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Abstract

In this paper, we apply the Schwarz Waveform Relaxation (SWR) method to
the one dimensional Schrödinger equation with a general linear or a nonlinear
potential. We propose a new algorithm for the Schrödinger equation with time
independent linear potential, which is robust and scalable up to 500 subdo-
mains. It reduces significantly computation time compared with the classical
algorithms. Concerning the case of time dependent linear potential or the non-
linear potential, we use a preprocessed linear operator for the zero potential case
as preconditioner which lead to a preconditioned algorithm. This ensures high
scalability. Besides, some newly constructed absorbing boundary conditions are
used as the transmission condition and compared numerically.

Keywords: Schrödinger equation, Schwarz Waveform Relaxation method,
Absorbing boundary conditions, Parallel algorithms.

1. Introduction

Schwarz waveform relaxation method (SWR) is one class of the domain
decomposition methods for time dependent partial differential equations. The
time-space domain is decomposed into subdomains. The solution is computed on
each subdomain for whole time interval and exchange the time-space boundary
value. Some articles are devoted to this method for linear Schrödinger equation
[1, 2], advection reaction diffusion equations [3, 4, 5], wave equations [6, 7] and
Maxwell’s equation [8].

This paper deals with the SWR method without overlap for the one di-
mensional Schrödinger equation defined on a bounded spatial domain (a0, b0),
a0, b0 ∈ R and t ∈ (0, T ). The Schrödinger equation with homogeneous Neu-
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mann boundary condition reads L u := (i∂t + ∂xx + V )u = 0, (t, x) ∈ (0, T )× (a0, b0),
u(0, x) = u0(x), x ∈ (a0, b0),
∂nu(t, x) = 0, x = a0, b0,

(1)

where L is the Schrödinger operator, ∂n is the normal directive, the initial value
u0 ∈ L2(R) and V is a real potential. We consider both linear and nonlinear
potentials:

1. V = V (t, x),
2. V = f(u), ex. V = |u|2.

In order to perform domain decomposition method, the time-space domain
(0, T )×(a0, b0) is decomposed into N subdomains Θj = (0, T )×Ωj , Ωj = (aj , bj)
without overlap as shown in Figure 1 for N = 3.

x

t

a0 = a1 b1 = a2 b2 = a3 b2 = b0

T

(0, T )× Ω1 (0, T )× Ω2 (0, T )× Ω3

n2 n2

Figure 1: Domain decomposition without overlap, N = 3.

The classical SWR algorithm consists in applying the sequence of iterations
for j = 2, 3, ..., N − 1

L uk+1
j = 0, (t, x) ∈ Θj ,

uk+1
j (0, x) = u0(x), x ∈ Ωj ,

Bju
k+1
j = Bju

k
j−1, x = aj ,

Bju
k+1
j = Bju

k
j+1, x = bj .

(2)

The two extremal subdomains require special treatment since the Neumann
boundary condition is imposed in (1) at the points a0 and b0.

L uk+1
1 = 0, (t, x) ∈ Θ1,

uk+1
1 (0, x) = u0(x), x ∈ Ω1,

∂n1u
k+1
1 = 0, x = a1,

B1u
k+1
1 = B1u

k
2 , x = b1,


L uk+1

N = 0, (t, x) ∈ ΘN ,

uk+1
N (0, x) = u0(x), x ∈ ΩN ,

BNu
k+1
N = BNu

k
N−1, x = aN ,

∂nNu
k+1
N = 0, x = bN .

The notation ukj denotes the solution on subdomain Θj = (0, T ) × (aj , bj) at
iteration k = 0, 1, 2, ... of the SWR algorithm. The boundary information is

2



transmitted with adjacent subdomains Θj−1 and Θj+1 through the transmission
operators Bj .

The transmission condition is one of the key issues for this method. For
the linear Schrödinger equation, the SWR method with or without overlap is
introduced and analyzed by Halpern and Szeftel in [1]. For the decomposition
without overlap, if V is a constant, they use an optimal transmission condi-
tion given by the underlying transparent boundary condition. However, the
transparent boundary condition is not always available for a variable poten-
tial. Robin transmission condition and quasi-optimal transmission condition
are therefore used and are named as optimized Schwarz waveform relaxation al-
gorithm and quasi-optimal Schwarz waveform relaxation algorithm respectively.
In both cases, the transmission operator is written as

Bj = ∂nj + Sj , (3)

where the operator Sj is

Robin : Sj = −ip, p ∈ R+, Quasi-optimal : Sj =
√
−i∂t − V |aj ,bj ,

and nj denotes the outwardly unit normal vector at aj or bj . Recently, Antoine,
Lorin and Bandrauk [9] consider the general Schrödinger equation. On the
interface between subdomains, they propose to use recent absorbing conditions
as transmission condition, which is also an idea that we follow in this paper.

In recent years, some absorbing operators for one dimensional Schrödinger
equation have been constructed by using some adaptations of pseudo-differential
techniques [10, 11, 12, 13]. We use them here as the transmission operators in
(3) and expect to get good convergence properties.

We are also interested in this article about the effectivness of the method on
parallel computers. Another import issue for the method is therefore the scal-
ability. As we know, without additional considerations, the more subdomains
are used to decomposed (a0, b0), the more iterations are required for SWR al-
gorithm to reach convergence. Thus, the total computation time could hardly
decrease significantly. In this paper, we propose two solutions: a new scalable
algorithm if the potential is independent of time and a preconditioned algorithm
for general potentials.

This paper is organized as follows. In section 2, we present the transmission
conditions which are used in this paper for the classical SWR algorithm, and
the discretization that plays an important role for the analyses of the interface
problem in Section 3. In Section 4 and 5, we present the new algorithm for
time independent linear potential and the preconditioned algorithm for general
potentials. Some numerical results are shown in Section 6. Finally, we draw a
conclusion in the last section.
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2. SWR algorithm and discretization

2.1. Transmission conditions
The transmission conditions on boundary points aj and bj are given thanks

to the relation
Bj = ∂nj + Sj , (4)

where the operators Sj could take different forms. Besides the Robin transmis-
sion condition, we propose in this paper to use the operators Sj coming from
the artificial boundary conditions for (1) defined in [13, 11, 12, 14] for a linear or
nonlinear potential V (t, x, u). The authors propose three families of conditions
written as

∂nu+ SMl u = 0,

on the boundary of considered computation domain, M denotes the order of
the artificial boundary conditions. We index by l these families of boundary
conditions: l = 0 for potential strategy, l = 1 for gauge change strategy and
l = 2 for Padé approximation strategy. We recall here the definition of operators
SMl for the different strategies.

Potential strategy l = 0 ([13])

Order 2 : S2
0 = e−i

π
4 ∂

1/2
t ,

Order 3 : S3
0 = S2

0 − ei
π
4

V

2
I

1/2
t ,

Order 4 : S4
0 = S3

0 − i
∂nV

4
It,

where the fractional half-order derivative operator ∂1/2
t applied to a function h

is defined by

∂
1/2
t h(t) =

1√
π
∂t

∫ t

0

h(s)√
t− s

ds,

the half-order integration operator I1/2
t and the integration operator are given

by

I
1/2
t h(t) =

1√
π

∫ t

0

h(s)√
t− s

ds, Ith(t) =

∫ t

0

h(s)ds.

Gauge change strategy l = 1 ([11, 12])

Order 2 : S2
1 = e−i

π
4 eiV(t,x)∂

1/2
t (e−iV(t,x)·),

Order 4 : S4
1 = S2

1 − isgn(∂nV )

√
|∂nV |
2

eiV(t,x)It(

√
|∂nV |
2

e−iV(t,x)·),

where sgn(·) is the sign function and

V(t, x) =

∫ t

0

V (s, x, u(s, x))ds.
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Padé approximation strategy l = 2 ([11, 12])

Order 2 : S2
2 = −i

√
i∂t + V ,

Order 4 : S4
2 = S2

2 + sgn(∂nV )

√
|∂nV |
2

(
i∂t + V

)−1
(√|∂nV |

2
·
)
.

2.2. Discretization
The aim of this subsection is to present the discretization of the Schrödinger

equation with a linear potential V = V (t, x) or a nonlinear potential V = f(u).

2.2.1. Case of linear potential
First, we describe the discretization of the linear Schrödinger equation.

We discretize the time interval (0, T ) uniformly with NT intervals and define
∆t = T/NT to be the time step. A semi-discrete approximation adapted to the
Schrödinger equation on (0, T ) × (aj , bj), j = 1, 2, ..., N is given by the semi-
discrete Crank-Nicolson scheme

i
ukj,n − ukj,n−1

∆t
+ ∂xx

ukj,n + ukj,n−1

2
+
Vn + Vn−1

2

ukj,n + ukj,n−1

2
= 0, 1 6 n 6 NT ,

and ukj,0 = u(0, x) for x ∈ (aj , bj). The unknown function ukj,n(x) is an approxi-
mation of the solution ukj (n∆t, x) to the Schrödinger equation at time tn = n∆t
on subdomain Ωj and at iteration k. We define the approximation of the po-
tential Vn(x) = V (tn, x).

For implementation issue, it is useful to introduce new variables vkj,n =

(ukj,n + ukj,n−1)/2 with vkj,0 = ukj,0. The scheme could be written as

2i
vkj,n
∆t

+ ∂xxv
k
j,n +Wnv

k
j,n = 2i

ukj,n−1

∆t
, (5)

with Wn = (Vn + Vn−1)/2. The spatial approximation is realized thanks to a
classical P1 finite element method. The use of transmission condition gives the
following boundary conditions for each subdomain{

∂njv
k
j,n + Svkj,n = ∂njv

k−1
j−1,n + Svk−1

j−1,n, x = aj ,

∂njv
k
j,n + Svkj,n = ∂njv

k−1
j+1,n + Svk−1

j+1,n, x = bj ,
(6)

with special treatments for the two extreme subdomains

∂n1v
k
1,n = 0, x = a1, ∂nN v

k
N,n = 0, x = bN ,

where S is a semi-discretization of S. For each strategy, S is given by
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Potential strategy l = 0

Order 2 : S
2

0v
k
j,n = e−iπ/4

√
2

∆t

n∑
s=0

βn−sv
k
j,s,

Order 3 : S
3

0v
k
j,n = S

2

0v
k
j,n − eiπ/4

√
∆t

2

Wn

2

n∑
s=0

αn−sv
k
j,s,

Order 4 : S
4

0v
k
j,n = S

3

0v
k
j,n − i

∂njWn

4

∆t

2

n∑
s=0

γn−sv
k
j,s,

where

(α0, α1, α2, α3, α4, α5, ...) = (1, 1,
1

2
,

1

2
,

3

8
,

3

8
,

3 · 5
2 · 4 · 6

, ...), βs = (−1)sαs,∀s > 0,

(γ0, γ1, γ2, γ3, ...) = (1, 2, 2, 2, ...).

Gauge change strategy l = 1

Order 2 : S
2

1v
k
j,n = e−iπ/4eiWn

√
2

∆t

n∑
s=0

βn−se
−iWsvkj,s,

Order 4 : S
4

1v
k
j,n = S

2

1v
k
j,n

− isgn(∂njWn)

√
|∂njWn|

2
eiWn

∆t

2

n∑
s=0

γn−s

√
|∂njWs|

2
e−iWsvkj,s,

where Wn = Vn+Vn−1

2 and Vn(x) =
∫ tn

0
V (s, x)ds.

Padé approximation strategy l = 2

S
2

2v
k
j,n =− i

( m∑
s=0

ams
)
vkj,n + i

m∑
s=1

ams d
m
s

1
2i
∆t +Wn + dms

vkj,n

+ i

m∑
s=1

ams d
m
s

2i
∆t

2i
∆t +Wn + dmk

ϕsj,n−1,

S
4

2v
k
j,n =S

2

2v
k
j,n +

∂njWn

4

1
2i
∆t +Wn

vkj,n

+ sgn(∂njWn)

√
|∂njWn|

2

2i
∆t

2i
∆t +Wn

ψj,n−1,

where ϕsj,n, φj,n, s = 1, 2, ...,m are introduced as auxiliary functions
ϕs
j,n− 1

2

= 1
2i
∆t+Wn+dms

vkj,n +
2i
∆t

2i
∆t+Wn+dms

ϕsj,n−1, s = 1, 2, ...,m

ϕsj,n = 2ϕs
j,n− 1

2

− ϕsj,n−1,

ϕsj,0 = 0,
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and 
ψn− 1

2
=

√
|∂njWn|

2
1

2i
∆t+Wn

vkj,n +
2i
∆t

2i
∆t+Wn

ψj,n−1,

ψj,n = 2ψj,n− 1
2
− ψj,n−1,

ψj,0 = 0.

We also recall here the Robin transmission condition and its approximation

S = Sp = −ip, Svkj,n = Spv
k
j,n = −ip · vkj,n, p ∈ R+.

We propose below to rewrite (6) by using fluxes, which are defined at inter-
faces by

lkj,n = ∂njv
k
j,n(aj) + Svkj,n(aj), r

k
j,n = ∂njv

k
j,n(bj) + Svkj,n(bj), j = 1, 2, ..., N,

with the exception for lk1,n = rkN,n = 0. It is obvious that, on each subdomain,
the boundary conditions are{

∂njv
k
j,n + Svkj,n = lkj,n, x = aj ,

∂njv
k
j,n + Svkj,n = rkj,n, x = bj .

(7)

For the transmission condition S2
0 , S3

0 , S2
1 and S2

2 which do not contain the
normal derivative of potential Wn, using (6), we have

rk1,n = ∂n1
vk1,n(b1) + Svkj,n(b1) = ∂n1v

k−1
2,n (a2) + Svk−1

2,n (a2)

−
(
∂n2

vk−1
2,n (a2) + Svk−1

2,n (a2)
)

+ 2Svk−1
2,n (a2) = −lk−1

2,n + 2Svk−1
2,n (a2).

The transmission conditions could therefore be rewritten as{
lk1,n = 0, lkj,n = −rk−1

j−1,n + 2Svk−1
j−1,n(bj−1), j = 2, ..., N,

rk1,N = 0, rkj,n = −lk−1
j+1,n + 2Svk−1

j+1,n(aj+1), j = 1, 2, ..., N − 1.
(8)

Dealing with the transmission conditions S4
0 , S4

1 and S4
2 , we could also obtain

similar formulas to (8). We can therefore replace the boundary conditions (6)
for the N local problems (5) by (7) and fluxes definition (8).

Let us denote by vkj,n (resp. ukj,n) the nodal P1 interpolation vector of vkj,n
(resp. ukj,n) with Nj nodes, Mj the mass matrix, Sj the stiffness matrix and
Mj,Wn the generalized mass matrix with respect to

∫ bj
aj
Wnvφdx, j = 1, 2, ..., N .

Thus, the matrix formulation of the N local problems is given by

(Aj,n − Bj,n)vkj,n =
2i

∆t
Mju

k
j,n−1 + bkj,n −QTj (lkn, r

k
n)T , (9)

where Aj,n = 2i
∆tMj − Sj + Mj,Wn

and "·T " is the standard notation of the
transpose of a matrix or a vector. The restriction matrix Qj is defined by

Qj =

(
1 0 0 · · · 0 0
0 0 0 · · · 0 1

)
∈ C2×Nj .
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Bj,n ∈ CNj×Nj (resp. bkj,n ∈ CNj ) represent the boundary matrix (resp. vector)
associated with the boundary condition at time step n, which depends on the
transmission condition. The discrete form of the transmission condition (8) is
given by {

lkj,n = −rkj−1,n + 2S̃(Qj−1,rv
k
j−1,n), j = 1, 2, ..., N − 1,

rkj,n = −lkj+1,n + 2S̃(Qj+1,lv
k
j+1,n), j = 2, 3, ..., N.

(10)

where Qj,l = (1, 0, · · · , 0, 0) ∈ CNj , Qj,r = (0, 0, · · · , 0, 1) ∈ CNj . S̃ is the fully
discrete version of S. For example the transmission condition S2

0 leads to

S̃2
0(Qj,lv

k
j,n) = e−iπ/4

√
2

∆t

n∑
s=0

βn−s(Qj,lv
k
j,s),

S̃2
0(Qj,rv

k
j,n) = e−iπ/4

√
2

∆t

n∑
s=0

βn−s(Qj,rv
k
j,s).

2.2.2. Case of nonlinear potential
If the potential is nonlinear V = f(u), we propose to use the usual scheme

developed by Durán- Sanz Serna [15]

i
ukj,n − ukj,n−1

∆t
+∂xx

ukj,n + ukj,n−1

2
+f(

ukj,n + ukj,n−1

2
)
ukj,n + ukj,n−1

2
= 0, 1 6 n 6 NT ,

By using the notations defined in the previous subsection, this schema reads as

2i
vkj,n
∆t

+ ∂xxv
k
j,n + f(vkj,n)vkj,n = 2i

ukj,n−1

∆t
. (11)

As in the previous subsection, we use a P1 finite element method to deal with the
space variable approximation. Since the problem is nonlinear, the computation
of vkj,n is made by a fixed point procedure. At a given time t = tn, we take
ζ0
j = vkj,n−1 and compute the solution vkj,n as the limit of the iterative scheme

with respect to s:(
2i

∆t
Mj − Sj − Bj,n

)
ζs+1
j =

2i

∆t
Mju

k
j,n−1−bj,f(ζsj ) +bkj,n−QTj (lkn, r

k
n)T , (12)

where bj,f(v) is the vector associated with
∫ bj
aj
f(v)vφdx. The matrix Bj,n and

the vector bkj,n depend on the transmission operator. The discrete form of the
transmission conditions is similar to (10) obtained for linear potential.

3. Interface problem

The N problems (9) and (12) on each subdomain could be written globally.
Let us define the global interface vector gk at iteration k by

gk =
(
rk1,1, r

k
1,2, ..., r

k
1,NT︸ ︷︷ ︸

j=1

, · · · , lkj,1, ..., lkj,NT , r
k
j,1, ..., r

k
j,NT︸ ︷︷ ︸

j

, · · · , lkN,1, lkN,2, ..., lkN,NT︸ ︷︷ ︸
j=N

)T
.
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Considering the transmission conditions with flux (10), it is not hard to see that
there exist an operator R such that

gk+1 = Rgk. (13)

The interface operator R is linear or nonlinear depending on the linearity of V .
We focus below on the interface problem for the linear potential V = V (t, x),
especially for V = V (x).

For the transmission conditions presented in Section 2, we are going to show
that if V = V (t, x), then

gk+1 = Rgk = Lgk + d, (14)

where L is a block matrix

L =



X2,1 X2,2

X1,4

X3,1 X3,2

X2,3 X2,4

· · ·
X3,3 X3,4

XN−1,1 XN−1,2

· · ·
XN,1

XN−1,3 XN−1,4


,

(15)
with Xj,p ∈ CNT×NT , j = 1, 2, ..., N , p = 1, 2, 3, 4 and d is a vector

d =
(
dT1,r, d

T
2,l, d

T
2,r, · · · , dTN,l

)T ∈ C(2N−2)×NT , dj,l, dj,r ∈ CNT . (16)

It is easy to see that the formula (14) is equivalent to
1. for j = 1, 

lk+1
2,1

lk+1
2,2
...

lk+1
2,NT

 = X1,4


rk1,1
rk1,2
...

rk1,NT

+ d2,l,

2. for j = 2, ..., N − 1,
rk+1
j−1,1

rk+1
j−1,2
...

rk+1
j−1,NT

 = Xj,1


lkj,1
lkj,2
...

lkj,NT

+Xj,2


rkj,1
rkj,2
...

rkj,NT

+ dj−1,r,


lk+1
j+1,1

lk+1
j+1,2
...

lk+1
j+1,NT

 = Xj,3


lkj,1
lkj,2
...

lkj,NT

+Xj,4


rkj,1
rkj,2
...

rkj,NT

+ dj+1,l,

(17)
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3. for j = N , 
rk+1
N−1,1

rk+1
N−1,2
...

rk+1
N−1,NT

 = XN,1


lkN,1
lkN,2
...

lkN,NT

+ dN−1,r.

Proposition 1. For the transmission condition involving the operator S2
0 , in

the case of linear potential V = V (t, x), if we assume that the matrices Aj,n −
Bj,n n = 1, 2, ..., NT are not singular, then the N equations (9) could be written
in the global form of interface problem (14)

gk+1 = Lgk + d.

Proof. First, according to (9), we have

(Aj,1 − Bj,1)vkj,1 =
2i

∆t
Mjuj,0 + e−

iπ
4 QTj

√
2

∆t
β1Qjv

k
j,0 −QTj (lkj,1, r

k
j,1)T ,

(Aj,n − Bj,n)vkj,n =
2i

∆t
Mju

k
j,n−1 + e−

iπ
4

√
2

∆t
QTj

n−1∑
q=0

β2−qQjv
k
j,q −QTj (lkj,n, r

k
j,n)T

=
4i

∆t
Mjv

k
j,n−1 −

2i

∆t
Mju

k
j,n−2 + e−

iπ
4

√
2

∆t
QTj

n−1∑
q=0

β2−qQjv
k
j,q −QTj (lkj,n, r

k
j,n)T ,

=

n−1∑
q=1

(
(−1)n−1−q 4i

∆t
Mj + e−iπ/4

√
2

∆t
βn−qQ

T
j Qj

)
vkj,q,

+
(

(−1)n−1 2i

∆t
Mj + e−iπ/4

√
2

∆t
βnQ

T
j Qj

)
uj,0 −QTj (lkj,n, r

k
j,n)T , n > 2,

where we recall that vkj,0 = uj,0. Thus, we could see that

vkj,n =− (Aj,n − Bj,n)−1QTj (lkj,n, r
k
j,n)T

+ (Aj,n − Bj,n)−1
n−1∑
q=1

(
(−1)n−1−q 4i

∆t
Mj + e−iπ/4

√
2

∆t
βn−qQ

T
j Qj

)
vkj,q

(18)

+ (Aj,n − Bj,n)−1
(

(−1)n−1 2i

∆t
Mj + e−iπ/4

√
2

∆t
βnQ

T
j Qj

)
uj,0.

By induction on n, it is easy to see that vkj,n is a linear function of lkj,s and
rkj,s, s = 1, 2, ..., n. Then considering the formulas (10), in order to finish the
proof, we need only verify that S̃(Qj,lv

k
j,n) and S̃(Qj,rv

k
j,n) are linear functions

of vkj,s, s = 1, 2, ..., n.

10



Proposition 2. For any transmission condition presented in Section 2, assum-
ing that the matrices Aj,n − Bj,n, n = 1, 2, ..., NT are not singular, then the
interface problem in the case of linear potential V = V (t, x) could be written in
the global form (14).

Proof. The proof is quite similar than that of the previous proposition. For
each transmission condition, we only need to recalculate the expression of vkj,n.

We now turn to the structure of sub-blocks for V = V (x) and j = 2, 3, ..., N−
1,

Xj,1 = {xj,1n,s}16n,s6NT , Xj,2 = {xj,2n,s}16n,s6NT ,
Xj,3 = {xj,3n,s}16n,s6NT , Xj,4 = {xj,4n,s}16n,s6NT .

and X1,4 = {x1,4
n,s}16n,s6NT and XN−1,1 = {xN−1,1

n,s }16n,s6NT . For 5 time steps,
this structure is described below

?
× ?
◦ × ?
/ ◦ × ?
� / ◦ × ?

 , NT = 5.

thus, each sub-diagonal have an identical element.

Proposition 3. For the transmission condition involving the operator S2
0 , if

V = V (x) and assuming that Aj,n−Bj,n, n = 1, 2, ..., NT are not singular, then
the matrices X1,4 Xj,1, Xj,2, Xj,3, Xj,4, j = 2, 3, ..., N − 1 and XN,1 are lower
triangular matrices and they satisfy

x1,4
n,s = x1,4

n−1,s−1,

xj,1n,s = xj,1n−1,s−1, x
j,2
n,s = xj,2n−1,s−1,

xj,3n,s = xj,3n−1,s−1, x
j,4
n,s = xj,4n−1,s−1, j = 2, 3, ..., N − 1,

xN,1n,s = xN,1n−1,s−1,

for 2 6 s 6 n 6 NT .

Proof. Without loss of generality, we consider here j = 2, 3, ..., N − 1. First,
we design

Yjn,q =

{
−(Aj,n − Bj,n)−1, q = n,

(Aj,n − Bj,n)−1
(

(−1)n−1−q 4i
∆tMj + e

−iπ
4

√
2

∆tβn−qQ
T
j Qj

)
, q = 1, 2, ..., n− 1.

If the linear potential V = V (x) is independent of time, then it is easy to see

Aj,1 = Aj,2 = · · · = Aj,NT , Bj,1 = Bj,2 = · · · = Bj,NT .

11



Thus for 2 6 s 6 n 6 NT ,
Yjn,s = Yjn−1,s−1. (19)

Then, according to (18), we have

vkj,n = Yjn,nQTj (lkj,n, r
k
j,n)T +

n−1∑
q=1

Yjn,qvkj,q + Uj,nuj,0. (20)

where Uj,n = (Aj,n−Bj,n)−1
(

2i
∆t (−1)n−1Mj +e−iπ/4

√
2

∆tβnQ
T
j Qj

)
. By induc-

tion, we can obtain an expression of vkj,n:

vkj,n =

n∑
q=1

Ljn,qQTj (lkj,q, r
k
j,q)

T + Uj,nuj,0, (21)

where Ljn,q, q = 1, 2, ..., n and Uj,n are matrix. For example, Ljn,n = Yjn,n. We
are going to show that for 2 6 s 6 n 6 NT ,

Ljn,s = Ljn−1,s−1. (22)

Replacing vkj,q in (20) by (21), we have

vkj,n =Yjn,nQTj (lkj,n, r
k
j,n)T +

n−1∑
q=1

Yjn,q
( q∑
p=1

Ljq,pQTj (lkj,p, n
k
j,p)

T + Uj,quj,0

)
+ Uj,nuj,0

=Yjn,nQTj (lkj,n, r
k
j,n)T +

n−1∑
p=1

( n−1∑
q=p

Yjn,qLjq,p
)
QTj (lkj,p, r

k
j,p)

T +
( n−1∑
q=1

Yjn,qUj,q + Uj,n
)
uj,0.

Comparing the above formula with (21), we have

Ln,s =


Yjn,n,
n−1∑
q=s

Yjn,qLjq,s, 1 6 s < n,
⇒ Ln−1,s−1 =


Yjn−1,n−1,
n−2∑
q=s−1

Yjn−1,qL
j
q,s−1, 2 6 s < n.

(23)
By using (19) and by induction on n, we get

Ln,n = Yn,n = Yn−1,n−1 = Ln−1,n−1,

Ln,s =

n−1∑
q=s

Yjn,qLjq,s =

n−1∑
q=s

Yjn−1,q−1L
j
q−1,s−1 =

n−2∑
q=s−1

Yjn−1,qL
j
q,s−1 = Ln−1,s−1, 2 6 s < n.

The formula (22) is thus demonstrated.

12



Then we replace vnj,k in the first two formulas of (10) by (21). We get

lk+1
j+1,n =− rkj,n + 2e−iπ/4

√
2

∆t

n∑
p=1

βn−p

p∑
q=1

Ljp,qQTj (lkj,q, r
k
j,q)

T +Rkl,j,n

=− rkj,n + 2e−iπ/4
√

2

∆t

n∑
q=1

Qj,r

( n∑
p=q

βn−pLjp,q
)
QTj (lkj,q, r

k
j,q)

T +Rkl,j,n,

(24)

rk+1
j−1,n =− lkj,n + 2e−iπ/4

√
2

∆t

n∑
q=1

Qj,l

( n∑
p=q

βn−pLjp,q
)
QTj (lkj,q, r

k
j,q)

T +Rkr,j,n,

where we denotes the terms that are independent of lkj,s and rkj,s, s = 1, 2, ..., NT
by remainder terms Rl,r to make the proof more readable.

Moreover, according to (17), we have

lk+1
2,n =

NT∑
s=1

x1,4
n,sr

k
1,s + d2,l,n, r

k+1
N−1,n =

NT∑
s=1

xN,1n,s l
k
N,s + dN−1,r,n,

rk+1
j−1,n =

NT∑
s=1

xj,1n,sl
k
j,s +

NT∑
s=1

xj,2n,sr
k
j,s + dj−1,r,n,

lk+1
j+1,n =

NT∑
s=1

xj,3n,sl
k
j,s +

NT∑
s=1

xj,4n,sr
k
j,s + dj+1,l,n.

where dj−1,l,n and dj+1,r,n denote the n-th element of dj−1,l and dj+1,r respec-
tively.

Comparing the above formula with (24), we have for 1 6 n < s 6 NT ,

xj,1n,s = xj,2n,s = xj,3n,s = xj,4n,s = 0,

and for 1 6 s 6 n 6 NT ,

xj,1n,s = −1 + 2c2Qj,l

( n∑
p=s

βn−pLjp,s
)
QTj,l, x

j,2
n,s = 2c2Qj,l

( n∑
p=s

βn−pLjp,s
)
QTj,r,

xj,3n,s = 2c2Qj,r

( n∑
p=s

βn−pLjp,s
)
QTj,l, x

j,4
n,s = −1 + 2c2Qj,r

( n∑
p=s

βn−pLjp,s
)
QTj,r,

where c2 = e−iπ/4
√

2
∆t and we use QTj (lkj,q, r

k
j,q)

T = QTj,ll
k
j,q +QTj,rr

k
j,q.

13



Finally, using (22), we have for 2 6 s 6 n 6 NT ,

xj,1n,s = −1 + 2e−iπ/4
√

2

∆t
Qj,l

( n∑
p=s

βn−pLjp,s
)
QTj,l

= −1 + 2e−iπ/4
√

2

∆t
Qj,l

( n∑
p=s

βn−pLjp−1,s−1

)
QTj,l

= −1 + 2e−iπ/4
√

2

∆t
Qj,l

( n−1∑
p=s−1

βn−1−pLjp,s
)
QTj,l = xj,1n−1,s−1.

In the same way, we can prove that xj,2n,s = xj,2n−1,s−1, x
j,3
n,s = xj,3n−1,s−1 and

xj,4n,s = xj,4n−1,s−1.

Proposition 4. With any transmission condition presented in Section 2, if
V = V (x) and assuming that Aj,n − Bj,n, n = 1, 2, ..., NT are not singular,
then the matrices X1,4, Xj,1, Xj,2, Xj,3, Xj,4, j = 2, 3, ..., N − 1 and XN,1 are
lower triangular matrices and they satisfy

x1,4
n,s = x1,4

n−1,s−1,

xj,1n,s = xj,1n−1,s−1, x
j,2
n,s = xj,2n−1,s−1,

xj,3n,s = xj,3n−1,s−1, x
j,4
n,s = xj,4n−1,s−1, j = 2, 3, ..., N − 1,

xN,1n,s = xN,1n−1,s−1,

for 2 6 s 6 n 6 NT .

Proof. The proof is similar to that of Proposition 3. We only need to recom-
pute vkj,n and Yjn,q for each transmission condition.

4. New algorithm for time independent linear potential

The standard implementation of the SWR method for the time-independent
equations leads to the following classical algorithm
Algorithm 1: Classical algorithm

1: Initialize the iteration by g0,
2: Solve Schrödinger on each subdomain with gk.
3: Exchange values at interfaces and compute gk+1.
4: Do again steps 2 and 3 until error ||gk+1 − gk|| < ε, ε� 1.

As we can see, the classical algorithm requires to solveK times the Schrödinger
equation on each subdomain, where K corresponds to the number of iterations
required to reach convergence. We are going to present a new algorithm for
V = V (x) which is more efficient. As we will see, it will require to solve the
Schrödinger equation on each subdomain only four times in total. This new

14



algorithm is equivalent to the classical algorithm, but it reduces significantly
the calculations.

Before giving this new algorithm, we could see that the classical algorithm
is based on (13): gk+1 = Rgk, where the operator R includes the steps 2 and
3. We have shown in Proposition 2 that

gk+1 = Rgk = Lgk + d. (25)

It is easy to see that (25) is nothing but the fix point method to solve the
equation

(I − L)g = d. (26)

A big advantage to interpret (25) as a fixed point method to solve(26) is that
we can use any other iterative methods to solve this linear system. So we can
use Krylov methods (ex. Gmres, Bicgstab) [16], which could accelerate the
convergence prospectively. To use the Krylov methods or fixed point method,
it is enough to define the application of I − L to vector g by

(I − L)g = I −Rg + d.

The classical algorithm could then be rewritten with
Algorithm 2: Classical algorithm, version 2

1: Build d = R · 0 in (26) explicitly,
2: Define the application of I − L to vector in (26),
3: Solve the linear system (26) by an iterative method (fixed point or Krylov).
4: Solve the Schrödinger equation on each subdomain for each time step

using the boundary conditions obtained at step 3.

If the fixed point method is used in Step 3, we recover the first version of
the classical algorithm. The second version of the classical algorithm allows the
use of Krylov methods to accelerate convergence. However, applying (I −L) to
vector g is still a very expensive operation. With the help of Propositions 3 and
4, we propose a new algorithm
Algorithm 3: New algorithm

1: Build L and d in (26) explicitly,
2: Solve (26) by an iterative method,
3: Solve Schrödinger equation on each subdomain using the boundary

conditions obtained at step 2.

We show beloa the construction of the matrix L and the vector d. As it
will be seenn, their computation is not costly. Regarding the implementation,
we then show how L and d are stored for use of parallelism. Here, we use the
PETSc library [17]. Using the matrix form in PETSc, the memory required for
each MPI process [18] is independent of the number of subdomains.
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4.1. Construction of the matrix L and the vector d
We use the formulas (9) and (10) for the constructions. Numerically, we

consider lkj,n and rkj,n as inputs, and lk+1
j−1,n and rk+1

j+1,n as outputs:

inputs: lkj,n, r
k
j,n −→ (10) −→ outputs: lk+1

j−1,n, r
k+1
j+1,n.

It is easy to see that

d =
(
dT1,r, d

T
2,l, d

T
2,r, · · · , dTN,l

)T
= R · 0,

where 0 is the zero vector. The elements of d are obtained by

dj−1,r =


rk+1
j−1,1

rk+1
j−1,2
...

rk+1
j−1,NT

 , dj+1,l =


lk+1
j+1,1

lk+1
j+1,2
...

lk+1
j+1,NT

 ,

where the scalars rk+1
j−1,s, l

k+1
j+1,s, s = 1, 2, ..., NT are given by the formula (10)

with
lkj,s = rkj,s = 0, s = 1, 2, ..., NT .

The equation is solved numerically on each subdomain only one time. Note that
this construction works for V = V (t, x).

According to Propositions 4 and 3, if V = V (x), in order to build the matrix
L, it is enough to compute the first columns of blocks X1,4, Xj,1, Xj,2, Xj,3,
Xj,4, j = 2, 3, ..., N − 1 and XN,1.

The first column of Xj,1 is

Xj,1


1
0
...
0

 =
(
Xj,1


1
0
...
0

+Xj,2


0
0
...
0

+ dj−1,r

)
− dj−1,r =


rk+1
j−1,1

rk+1
j−1,2
...

rk+1
j−1,NT

− dj−1,r.

The first column of Xj,3 is

Xj,3


1
0
...
0

 =
(
Xj,3


1
0
...
0

+Xj,4


0
0
...
0

+ dj+1,l

)
− dj+1,l =


lk+1
j+1,1

lk+1
j+1,2
...

lk+1
j+1,NT

− dj+1,l.

The scalars rk+1
j−1,s, l

k+1
j+1,s, s = 1, 2, ..., NT are computed by the formula (10) with

lkj,s = rkj,s = 0, s = 1, 2, ..., NT except for lkj,1 = 1.

The equation is solved numerically only one time on the subdomain (aj , bj).
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In the same way, the first columns of Xj,2 and Xj,4 are

Xj,2


1
0
...
0

 =
(
Xj,2


1
0
...
0

+Xj,4


0
0
...
0

+ dj−1,r

)
− dj−1,r =


rk+1
j−1,1

rk+1
j−1,2
...

rk+1
j−1,NT

− dj−1,r,

and

Xj,4


1
0
...
0

 =
(
Xj,2


0
0
...
0

+Xj,4


1
0
...
0

+ dj+1,l

)
− dj+1,l =


lk+1
j+1,1

lk+1
j+1,2
...

lk+1
j+1,NT

− dj+1,l,

where the scalars rk+1
j−1,s, l

k+1
j+1,s, s = 1, 2, ..., NT are obtained by the formula (10),

but with
lkj,s = rkj,s = 0, s = 1, 2, ..., NT except for rkj,1 = 1.

The equation is solved numerically on each subdomain (aj , bj) only one time.
In conclusion, it is sufficient to solve the equation (2) on each subdomain

three times to construct explicitly the interface problem. The construction is
inexpensive. In total, the equation (2) is solved on each subdomain four times
in the new algorithm. Numerically, we will compare the classical and the new
algorithms in Section 6.1.

4.2. Storage of the matrix L and the vector d for massive parallel computing
Thanks to the peculiar form of the matrix L, we can build it on parallel

computers through an MPI implementation. The transpose of L is stored in
a distributed manner using the library PETSc. As we can see below, the first
block column of L is in MPI process 0. The second and third blocks columns are
in MPI process 1, and so on for other processes. The consumed memory for each
process is at most the sum of 4 blocks. The size of each block is NT ×NT . Each
block contain (NT + 1) ×NT /2 non zero elements according to Propositions 2
and 1.
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L =



MPI 0︷︸︸︷ MPI 1︷ ︸︸ ︷ MPI 2︷ ︸︸ ︷ MPI N−2︷ ︸︸ ︷ MPI N−1︷︸︸︷
X2,1 X2,2

X1,4

X3,1 X3,2

X2,3 X2,4

· · ·
X3,3 X3,4

XN−1,1 XN−1,2

· · ·
XN,1

XN−1,3 XN−1,4



.

(27)
The vector d can also be stored in PETSc form. The first block is in MPI

process 0, the second and the third are in MPI process 1, and so on. The last
block is in MPI process N − 1. Each MPI process contain at most 2 × NT
elements.

d =
(
dT1,r︸︷︷︸

MPI 0

, dT2,l, d
T
2,r︸ ︷︷ ︸

MPI 1

, · · · , dTj,l, dTj,r︸ ︷︷ ︸
MPI j − 1

, · · · , dTN,l︸︷︷︸
MPI N − 1

)T
.

5. Preconditioned algorithm for general potentials

In Section 3, we have established the interface problem (13) for Schrödinger
equation with time dependent or nonlinear potential. However, it is not pos-
sible to construct the interface matrix L without much computation since the
Propositions 3 and 4 only hold for time independent linear potential. Thus, the
new algorithm is not suitable here. Instead, to reduce the number of iterations
required for convergence, we propose to add a preconditioner P−1 (P is a non
singular matrix) in (13) which leads to the preconditioned algorithm:

1. for V = V (t, x),

gk+1 = I − P−1(I −R)gk, (28)

P−1(I − L) = P−1d, (29)

2. for V = f(u),
gk+1 = I − P−1(I −Rnl)gk. (30)

We now turn to explain which preconditioner is used. The interface problem
for the free Schrödinger equation (without potential) is

gk+1 = L0g
k + d,

where the symbol L0 is used to highlight here the potential is zero. The trans-
mission condition is the same as that for (1). We propose for time dependent
or nonlinear potential the preconditioner as

P = I − L0.
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We have two reasons to believe that this is a good choice.

1. The matrix L0 can be constructed easily since a zero potential is indepen-
dent of time. Therefore, the construction of L0 only needs to solve the free
Schrödinger equation two times on each subdomains. This construction is
therefore scalable.

2. Intuitively, the Schrödinger operator without potential is a roughly ap-
proximating of the Schrödinger operator with potential:

i∂t + ∂xx ≈ i∂t + ∂xxu+ V ,

thus

P = I − L0 ≈ I − L, P = I − L0 ≈ I − (Rnl −Rnl · 0).

Next, we present the application of preconditioner. The transpose of P is
stored in PETSc form. For any vector y, the vector x := P−1y is computed by
solving the linear system

Px = (I − L0)x = y ⇔ xTPT = yT . (31)

We do not explicitly construct the matrix P−1 as the inverse of a distributed
matrix numerically is too expensive. The linear system (31) is solved by the
Krylov methods (Gmres or Bicgstab) initialized by zero vector using the library
PETSc. We will see in Section 6.3 that the computation time for applying this
preconditioner is quite small compared with the computation time for solving
the Schrödinger equation on subdomains.

6. Numerical results

The physical domain (a0, b0) = (−21, 21) is decomposed into N equal subdo-
mains without overlap. We fix in this section the final time to T = 0.5, the time
step to ∆t = 0.001 and the mesh size to ∆x = 10−5 without special statement.
The potentials that we consider in this part and the corresponding initial data
are

1. time independent linear potential: V = −x2, u0(x) = e−(x+10)2+20i(x+10),
2. time dependent linear potential: V = 5tx, u0(x) = e−(x+10)2+20i(x+10),
3. nonlinear potential: V = |u|2, u0(x) = 2sech

(√
2(x+ 10)

)
e20i(x+10),

which give rise to solutions that propagates to the right side and undergoes
dispersion. Since the matrices Mj , Sj and Mj,Wn

are both tri-diagonal sym-
metric in one dimension, the consumed memory is low. It is thus possible to
solve numerically the Schrödinger equation on the entire domain (0, T )×(a0, b0)
with a standard machine. The modulus of solutions at the final time t = T are
presented in Figure 2 for V = −x2 and V = |u|2.

We use a cluster consisting of 92 nodes (16 cores/node, Intel Sandy Bridge
E5-2670, 32GB/node) to implement the SWR algorithms. We fix one MPI
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Figure 2: |u0,0| et |u0,NT | on (a0, b0), V = −x2 (left) and V = |u|2 (right), ∆t = 0.001,
∆x = 10−5.

process per subdomain and 16 MPI processes per node. The communications are
handled by PETSc and Intel MPI. The linear systems (9) and (12) related to the
Schrödinger equation are solved by the LU direct method using the MKL Pardiso
library. The convergence condition for our SWR algorithm is ‖ gk+1 − gk ‖<
10−10. Two types of initial vectors g0 are considered in this article. One is
the zero vector, another is the random vector. According to our tests, the zero
initial vector makes the algorithms to converge faster, but obviously it could not
include all the frequencies. As mentioned in [19], using the zero initial vector
could give wrong conclusions associated with the convergence. Thus, the zero
vector is used when one wants to evaluate the computation time, while the
random vector is used when comparing the transmission conditions.

6.1. Comparison of classical and new algorithms
We are interested in this part to observe the robustness of the algorithms, to

know whether they converge or not for the time independent potential V = −x2.
Similarly, we will observe the computation time and the high scalability of the
algorithms. We denote by T ref the computation time required to solve numer-
ically on a single processor the Schrödinger equation on the entire domain and
T cls (resp. T new) the computation time of the classical (resp. new) algorithm
for N subdomains. We test the algorithms for N = 2, 10, 100, 500, 1000 subdo-
mains with the transmission condition S2

0 . The reason for using S2
0 for these

tests will be explained in Remark 1. The initial vector here is the zero vector.
First, the convergence history and the computation time for the algorithms

are shown in Figure 3 and Table 1 where the fixed point method is used on the
interface problem. The algorithms converge for 500 sub domains, but not for
1000 sub domains.

Next, we use the Krylov methods (Gmres or Bicgstab) on the interface prob-
lem instead of the fixed point method. Table 2 present the computation time.
As we can see, the use of Krylov methods allows to obtain robust scalable SWR
algorithms. The algorithms converge for 1000 subdomains and are scalable up
to 500 subdomains. Besides their computation times are lower than the ones of
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Figure 3: Convergence history, N = 2, 100, V = −x2, ∆t = 0.001, ∆x = 10−5, Fixed point.

Table 1: Computation time in seconds, V = −x2, ∆t = 0.001, ∆x = 10−5, Fixed point.

N 2 10 100 500

T ref 403.56

T cls 773.07 2937.77 359.30 284.78

Tnew 773.72 178.30 18.19 4.76

Table 2: Computation time in seconds, V = −x2, ∆t = 0.001, ∆x = 10−5, Gmres and
Bicgstab.

N 2 10 100 500 1000

T ref 403.56

Gmres
T cls 771.82 2577.51 2249.54 907.06 739.65

Tnew 777.42 177.20 18.95 6.86 8.17

Bicgstab
T cls 774.19 2760.11 679.72 799.09 845.65

Tnew 774.44 177.02 18.18 6.83 7.12
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the classical algorithm. Roughly speaking, in Table 1 and Table 2 we have

T cls = Tsub ×Niter + ...,

T new = Tsub × 4 + TLd + ...,

where Tsub is the computation time for solving the equation on one subdomain,
TLd is the computation time for solving the interface problem, “...” represent
the negligible part of computation time such as the construction of matrices for
the finite element method. If the number of subdomains N is not so large, then
Tsub � TLd and the minimum of Niter is 3 in all our tests. If the number of
subdomains N is large, then TLd ∼ Tsub and Niter � 4. It is for this reason
that the new algorithm takes less computation time. However, as the number
of subdomains increase, TLd becomes larger. Thus, the new algorithm loses
scalability if the number of subdomains is large.

In conclusion, the new algorithm with Krylov methods is robust and it takes
much less computation time than the classical algorithm.

6.2. Comparison of classical and preconditioned algorithms
In this part, we are interested in observing the robustness, the computation

time and the scalability of the preconditioned and non-preconditioned (classi-
cal) algorithms for time dependent potential V = 5tx and nonlinear potential
V = |u|2. We denote by Npc the number of iterations required to obtain con-
vergence with the preconditioned algorithm and Tpc the computation time of
the preconditioned algorithm. The transmission condition used in this section
is S2

0 . We use the zero vector as the initial vector g0.
First, we present in Figure 4 the convergence history for V = 5tx. If N is

not large, then there is no big difference between the classical algorithm and the
preconditioned algorithm. However, if N is large, then as at each iteration, one
subdomain communicate only with two adjacent subdomains, we can see that
the non-preconditioned algorithm converges very slowly in the first interations.
The convergence of the preconditioned algorithm improves greatly since the
preconditioner allows communication with remote subdomains. The number of
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Figure 4: Convergence history, N = 10, 1000, V = 5tx, ∆t = 0.001, ∆x = 10−5.

iterations required for convergence and the computation time are presented in
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Table 3 for N = 10, N = 100, N = 500 and N = 1000. We can see that
the preconditioner allows to decrease significantly both the number of iterations
and the computation time. The strong scalability of the classical algorithm is
very low. Indeed, the number of iterations required increases with the number
of subdomains. The preconditioned algorithm is much more scalable (up to
500 subdomains). However, it loses scalability from N = 500 to N = 1000.
There are two reasons. One is that the number of iterations required for N =
1000 is a little bit more than that for N = 500. The other one is linked to
the implementation of the preconditioner. Indeed, the time Tpc consists of
three major parts: the application of R to vectors (step 1, denoted by T1),
the construction of the preconditioner (denoted by T3c) and the application of
preconditioner (step 3, denoted by T3). We have thereby

Tpc ≈ T1 + T3c + T3. (32)

If N is not very large, T1 ∼ T3c � T3. By increasing the number of subdomains,
T1 and T3c decreases and T3 increases. Thus, if N is large, T3 is not negligible
compared to T1 and T3c. However, it is not very convenient to estimate T1

and T3 in our codes because we use the "free-matrix" solvers in the PETSc
library. To confirm our explanation, we make tests using a coarser mesh in
space (∆t = 0.001, ∆x = 10−4). The size of the interface problem (13) is
the same, thus T3 should be similar to that of the previous tests (∆t = 0.001,
∆x = 10−5). But the size of the problem on a subdomain is ten times smaller.
Thus, T1 and T3c are both smaller. The preconditioned algorithm should be less
scalable. The results are shown in Table 4. It can be seen that the computation
time Tpc for N = 1000 is larger than for N = 500 and the preconditioned
algorithm is not very scalable from N = 100 to N = 500. Despite this remark,
we could conclude from our tests that the preconditioned algorithm reduces a
lot the number of iterations and the computing time compared to the classical
algorithm.

Table 3: Number of iterations required and computation time of the classical algorithm and
the preconditioned algorithm, V = 5tx, ∆t = 0.001, ∆x = 10−5.

N 10 100 500 1000
Nnopc 17 71 349 695
Npc 17 32 31 35
T ref 6496.3
Tnopc 10123.1 3217.0 2466.5 2238.0
Tpc 10128.9 1432.7 250.0 170.7

Next, we reproduce the same tests for the nonlinear potential V = |u|2. The
convergence history is presented in Figure 5. We show the number of iterations
and the computation time in Table 5. The conclusions are quite similar.

6.3. Comparison of the transmission conditions
In this part, we compare the transmission conditions which are presented

in Section 2 in the framework of the new algorithm for V = −x2 and the
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Table 4: Number of iterations required and computation time of the classical algorithm and
the preconditioned algorithm, V = 5tx, ∆t = 0.001, ∆x = 10−4.

N 10 100 500 1000
Nnopc 17 71 349 695
Npc 17 32 26 25
T ref 507.5
Tnopc 681.9 223.8 210.2 191.2
Tpc 694.3 107.6 38.4 54.5
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Figure 5: Convergence history, N = 10, 1000, V = |u|2, ∆t = 0.001, ∆x = 10−5.

Table 5: Number of iterations required and computation time of the classical algorithm and
the preconditioned algorithm, V = |u|2, ∆t = 0.001, ∆x = 10−5.

N 10 100 500 1000

Nnopc 12 71 349 694

Npc 11 22 25 26

T ref 3200.8

Tnopc 2582.3 1332.2 1248.0 1129.7

Tpc 2446.7 408.2 117.6 83.8
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preconditioned algorithm for V = |u|2. The theoretical optimal parameter p in
the transmission condition Robin being not at hand, we seek the best parameter
numerically. We use in the subsection the random vector as the initial vector
g0 to make sure that all frequencies are present.

6.3.1. Case of linear potential
We first consider the linear potential V = −x2. We compare the number

of iterations, the total computation time to perform a complete simulation and
the computation time required (TLd) to solve the interface problem in Table
6 for N = 2 using the fixed point method, Gmres and Bicgstab methods on
the interface problem. As can be seen, the total computation times are almost
identical. The required computation time for solving the interface problem is
relatively close to zero compared with the total computation time. Therefore,
we are interested rather in the number of iterations. We can make the following
observations

1. the number of iterations required for the Robin transmission condition is
greater compared to the other three strategies,

2. in each strategy, the number of iterations is not sensitive to order,
3. for the Padé approximation strategy, the number of iterations decrease as

the parameter of Padé (m) increase.

Table 6: Comparison of transmission conditions for N = 2, V = −x2, ∆t = 10−3, ∆x = 10−5.

Fixed point Gmres Bicgstab

Strategy Niter TLd Ttotal Niter TLd Ttotal Niter TLd Ttotal

SM
0

S2
0 6 0.005 775.7 5 0.002 774.2 3 0.002 773.8

S3
0 6 0.002 774.2 5 0.002 779.6 3 0.002 773.3

S4
0 6 0.002 769.0 5 0.002 774.2 3 0.002 773.6

SM
1

S2
1 6 0.002 773.4 5 0.002 773.2 3 0.002 773.8

S4
1 6 0.002 773.9 5 0.002 773.6 3 0.002 774.5

SM
2

S2,20
2 191 0.062 773.3 28 0.010 774.5 16 0.011 773.1

S2,50
2 76 0.025 773.6 27 0.010 773.3 15 0.010 773.6

S2,100
2 39 0.013 776.3 23 0.008 775.2 13 0.009 773.6

S4,20
2 181 0.059 769.9 28 0.010 774.6 15 0.010 773.6

S4,50
2 77 0.025 776.0 27 0.010 773.5 15 0.010 773.3

S4,100
2 39 0.013 775.4 23 0.008 773.8 13 0.009 774.8

Robin∗ 1112 0.360 774.7 47 0.017 776.4 27 0.018 777.4

∗ the parameters for the transmission condition Robin are p = 44 (fixed point), p = 5
(Gmres) and p = 5 (Bicgstab).

We make the same tests for N = 500, the results are shown in Table 7. We
could see that
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1. in each strategy, the number of iterations is not sensitive to order,
2. for the Padé approximation strategy, if the parameter m is small, then the

algorithm is not robust,
3. the Krylov methods (Gmres and Bicgstab) could not always reduce the

number of iterations.

Table 7: Comparison of transmission conditions for N = 500, V = −x2, ∆t = 10−3, ∆x =
10−5.

Fixed point Gmres Bicgstab

Strategy Niter TLd Ttotal Niter TLd Ttotal Niter TLd Ttotal

SM
0

S2
0 357 0.775 4.68 1023 2.883 6.91 368 1.646 5.51

S3
0 337 0.734 4.62 977 2.620 6.55 345 1.831 5.77

S4
0 337 0.733 4.65 978 2.681 6.54 350 1.739 5.73

SM
1

S2
1 341 0.745 4.62 1010 2.364 6.20 353 2.102 6.00

S4
1 340 0.743 4.63 1023 3.454 7.19 351 2.225 6.06

SM
2

S2,20
2 - 1240 3.368 7.34 440 2.626 6.64

S2,50
2 - 997 2.320 6.30 352 2.240 6.16

S2,100
2 336 0.735 4.62 998 3.055 7.03 333 1.603 5.62

S4,20
2 - 1216 3.349 7.31 464 2.044 6.05

S4,50
2 - 1043 3.907 7.85 336 1.756 5.63

S4,100
2 336 0.733 4.60 1024 2.424 6.35 334 1.989 5.95

Robin∗ 1690 3.628 7.52 1060 3.000 6.80 318 1.41 5.32

∗: the parameters for the transmission condition Robin are p = 45 (fixed point), p = 19
(Gmres) and p = 6 (Bicgstab).
-: the algorithm does not converge before 2000 iterations.

We could conclude that if the number of subdomains N is not very large, the
potential strategy in order 2 with Bicgstab method on the interface problem is
a good choice. If N is large, the Bicgstab method also allows most of the
algorithms to converge, but it is difficult to have a general conclusion for the
transmission conditions in the framework of new algorithm.

6.3.2. Case of nonlinear potential
Now we turn to compare the transmission conditions for the nonlinear poten-

tial V = |u|2 in the framework of the preconditioned algorithm. First, we study
the influence of the parameter p in the Robin transmission condition. The num-
ber of iterations and the computation time are shown in Table 8. It is clear that
the convergence is not sensitive to this parameter. Next we compare the three
strategies. The numericals results are presented in Table 9. The transmission
conditions S4

0 , S4
1 and S4

2 include the evaluation of f(u). We don’t find a suit-
able discretization of this term such that the continuity of vj at the interfaces
ensure the continuity of ∂njf(u). Thus we could not obtain the solution uj,n
that satisfy uj,n = Rju0,n. We could see that the number of iterations is not

26



Table 8: Influence of parameter p in the transmission conditions Robin, N = 2, 10, 100,
V = |u|2, ∆t = 0.001, ∆x = 10−4.

Robin

N = 2 N = 10 N = 100

p Niter Ttotal Niter Ttotal Niter Ttotal

5 9 1042.6 12 257.9 21 55.7

10 8 920.3 11 230.9 22 50.6

15 8 920.3 11 228.7 22 46.7

20 8 914.5 11 226.1 22 43.7

25 8 913.0 11 226.4 22 43.6

30 8 919.2 11 227.6 22 43.9

35 8 922.1 11 231.8 22 44.4

40 8 922.8 12 250.2 22 45.0

45 8 921.7 12 252.5 22 46.0

50 8 928.3 12 253.3 22 46.7

sensitive to the transmission condition and its order. However the computation
time for the Padé strategy is greater than other strategies. On each subdomain,
the non linearity is approximated by a fixed point procedure (see formula (12)).
This fixed point procedure converges more slowly using the Padé strategy than
the other strategies. This observation is also found in [14]. In conclusion, in
the nonlinear case, we also think that the potential strategy of order 2 (S2

0) is
a good choice.

Table 9: Comparison of transmission conditions for N = 2, 10, 100, V = |u|2, ∆t = 0.001,
∆x = 10−4.

N = 2 N = 10 N = 100

Niter Ttotal Niter Ttotal Niter Ttotal

SM
0

S2
0 8 909.5 11 229.1 22 40.6

S3
0 7 802.1 10 205.8 22 41.6

SM
1 S2

1 7 802.3 10 205.6 22 41.4

SM
2

S2,20
2 7 1732.5 10 572.0 22 128.6

S2,50
2 7 4042.9 10 1342.3 23 310.3

S2,100
2 7 7900.5 10 2640.0 22 576.0

Remark 1. As we indicated previously, we explain here our choice of trans-
mission condition: the potential strategy of order 2 (S2

0). Indeed, it seems
reasonable to consider it since

1. the algorithm is robust and the computation time for S2
0 is similar to

others transmission conditions,
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2. if N is not so large, it is one of the best choice,
3. the implementation of S2

0 is much easier than other transmission condi-
tions.

6.4. Gpu acceleration
If the number of subdomain N is not so large, then solving the Schrodinger

equation on subdomains takes most of the computation time. We move these
computations from Cpu to Gpu. In this subsection, we present the numeri-
cal experiments of Gpu acceleration. Two Gpu libraries of NVIDIA are used:
CUSPARSE (tri-diagonal solver) and CUBLAS (BLAS operations). We use 8
Gpu Kepler K20, and compare the Cpu and Gpu results for N = 2, 4, 8. We
use always 1 Gpu/MPI process. Gpu could accelerate a lot the computation as

Table 10: Cpu and Gpu computation time, Bicgstab, S2
0 , ∆t = 0.001, ∆x = 10−5, V = −x2.

N 2 4 8

TCpu 774.4 393.0 203.2

TGpu 27.90 16.13 12.54

TCpu/TGpu 18 24 16

shown in Table 10. However the algorithm on Gpu is not scalable. The reason
is that the size of problem is not large enough for Gpu. Gpu waste some of its
ability. We test a larger case only for Gpu: ∆t = 0.001, ∆x = 10−6. The results
are shown in Table 11.

Table 11: Gpu computation time, Bicgstab, S2
0 , ∆ = 0.001, ∆x = 5× 10−6, V = −x2.

N 2 4 8

TGpu 51.95 28.21 16.30

Finally, we make the same tests for the nonlinear potential in the framework
of the preconditioned algorithm. The results are presented in Table 12 and
Table 13. The conclusion is similar.

Table 12: Cpu and Gpu computation time, ∆t = 0.01, ∆x = 10−5, V = |u|2.
N 2 4 8

TCpu 373.6 526.7 316.0

TGpu 73.9 40.1 34.0

TCpu/TGpu 5 13 9
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Table 13: Gpu computation time, ∆t = 0.01, ∆x = 5× 10−6, V = |u|2.
N 2 4 8

TGpu 134.3 73.7 46.0

7. Conclusion

We proposed in this paper a new algorithm of the SWR method for the one
dimensional Schrödinger equation with time independent linear potential and a
preconditioned algorithm for general potentials. The algorithms for both cases
are scalable and could reduce significantly the computation time. Some newly
constructed absorbing boundary conditions are used as the transmission condi-
tion and compared numerically in the framework of the algorithms proposed by
us. We believe that the potential strategy of order 2 is a good choice. Besides,
we adapted the codes developed on Cpu to Gpu. According to the experiments,
the computation could be accelerated obviously.
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