabla (T_m)^m + \mathbf{c}_{mf} - \nabla (T_f)^m \right) \]
\[+ \mathbf{u}_{mn} \cdot \nabla (T_m)^m + \mathbf{u}_m \cdot \nabla (T_f)^m \]
\[- av_f h (T_m)^m - (T_f)^m + av_f \xi_m \]
for the energy equation in the fluid phase. Note that the transport coefficients are defined by
\[\mathbf{D}_{mf} = \varepsilon_f D_f \mathbf{I} + \frac{D_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_m dA - \left\langle \nabla \mathbf{b}_f \right\rangle \]
\[\mathbf{K}_{mm} = \varepsilon_m k_m \mathbf{I} + \frac{k_m}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_{mn} dA \]
\[\mathbf{K}_{mf} = \frac{k_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_{mf} dA \]
\[\mathbf{K}_{ft} = \frac{k_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_{mf} dA - (\rho c_p) \left\langle \nabla \mathbf{b}_m \right\rangle \]
\[\mathbf{K}_{tm} = \frac{k_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_{mf} dA - (\rho c_p) \left\langle \nabla \mathbf{b}_m \right\rangle \]
In addition, the heat transfer coefficient is given by
\[\alpha_v h = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla s_m dA \]

The five non-traditional convective transport terms in Eqs. (A43)–(A55) depend on the coefficients \(u_c, u_{nm}, u_{mf}, u_m \) and \(u_f \) that are determined by
\[u_c = \frac{D_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{b}_m dA - \left\langle \nabla \mathbf{s}_c \right\rangle \]
\[u_{nm} = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla \mathbf{b}_{mn} dA + \frac{k_m}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{s}_m dA \]
\[u_{mf} = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_m \nabla \mathbf{b}_{mf} dA - \frac{k_m}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{s}_m dA \]
\[u_m = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_f \nabla \mathbf{b}_{mf} dA + \frac{k_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{s}_f dA \]
\[u_f = \frac{1}{V} \int_{A_{mf}} \mathbf{n}_{mf} \cdot k_f \nabla \mathbf{b}_{mf} dA + \frac{k_f}{V} \int_{A_{mf}} \mathbf{n}_{mf} \mathbf{s}_f dA + (\rho c_p) \left\langle \nabla \mathbf{s}_f \right\rangle \]