Description of numerical shock profiles of non-linear Burgers' equation by asymptotic solution of its differential approximations

Abstract : An analysis of dispersive/dissipative features of the difference schemes used for simulations of the non-linear Burgers' equation is developed based on the travelling wave asymptotic solutions of its differential approximation. It is shown that these particular solutions describe well deviations in the shock profile even outside the formal applicability of the asymptotic expansions, namely for shocks of moderate amplitudes. Analytical predictions may be used to improve calculations by suitable choice of the parameters of some familiar schemes, i.e., the Lax-Wendroff, Mac-Cormack etc. Moreover, an improvement of the scheme may be developed by adding artificial terms according to the asymptotic solution.
Type de document :
Article dans une revue
International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2008, 5 (1), pp.1-16
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01127976
Contributeur : Thierry Gallouët <>
Soumis le : lundi 9 mars 2015 - 10:01:53
Dernière modification le : jeudi 9 février 2017 - 15:26:30
Document(s) archivé(s) le : lundi 17 avril 2017 - 04:50:25

Fichier

bouche.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01127976, version 1

Collections

Citation

A. V. Porubov, D Bouche, G Bonnaud. Description of numerical shock profiles of non-linear Burgers' equation by asymptotic solution of its differential approximations. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2008, 5 (1), pp.1-16. 〈hal-01127976〉

Partager

Métriques

Consultations de la notice

110

Téléchargements de fichiers

45