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Abstract

Aqueous foams are suspensions of bubbles inside aqueous phases. Their multiphasic compo-

sition leads to a complex rheological behavior that is useful in numerous applications, from oil

recovery to food/cosmetic processing. Their structure is very similar to the one of emulsions so

that both materials share common mechanical properties. Meanwhile the gas-liquid interfaces and

the presence of surfactants lead to peculiar interfacial and dissipative properties. Foam rheology

has been an active research topics and is already reported in numerous reviews. Most of them

cover rheometry measurements at the scale of the foam, coupled with interpretations at the local

- bubble or gas-liquid interface - scale. In this review we first start following this approach, then

we try to cover the multiscale features of aqueous foam flows, meaning that we emphasize here

regimes where intermediate length scales need to be accounted for or regimes fast enough regarding

internal time scales so that the flow goes beyond the quasistatic limit.
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I. INTRODUCTION

Liquid foams are comprised of gas bubbles separated by a liquid continuous phase. The

latter is generally an aqueous solution of amphiphilic molecules called surfactants, which sta-

bilise the liquid films between bubbles. Foams are characterised by structural and geometric

parameters, like the average bubble size and the polydispersity and, most importantly, the

liquid fraction φℓ. In opposition to bubbly liquids, foams are usually classified as those

bubble suspensions which are below a critical liquid fraction φc
ℓ, given by the random close

packing fraction for a disordered foam (36% in 3D [73]). Its packing is characterized by the

distance to the rigidity loss transition ∆φℓ = φc
ℓ−φℓ, where ∆φℓ = 0 corresponds to the loss

of rigidity of the foam and a transition to a dilute gas-bubble suspension. The transition

from a dilute gas-bubble suspension to a foam, called jamming transition, occurs for the

same value φc
ℓ so that we will use both terms in what follows [73].

The properties of foams are intimately related to their structure, which we briefly describe

in the static case; see e.g. Cantat et al. [16], Weaire and Hutzler [142] for extensive discussion.

At low liquid fraction, bubbles are bounded by thin films, of thickness lower than 1 µm.

Such films meet threefold along lines, the so-called Plateau borders (Fig. 1a). Plateau

borders meet fourfold at vertices (or nodes) (Fig. 1b). At equilibrium, the geometry of

this structure obeys the so-called Plateau rules [112] that films meet at 120◦, and Plateau

borders at the tetrahedral angle arccos(−1/3) ≃ 109.5◦. At finite liquid fraction, liquid

covers this “skeleton” of vertices and Plateau borders. The cross section of the Plateau

borders occupied by the liquid forms a concave triangle, of constant radius R, hence of area

(
√
3− π/2)R2. The volume of liquid at a vertex is of order R3. For not too wet a 3D foam,

most of the liquid is in the Plateau borders, whence a scaling relation between the liquid

fraction φℓ, the typical size of the bubbles a, and the radius R: φℓ ≈ R2/a2. When bubbles

are bounded by a flat wall, such is the case of 2D foams made of a bubble monolayer (Fig. 2),

the films meet the wall at right angle. For an ideal 2D foam, there is an exact relation; since

there are in average six threefold vertices around a bubble, we have: φℓ = (2
√
3− π)R2/A,

with A the average area per bubble [118].

Because of their multiscale structure, liquid foams display a complex mechanical be-

haviour: they have elastic, plastic and viscous properties. This qualifies foams as complex

fluids, like colloidal and granular suspensions, polymers, pastes, slurries and emulsions [25],
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FIG. 1. (a) Reconstruction of the Plateau border network inside a 3D dry foam by X-ray tomog-

raphy (from Lambert et al. [85]). (b) A vertex or node is defined as the fourfold junction between

four Plateau borders (image adapted from Koehler et al. [77]).

and the measurement and understanding of their complex mechanical response belongs to

the field of rheology [87, 92].

Foams share many common properties with emulsions, which are dispersions of liquid

droplets in another liquid phase. In particular, they are ruled by the same structural prop-

erties, and they are athermal systems in the sense that their microstructural items (the

bubbles or the droplets) are too big to feel thermal fluctuations, in contrast with other

complex fluids like polymers or colloidal suspensions. As a natural consequence, foams and

emulsions have a very similar rheological behaviour, and we shall henceforth mention several

examples from experimental studies on emulsions.

Foam rheology has been an active research topics for at least the past thirty years, and

there exists already many good reviews of this topic [23, 35, 62, 73, 78], which is also covered

in various book chapters [16, 134, 142]. Most of these reviews report experiments based on

rheometry, giving macroscopic measurements at the level of the foam as a whole, and their

interpretation at the local scale. Here, although we start following a similar path, we devote

a large part on local measurements, especially velocity fields. On the other hand, we have
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FIG. 2. 2D foam. (a) Monolayer of a ferrofluid foam between two glass plates. Image courtesy of

Eric Janiaud. (b) Bubble inside an ideal 2D foam. The Plateau border cross-section is formed of

three arcs of a circle of radius R that meet tangentially along the bubble faces [118].

chosen not to cover interesting subjects as the rheology of highly confined foams, found in

porous media (see e.g. [65, 122]) and microfluidics (see [97] for a review), when the foam

is reduced to organised structures or separated lamellae. We also focus on aqueous foams,

although the rheology of non-aqueous foams [128] and of Langmuir foams [24, 37], formed

at interfaces populated by insoluble surfactants in conditions of phase coexistence, would

certainly deserve a discussion.

Our manuscript is organised as follows. In Sec. II, we review rheometric measurements

on liquid foams, which have evidenced their viscoelastic and viscoplastic behaviours. In

Sec. III, we report the models that have aimed at explaining the origin of such an intricate

mechanical behaviour, from micromechanical models of elasticity, yield and dissipation to

more generic approaches. In Sec. IV, we show that when the foam is confined, the connection

between a local scale (typically that of a single bubble) and the global foam flow is not direct

and other scales come into play, either because of the friction against a confining wall or

because of the finite range of influence of individual plastic events. Finally in Sec. V, we

present the peculiar behaviour of foams as they depart from their equilibrium structure,

when they are subjected to high shear rates or high frequencies.
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II. RHEOMETRY OF FOAMS

A most classical way to probe the mechanical properties of foams is rheometry, where

foams are sheared at rate γ̇ by a rheometer in various geometries: between two planes, or

a cone and a plane, or two cylinders (the so-called Couette rheometer), at a shear stress τ

as constant as possible [87, 92]. A classical experiment in rheometry consists in subjecting

the foam to an oscillatory shear of angular frequency ω: γ = γ0 cosωt, of small strain am-

plitude γ0 ≪ 1. Measuring a harmonic stress response: τ = γ0[G
′(ω) cosωt + G′′(ω) sinωt]

gives the elastic modulus G′ and the loss modulus G′′: this is a linear viscoelastic charac-

terisation of the foam. Plotting the elastic and loss moduli as functions of the frequency,

three regimes are usually observed (Fig. 3). At intermediate frequency, G′ and G′′ display

roughly plateaus, and G′′ is usually one order of magnitude smaller than G′. Hence, foams

respond mostly elastically, but with a significant dissipation accompanying the deformation.

As low frequency, both G′ and G′′ decrease, and G′′ overtakes G′. This is a signature of the

influence of coarsening on foam rheology [22, 99]. At high frequency, G′ and G′′ increases

with a nontrivial power law of exponent 1/2 [58, 82, 91, 100].

At a frequency such that G′ and G′′ are in the plateau regime, several groups have inves-

tigated the effect of the strain amplitude [99, 100, 124–126] (Fig. 3). Below a critical strain

γc which decreases with the liquid fraction, the elastic and loss modulus are roughly con-

stant: this is a linear regime. Above γc, G
′ is a decreasing function of the strain amplitude,

whereas G′′ usually shows a maximum and overtakes G′, before decreasing with the strain

amplitude. Hence the critical strain γc is identified as a yield strain, above which the foam

start to flow.

To investigate flow regimes, many authors have measured the stress response of foams

subjected to a constant shear rate γ̇ (Fig. 4). The measurements are usually well fitted by

the Herschel–Bulkley law:

τ = τy + Aγ̇n, (1)

with a finite yield stress at vanishing shear rate which decreases with liquid fraction, and

a sublinear increase (notice that n = 1 would correspond to the so-called Bingham model).

Experiments show generally an exponent close to 0.5 [35, 98, 108, 109, 116, 137] or lower

[35, 109, 137]

Rigidity of the foam is probed by measuring quantities such as G′ and τy as functions
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a)

b)

FIG. 3. Oscillatory rheometry. a) Elastic modulus G′ (open symbols) and loss modulus G′′ (filled

symbols) as a function of the angular frequency. The sample is a Gillette foam, of bubble size 60 µm

and liquid fraction 8%. The different symbols stand for different values of the shear amplitude γ0.

From Gopal and Durian [58]. b) Elastic modulus G′ (open symbols) and loss modulus G′′ (filled

symbols) as a function of the strain amplitude. The sample is a SDS foam, slightly polydisperse,

of mean bubble radius 60 ± 5 µm and liquid fraction 15%. From Marze et al. [99].

of the liquid fraction φℓ [99, 126]. Such quantities vanish as the liquid fraction reaches the

critical liquid fraction of the rigidity loss transition (Fig 5).

These rheometric studies show that below a yield strain or a yield stress, foams behave

as viscoelastic solids, while they flow as non-Newtonian liquids above yield.
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FIG. 4. Constant shear rate rheometry. Stress as a function of the shear rate. The samples are

SDS foams, at various liquid fractions (denoted, here only, ε). From Marze et al. [98].

If edge bubbles of the foam sample are not fixed to the rheometer walls all inside the

apparatus, for instance by roughening the rheometer walls with sandpaper, there is a certain

amount of wall slip that has to be corrected to correctly interpret the measurements [98, 116].

If slip occurs, as for foams confined by smooth walls, there is an extra frictional stress

depending on the slip velocity.
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FIG. 5. Adapted from [126]. Top: The yield stress τy (here σy) or its dimensionless value τy/(σ/a)

(here σy/(σ/R)) as a function of the packing fraction φ = 1 − φℓ. The solid line, proportional to

∆φ2
ℓ , represents the empirical results found for monodisperse emulsions [101]. Bottom: The shear

modulus G′ (here G, circles) or its dimensionless value G′/(σ/a) (here G/(σ/R)) as a function of

the packing fraction φ = 1−φℓ. The continuous lines represent the Mason’s formula, ∝ (1−φℓ)∆φℓ

[100], while the dashed line is Princen’s formula, ∝ (1− φℓ)
1/3∆φℓ [115].

III. LOCAL ORIGINS AND MODELLING OF FOAM RHEOLOGY

A. Visualisation of elasticity and plasticity

The local manifestations of elasticity and plasticity are easy to visualise in 2D foams

(Fig. 6). At equilibrium, bubbles are in average undeformed; they appear as polygons

(or polyhedra in 3D), with more or less rounded vertices depending on the liquid fraction

(Fig. 6a). Under forcing, they can deform (Fig. 6b). The total area of their bounding inter-

face, hence their surface energy, then increases: they store some elastic energy, proportional

to the surface tension. Above a certain level of deformation, they undergo topological re-
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arrangements, the so-called T1 events. An elementary T1 involves always four bubbles in

2D, and in most cases in 3D [7, 120, 121]. During such an event, two bubbles lose contact,

whereas two of their neighbours come into contact (Fig. 6c, d and e). This process leads to

a saturation of the stored elastic energy, hence to the existence of a yield stress.

FIG. 6. (a) Snapshot of undeformed bubbles in a dry 2D foam (liquid fraction 0.3%). (b) Deformed

bubbles, storing elastic energy. Illustration of a plastic rearrangement T1, whereby bubbles labelled

1 and 2 lose contact whereas 3 and 4 come into contact; (c) before the T1, (d) at the instant of

the T1, with a transient fourfold vertex; (e) after the T1.

B. Models of elasticity and yield

The elastic properties of foams are linked to the variation of their total interfacial area.

Batchelor [3] showed that the elastic stress calculated over a representative volume element

of volume V equals: τ elij = σ
V

∫

(δij − ninj)dS, where the integral is computed over all the

gas/liquid interfaces comprised inside V . Hence for a monodisperse foam with a the radius

of the undeformed bubbles, the elastic modulus and yield stress scales as σ/a; as an order

of magnitude, for σ ≈ 3 × 10−2 N/m and a ≈ 10−4 m, this gives G′ ≈ 3 × 102 Pa. This is
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much lower than the bulk modulus of foams which, since foams are constituted mostly of

gas, is of the same order of magnitude as the ambient pressure, 105 Pa. As a consequence,

foams can be considered as incompressible in most cases.

To predict the exact value of the shear modulus and yield stress, and their dependence on

liquid fraction, several authors starting from Princen [113] have considered the quasistatic

deformation of the perfectly ordered and monodisperse 2D hexagonal foam, invariant along

the third direction. If the liquid fraction is zero, the foam is a honeycomb lattice (Fig. 7).

It is subjected to an external strain (simple shear, or elongation), and the midpoints of all

edges are assumed to follow the applied strain. The position of the vertices then follows

from the Plateau rule: three edges meet at equal angles of 120◦. This enables to compute

the structure at any strain step (Fig. 7), hence the elastic stress as a function of strain. In

particular, this gives the shear modulus as G′ = dτxy/dγ|γ=0. The calculations show that

G′ = σ
√
3/6a, whatever the relative orientation of the lattice and the shear [75]. Here (and

only here) a stands for the side length of a regular hexagon.

xy

FIG. 7. Evolution of a honeycomb lattice subjected to a simple shear γ (here, aligned with the x

direction). From left to right, γ = 0; 1/
√
3; 2/

√
3, where the T1 occurs; and relaxed state after

the T1.

Moreover, the calculation gives the yield strain, as the strain at the moment where the

shortest of the bubble edges shrinks to zero. In the particular case where the lattice and the

shear are aligned (Fig. 7), it equals 2/
√
3, but contrary to the shear modulus, it depends

on orientation [75]. From the structure at the yield strain, the yield stress can also be

deduced; in the present case, it equals τy = σ/a
√
3, and it also depends on orientation [75].

At the yield strain, a topological rearrangement T1 occurs: the transient fourfold vertex

is unstable, and the foam spontaneously relaxes towards a new equilibrium configuration.

During this relaxation, which is not described by the quasistatic model, some energy is

dissipated, because the total surface energy decreases. The modes of dissipation then set
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the duration of the relaxation phase after a T1 [7, 46, 53, 90]. The order of magnitude of

dissipated energy per T1 is thus σa.

At finite liquid fraction, the calculation is modified by the presence of the concave triangles

at the vertices (Sec. I) [76, 113]. This barely affects the shear modulus, but strongly reduces

the yield strain and the yield stress, which vanish for φℓ = 1− π/2
√
3 ≃ 9.3% in the case of

the perfectly ordered and monodisperse 2D hexagonal foam.

In the same spirit, in 3D, Reinelt and Kraynik [120], Kraynik and Reinelt [80] and Reinelt

and Kraynik [121] have studied numerically the simple shear of ordered 3D foam structures,

notably the Kelvin foam. The qualitative conclusions remain the same, with the extra

feature that the shear modulus is anisotropic.

To model the influence of disorder on the elastic properties of foams, Derjaguin [38]

considered in a pioneering paper that the foam is an assembly of randomly oriented films,

which are sheared affinely. The shortcoming of such an approach is that it ignores the

Plateau rules, and it overestimates the shear modulus. Stamenović [133] considered a foam

constituted of an assembly of tetrahedra, satisfying to the Plateau rules, and derived a more

realistic shear modulus.

Area and edge length, polydispersity have also been considered as “perturbations” of

the ordered case [83] and measurements of shear modulus have been related to disorder

in simulations [27], but both studies are performed in 2D. The only simulations of 3D

polydisperse foam [81] reveal the role of the surface-volume mean bubble radius to account

for the effect of polydispersity. It remains a challenge to account for disorder yet retaining

Plateau rules, and promising descriptions began to appear only recently [47, 103].

The influence of the liquid fraction φℓ on the packing rigidity was first probed on emul-

sions [84, 100–102, 114, 115]. Regarding the yield stress, Princen suggested an extension in

3D [114] of its 2D geometrical model [113], leading to τy ∝ σ/a×φ
1/3
ℓ F̃max(∆φℓ), where F̃max

is the dimensionless contribution per drop to the yield stress and is expected to vary from

0 at the jamming transition, ∆φℓ = 0, to a maximal value for φℓ = 0. Both Princen [114]

and Mason et al. [101] found empirically that F̃max ∼ ∆φ2
ℓ for their emulsions. Under the

same geometrical considerations, Princen and Kiss [115] deduced an expression of the shear

modulus G′ versus the liquid fraction as G′ ∝ σ/a× (1− φℓ)
1/3∆φℓ. Lacasse et al. [84] sug-

gested a model based on individual interactions between droplets. On the assumption of an

anharmonic potential between droplets in contact, they found G′ ∝ σ/a×(1−φℓ)∆φℓ which
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was in better agreement with their experiments on emulsions, but also with experiments on

foams performed latter on [126] (Fig. 5).

C. Origins of dissipation

1. Bulk dissipation

FIG. 8. Bubble friction inside a liquid foam, from Tcholakova et al. [137]. (a) Images of the

process of bubble friction of bubbles passing along each other in sheared foam. (b) Schematic

representation of the relative motion of planes of bubbles sliding along each other and of the

process of film formation and disappearance between two bubbles.

Contrary to elasticity, there is no clear consensus about the origin of dissipation in foams,

owing to the complex dynamics of surfactants [86], which can lead to many different modes

of dissipation [13]. Here, we discuss only two limiting boundary conditions at the gas/liquid
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interfaces: free shear, and no-slip.

Let us examine first the simplest free shear case, where the origin of dissipation is yet

quite subtle [119, 129]. It is related to the gradient of capillary pressure between the curved

Plateau borders and the flat films. At equilibrium, this capillary suction from the Plateau

borders is balanced by the disjoining pressure, arising from repulsive interactions between

the two interfaces bounding the films (see e.g. [63, 135]), which sets the thickness of soap

films at rest of a few tens of nanometers. When the foam flows, the situation changes and

the capillary suction is balanced by hydrodynamic forces. Assuming a relative velocity U

between a film of thickness h and a Plateau border or radius R, the flow is driven by the

capillary pressure gradient over a transition zone of extent ℓ: σ/Rℓ, which balances the

viscous term: ηU/h2, assuming h ≪ ℓ, and with η the viscosity of the solution. Together

with the scaling of the curvature of the transition region: 1/R ≈ h/ℓ2, this imposes the

following scalings: ℓ ≈ RCa1/3 and h ≈ RCa2/3, with Ca = ηU/σ the capillary number.

The dissipated power per unit length is thus of order η(U/h)2hℓ ≈ ηU2/Ca1/3. Hence, the

dissipated power per unit volume of foam is ηU2/Ca1/3/a2 ≈ η(σ/ηγ̇a)1/3γ̇2, since U ≈ γ̇a.

Hence, in the frame of this approach, the viscous stress scales as τv(γ̇) ≈ (σ/a)1/3(ηγ̇)2/3.

In the opposite case of no-slip boundary condition, bubbles entrain their surround-

ing interfaces at their own velocity. This gives rise to a strong shear inside the appear-

ing/disappearing films between bubbles sliding past each other (Fig 8). This case was

treated in [34, 137], who proposed a different scaling: τv(γ̇) ≈ σCa0.465(1 − φℓ)
5/6/aφ0.5

ℓ , in

good agreement with their experiments and where the small deviation from the exponents

1/2 regarding Ca is due to a geometrical factor. Considering both the foam films and the

meniscus region, the authors derive a semiempirical formula for rigid interfaces considering

the total viscous stress as a superposition of the friction in both regions [137]

τv(γ̇) ≃
σ

a

[

0.7Ca0.47
(1− φℓ)

5/6

φ0.5
ℓ

+ 8Ca0.7
(1− φℓ)

5/6

φ0.15
ℓ

]

,

Experimentally, this formula works quite well for emulsions. For foams, dissipation inside

the meniscus region seems overestimated and effect of the foam films is always dominant.

The authors suggest that the no-slip boundary condition does not hold in the meniscus

region, which decreases locally the shear [137].

Both these predictions of the viscous stress are sublinear in shear rate, in qualitative

agreement with the experiments. This comes from the fact that the film thickness, over which
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the liquid is sheared and dissipates energy, is determined by a balance between capillarity

and hydrodynamics, and thus increases with its velocity relative to the reservoir from which

it is extracted. This result is known as Frankel’s law [107] for films withdrawn from a pool

of solution, and it has been shown to apply also between a film and a Plateau border, either

indirectly [8] or directly [130].

As mentioned in Sec. II, most experiments report exponents of order 1/2, or lower,

for the dependence of the viscous stress on shear rate. As already pinpointed by Princen

and Kiss [116], this seems to rule out the assumption of free shear boundary condition at

the gas/liquid interface, which leads to an exponent 2/3, and to favour the assumption of

rigid condition. However, the crossover criterion between two such extremes remains an

open issue, and motivates currently active research in the context of soap film formation

[127, 131]. Moreover, neither of the two limiting cases of free shear and no-slip boundary

conditions explains the existence of exponents lower than 0.5. Since such exponents were

observed with surfactants having high surface elasticity and viscosity, Tcholakova et al. [137]

argued that they could be associated to surface dissipation within the gas/liquid interfaces;

however, they did not provide explicit predictions for the exponent.

2. Foam–wall friction

Foam–wall friction is the main source of dissipation in confined foams. It is closely related

to dip coating [145], and to the motion of isolated bubbles in tubes [11]. Like for foam bulk

dissipation, two limiting cases have been treated: free shear and no-slip boundary conditions.

For free shear boundary conditions, the arguments presented in Sec. IIIC 1 apply and the

resulting prediction for the shear stress at the wall is [32]: τw ≈ σCa2/3w /a, with a capillary

number based on the sliding velocity Uw: Caw = ηUw/σ. The no-slip case was treated

by Denkov et al. [33] who showed that τw ≈ σCa1/2w /a, although Cantat [15] proposed a

correction for the 1/2 exponent. These expressions of the wall shear stress have been found

to be in good agreement with experiments [32, 33]. However, here also, the crossover between

the two extreme regimes remains to be quantified and explained.
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D. Other approaches

Instead of building a model from realistic local details of the foams, several approaches

have attempted to predict from generic ingredients the rheological behaviour of foams, and

more generally of complex fluids, like the existence of a yield stress, or the scaling of the

viscous stress.

A popular approach is the Soft Glassy Rheology model [132], inspired from glass models.

It describes the evolution of a system described by an internal strain ℓi and a shear modulus

k, and a distribution of elastic energy at yield, E. As an external shear is applied, the system

can either elastically increase its strain, or plastically relax it, at a rate exp[−(E−kℓ2i /2)/x],

with x an effective temperature related to the mechanical noise within the system. This

theory captures many rheological behaviours: Newtonian fluids, power-law fluids, or yield

stress fluids, depending on the value of the mechanical noise. However, it does not describe

the full dynamics of relaxation in foams [22, 58]. Another popular approach is the Shear

Transformation Zone theory [52]. It described the evolution of the population of plastic

sites (the so-called shear transformation zones) in a sheared material. These zones have

two possible states: fluid and jammed. They are created, annihilated, and they undergo

transitions between the two states, at rates depending on the stress and strain rate. Like

the SGR theory, this model captures many rheological behaviours.

More recently, models of complex fluids have been proposed by focussing on the distance

to the jamming transition [73]. In the spirit of the so-called bubble model [48], Tighe et al.

[139] assumed that neighbouring bubbles i and j of radii Ri,j, positions ~ri,j and velocities ~vi,j

interact with an elastic force fel ∼ δαel if they overlap by an amount δ = Ri+Rj−|~ri−~rj | > 0,

and with a sliding friction force fvisc ∼ |∆~v|αvisc with ∆~v = ~vi − ~vj , where αel and αvisc

stand for the exponent of the elastic and viscous interactions. The system subjected to a

shear rate γ̇ receives a power σγ̇, which is dissipated by friction, hence the power balance

σγ̇ ∼ fvisc|∆~v|. A relation σ = gγeff is then postulated between the stress and an effective

strain γeff ∼ ∆φℓ + aγ̇/|∆~v|, with two contributions: a yield strain assumed to be of the

order of the distance to the jamming transition ∆φℓ, and a dynamic strain which is the

typical strain between plastic events, the time between two consecutive such events being

of order a/|∆~v|. The shear modulus g is assumed to scale with ∆φℓ and γeff , considering

the jamming transition as a critical point [140, 148]: g = σ/a×
√
∆φℓ × g̃(γeff/

√
∆φℓ), with
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a dimensionless function g̃ having a finite limit at 0 and g̃(x) ∼
x→+∞

x; recently, Jorjadze

et al. [67] has confirmed this leading order, but with significant corrections, from a precise

visualisation using confocal microscopy of the contacts in an emulsion. Tighe et al. [139]

predict four rheological regimes (yield stress, transition, critical and viscous) with different

scalings of the stress on both shear rate and distance to jamming. A particularly interesting

outcome of this approach is that it predicts relations between the exponents of the local

elastic and friction laws αel and αvisc, and those of the macroscopic rheological response,

and in good agreement with some experiments.

Finally, let us point out that the peculiar behaviour of the complex shear modulus of

foams and emulsions at high frequency: G∗ ∼
√
iω (Sec. II) has attracted some attention.

Liu et al. [91] have proposed that it could be the signature of the presence of “weak planes”

within the materials, along which bubbles (or droplets) slip with minimal mechanical stress.

Alternatively, Tighe [138] have related this behaviour of G∗ to the density or relaxation

modes in the material.

IV. MULTISCALE FEATURES OF FOAM FLOWS

The processes at the scale of the bubbles are crucial to understand foam rheology at

the macroscopic scale: as we have shown in Sec. III, the elastic modulus and the effective

viscosity depend on the bubble size, and the elementary plastic event involves four bubbles.

However, the connection between the sole scales of the bubble and of the foam is insufficient

to understand foam rheology in several cases. First, new length scales appear as foams

are confined in 2D. Then, we will show that several recent experimental results have been

rationalised by the introduction of another, intermediate length scale, the cooperativity

length. Finally, we will mention some specific features of strongly confined systems, when

the scales of the bubble and of the full system are of the same order of magnitude.

A. Confinement effects

1. Experiments

Since foams are opaque, many experiments have focused on 2D foams to complement

rheometric measurements with local measurements of velocity [30, 70, 89, 141], plasticity
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[36, 43], and stresses [42]. All 2D systems resort to confining the foams with plates, with

the notable exception of bubble rafts, which are dense monolayers of bubbles floating at the

free surface of a soap solution.

Except some studies of complex foam flows, around obstacles [43, 44] or in constrictions

[6, 42], most experiments have focussed on unidimensional Couette flows. A seminal study

was performed by Debrégeas et al. [30], who studied the flow of a 2D foam, confined by a

top plate, in a cylindrical Couette cell. In such a cell, the foam is placed between an inner

rotating cylinder, and an outer fixed cylinder, both with cogs to prevent slip (Fig. 9). They

reported an exponentially decaying velocity profile (Fig. 9), thus with a new localisation

length emerging. They proposed an explanation in a stochastic model, which relates plas-

tic flow to the stress fluctuations, as for what is commonly observed in granular systems,

and reproduced localisation in simulations [68]. This study triggered a lot of interest, and

different results soon appeared: Lauridsen et al. [88, 89] reported no such localisation for a

bubble raft in a cylindrical Couette cell, but rather a smooth decrease followed by a jammed

state, from the inner to the outer cylinder. This kind of velocity profile was also found in

3D emulsions in a cylindrical Couette cell [26], and was consistent with a Herschel–Bulkley

relation. However, this viewpoint was later questioned by Katgert et al. [72], who compared

the flow profiles with and without confining plates in a cylindrical Couette geometry: they

showed that there was no clear hint of a jammed region close to the outer cylinder, and

rationalised their results with nonlocal ingredients (see also Sec. IVB).

Other experiments have focussed on plane Couette geometries, where the foam is between

two parallel plates moving at opposite velocities. In this geometry, the stress is constant

across the foam, contrary to the cylindrical Couette geometry. It is actually in a plane

Couette geometry that Wang et al. [141], who studied the flow with and without confining

plate, showed that localisation appeared only in the presence of a confining plate, whereas

the flow profile remained essentially linear in the absence of confinement (Fig. 10). Katgert

et al. [70, 71] confirmed that the flow profile is localised in the presence of a confining top

plate, with a localisation length decreasing at increasing velocity and liquid fraction. They

also reported an effect of the foam polydispersity, which remains hitherto unexplained.
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FIG. 9. Cylindrical Couette geometry from Debrégeas et al. [30] (top). The velocity field exhibits

a exponential decay (bottom), with a decay length increasing with the liquid fraction (here, φ).

2. Models

Several models aimed at rationalising the effect of confining plates and the appearance

of shear bands. Janiaud et al. [64] considered simple shear flows like the plane Couette

configuration, and studied a force balance including shear elastic stress, a viscous stress

proportional to the shear rate, and an external friction force proportional to the velocity.
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FIG. 10. Plane Couette geometry from Wang et al. [141]: velocity as a function of the spanwise

coordinate y (with origin at the centre of the channel). The velocity is rescaled by that of the side

belts, and y by the bubble diameter d. Velocity field without (top) and with (bottom) an upper

glass plate.

This model was successful in explaining the existence of a localised profile in the presence

of friction, and a linear velocity profile in its absence. Clancy et al. [21] studied the same

model in cylindrical Couette geometry, and Weaire et al. [143, 144] proposed generalisations

to nonlinear laws for friction and viscous stress. Katgert et al. [70, 71] used the nonlinear

version of this model, with exponents deduced from rheometric measurements, to interpret

the velocity profiles in their experiments. In a different spirit, Cheddadi et al. [17, 19] used a

fully tensorial viscoelastoplastic model, which was successful in reproducing flows in complex
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geometries like around an obstacle Cheddadi et al. [18]. In Couette geometries, they also

reproduced the appearance of localisation and discussed transient effects [17], and suggested

that normal stress differences could play a major role of the flow profiles [19].

B. Cooperativity/nonlocal effects

1. Effect of a plastic event in the surrounding foam

The importance of plastic events in foam and emulsion rheology has long been recognised.

First, a T1 may be viewed as a local increment of plastic deformation, the plastic flow of

foams then resulting from the superposition of many T1s, such that the local rate of strain is

proportional to the rate of plastic events. Moreover, as a topological rearrangement occurs,

the neighbour swapping of four bubbles (Fig. 6c–e) acts as a quadrupole of force [110] or of

displacement [20] (Fig. 11a) on the surroundings; this has nonlocal effects in the surrounding

foam, entraining other bubbles to be displaced and redistributing the elastic stress around,

or even triggering avalanches of T1 events.

It is not yet clear how this nonlocal effect is mediated. Picard et al. [110] proposed that

the medium reacts as an elastic continuum to the quadrupole of force, with an algebraically

decaying influence. On the other hand, using Surface Evolver simulations, Cox et al. [28]

have reported an exponentially decaying influence, with a characteristic range of a few

bubble size only. Moreover, some authors have recently mentioned extremely long-range

effects, reminiscent of chain forces as in granular media, either in Surface Evolver simulations

(Fig. 11b) [51], or in experiments on 2D emulsions [40]. Overall, the important point is that

an individual T1 has an effect over a typical size ξ significantly larger than the bubble size.

2. Macroscopic consequences: nonlocal rheology

Recent studies on the flow of emulsions in a straight channel of rectangular cross-section

[59, 60] have called the Herschel–Bulkley law found in rheometry into question. This geome-

try is particularly interesting, because it enforces a linear variation across the channel of the

shear stress, which vanishes at the centre and reaches its maximum at the side walls. To-

gether with an evaluation of the shear rate from the measured velocity profile, it gives access

to the relation σ(γ̇) at the local scale. In particular, Goyon et al. [59, 60] have measured this
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FIG. 11. (a) Quadrupolar displacement field induced by a single T1. From Surface Evolver

simulations of Cox et al. [28]. (b) From Evans et al. [51]. A typical plastic zone, composed of all

cells that change topology during T1 avalanche, during a Couette simulation. The stress release

domain during the same T1 avalanche.

relation in a series of experiments on emulsions, and they have shown that it did not collapse

on a single Herschel–Bulkley law. More precisely, the deviation from the Herschel–Bulkley

flow curve obtained from macroscopic rheometry gets stronger as the driving pressure drop

and the channel width decrease (Fig. 12, top).

Actually, the Herschel–Bulkley relation is a purely local relation between the shear stress

and the shear rate, hence it overlooks both the elastic contribution to the stress, and the

aforementioned nonlocal influence of plastic events. This is at the basis of the fluidity model,

based on a kinetic theory approach [9]. It predicts that the fluidity, defined as f = γ̇/τ , is

proportional to the rate of plastic events, and follows a diffusion equation:

f = fbulk + ξ2∆f,

when it deviates from its bulk value, defined as fbulk = γ̇/τbulk, where τbulk is given by
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the Herschel–Bulkley law (1). The diffusive term quantifies in a simple way the nonlocal

influence of plastic events on their surroundings. Goyon et al. [59, 60] showed that such a

model was capable to reproduce well their experimental observations. The range of influence

ξ appearing in this equation, called the spatial cooperativity, was shown to be of the order

of a few times (typically, five) the droplet size. Moreover, the spatial cooperativity was

shown to appear only above the jamming transition, and to be an increasing function of the

packing fraction (Fig. 12, bottom).

Katgert et al. [72] studied a bubble raft under shear in a cylindrical Couette geometry,

with a gap between the two cylinders equal to approximately twenty bubble radii. Like

Goyon et al. [59, 60], they showed that local and global rheology did not match. In particular,

they observed flow in region where the shear stress is below the rheometrically determined

global yield stress. They were able to convincingly rationalise their data with the fluidity

model, and obtained the cooperativity length as a fitting parameter: ξ/〈d〉 = 3 with d the

bubble diameter. They claimed that ξ encodes the spatial extent of plastic rearrangements.

Hence, the fluidity model provides a convenient framework to rationalise the confined flow

of complex fluids.

However, at least two points remain unclear and deserve further investigation. The first

is the boundary condition at solid walls, and the role of roughness. As a matter of fact,

the slip velocity was let as a free fitting parameter, which certainly improves the agreement

between the measurements and the predictions from the fluidity model, but does not provide

any insight on the role of the walls. Only recently, Mansard et al. [94] explored the role

surface boundary conditions for the flow of a dense emulsion. They show that both slippage

and wall fluidisation depend non-monotonously on the roughness, a behaviour that has been

interpreted with a simple model invoking the building of a stratified layer and the activation

of plastic events by the surface roughness. Second, the fluidity parameter f has not been

yet convincingly related to an independent measure of the local density of plastic events. In

experiments, only indirect indications of such a relation have been proposed, based on the

correlations of the fluctuations of the shear rate [66]. Using numerical simulations based on

the bubble model [48], Mansard et al. [95] were able to measure independently the fluidity

and the density of plastic events, but they show that the two quantities are not proportional;

more precisely, the rearrangement rate was found to be a sublinear power (with an exponent

0.4) of the fluidity.
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FIG. 12. Non local rheological law Goyon et al. [59]. Top left: shear stress as a function of the

shear rate in Couette rheometer of wide gap (1.8 cm). The different colours stand for different

rotation rates. All the data collapse on a single master curve, described by a Herschel–Bulkley

relation. Inset: corresponding velocity profiles across the rheometer. Top right: shear stress as

function of the shear rate across a narrow channel (width 0.25 mm), the shear rate being deduced

from the measured velocity profiles across the channel (inset). The different colours stand for

different pressure drops. The stress-shear rate relations do not collapse anymore onto a single

curve. Bottom: cooperativity length, extracted from a fit of the velocity profiles with the fluidity

model, as a function of the packing fraction φ = 1− φℓ.
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V. LARGE SHEAR RATES AND FREQUENCIES

A. Beyond the quasistatic limit

As long as the shear rate remains much lower than the duration td of the relaxation

after a T1 (Sec. III B), foam rheology is quasistatic is the sense that the structure remains

most of the time at equilibrium, the Plateau rules being satisfied. The rheology of foam

when departing from this quasistatic limit has been studied experimentally first by Gopal

and Durian [57], coupling rheometric measurements in a Couette cell with diffusive wave

spectroscopy. They have showed the existence of three regimes: as very low shear rate,

a regime dominated by coarsening-induced rearrangements, which has been later studied

in details by Cohen-Addad et al. [22]; at intermediate shear rate, a regime dominated by

shear-induced rearrangements; and at large shear rate, a regime compatible with a laminar

flow of the foam, compatible with a smooth, continuous motion of the bubbles. The latter

transition was found to take place a shear rate of order γc/td, with γc the yield strain.

Interestingly, td ≈ 0.1 s was also found to set the transition where the dynamic contribution

of the stress overcomes the yield stress in the Herschel–Bulkley law (1): τ/τy = 1+(tdγ̇)
n in

good approximation; but this simple picture breaks down at even larger shear rates. Later

Rouyer et al. [123] studied the onset of yielding in a shear startup experiment, i.e. the

imposed strain γy at which a significant rate of rearrangements begin to occur, which is the

signature of the solid-like to a liquid-like behaviour. They found a strong dependence of this

strain on the shear rate, of the form γy = γc + t′dγ̇, with γc = 0.05 and t′d = 1 s. Once again,

this behaviour was ascribed to the relaxation after a T1. Recently, Marmottant and Graner

[96] have proposed a simple toy model to reproduce this kind of behaviour, and its effect on

the stress vs. shear rate curve.

However, in these 3D experimental studies, there is no direct link between the shear rate

at which a change of flow behaviour is observed, and the local relaxation towards equilibrium

of the structure after a T1. In order to access locally to the effect of the relaxation and the

structure of the foam at high shear rate, 2D experiments, simulations and calculations have

been proposed. In 2D experiments and in some simulations like the viscous froth model [74],

the dissipation is dominated by the friction between the foam at confining walls (Sec. IIIC 2)

instead of the viscous stress, and it is the velocity, rather than the shear rate, that controls
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the departure from the quasistatic limit. At finite velocity, distorted shapes of bubbles or

films are observed in experiments (Fig. 13a,b) [42, 45] and simulations [29, 49], with effects

to delay the onset of T1s [49] and to modify the elastic stress [42]. If the resulting foam–wall

friction overcomes surface tension, the foam even ruptures [1, 2, 4]. In some other simulations

[14] and calculations [61, 79], the effect of shear rate is accounted for by a modification of

the surface tension of the films, proportional to their extension rate, and the departure from

quasistaticity comes from an imbalance in surface concentration. There also, the elastic

stress is shown to be an increasing function of the shear rate, associated to bubble shape

distortion and to delayed T1s (Fig. 13c). Hence, the increase of shear stress with shear rate

contains two contributions: a viscous stress, coming from the dissipation processes within

the foam structure, and also an increase of the elastic stress beyond its quasistatic value.

These two contributions may be intertwined, especially if the surface tension entering the

elastic stress is modified by interfacial compression or dilatation [14].

B. High frequency: waves in foams

Oscillatory rheometry is usually limited to 100 Hz. The domain of higher frequencies

has been seldom explored, either to extended rheometry at higher frequencies, or to study

acoustics in foams. Recently, Wintzenrieth et al. [146] exerted shear waves inside a Gillette

foam using a vibrating blade. Using diffusive wave spectroscopy, they were able to extract

the complex shear modulus, and they showed that the relationship G∗ ∼
√
iω holds up to

1.3 kHz. Erpelding et al. [50] insonified a Gillette foam placed in a cuvette for frequen-

cies between 0.4 and 10 kHz, and showed, also by diffusive wave spectroscopy, that the

acoustically-forced foam is sheared in a thin layer close to the cuvette boundaries; they also

used the relation G∗ ∼
√
iω to interpret their results. Hence, this relationship seems quite

robust towards high frequencies.

Acoustic forcing is another way to probe foam rheology in a less conventional way that

foam rheometry, but it is complementary, because of the higher range of frequency and

because it is sensitive to compressibility, which is usually neglected in rheology. Most of the

existing experimental studies reported speeds of sound of order c = 50 m/s [54, 55, 106], close

to the so-called Wood model [147]. The latter applies in the limit where the bubble size is

much smaller than the acoustic wavelength, and treats foams as an effective medium, which

25



FIG. 13. (a) Staircase foam (solution of dish-washing Fairy liquid at 0.4% concentration) flowing

from left to right in a microchannel (width 7 mm, depth 0.5 mm, velocity 1.5 cm/s) [45]. The films

do not meet the side walls at right angles. (b) Hexagonal foam (SLES/CAPB/MAc mixture with

0.4% weight of MAc, see Golemanov et al. [56]) in a wide channel of depth 2 mm flowing from left

to right and bubble area 15 mm2. The films do not meet at 120◦, and the hexagons are distorted.

(c) Shear stress as a function of imposed shear strain on a Princen-like model, with a surface

tension varying with the length of the films, and relaxing towards equilibrium with a relaxation

time [61]. The Deborah number De is the product of the shear rate and of the relaxation time of

the surfactant. As De increases, the T1s are delayed, and the average shear stress increases.

density ρeff and compressibility χeff are given by the mixture law, i.e. averages of those of

the gas and liquid phases, weighted by their respective volume fractions: c = (ρeffχeff)
−1/2.

However, much higher speeds of sound, of order 200 m/s, were also measured [105]. Another

model was then proposed by Kann [69], who considered the foam as an assembly of thin

soap films (of thickness h) surrounded by air, and derived: c = cg/(1+ρℓh/ρga), with cg the

speed of sound in the gas, ρℓ the density of liquid and ρg that of gas. Moreover, some studies

reported a resonant behaviour [5, 41]. Recently, these seemingly contradictory results were

explained in a unified framework by Pierre et al. [111]. They showed experimentally and

theoretically that Wood’s model is the limit of low frequencies and small bubbles, Kann’s

model is the limit of high frequencies and large bubbles, and that there is a resonance

in between, with a maximum of attenuation. This was explained by considering that the
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liquid contained within the foam is distributed either in thin soap films, or in much thicker

Plateau borders and vertices. In particular, while all these elements vibrate in phase with

the pressure wave at low frequency (and small bubble size), which is the implicit assumption

justifying the use of an average density in Wood’s model, the inertia of the Plateau borders

and vertices is such that their vibration amplitude becomes negligible with respect to that

of the films at high frequency (and large bubble size), justifying Kann’s model in this limit.

The dissipative properties of foams, discussed in Sec. IIIC, are also used to mitigate the huge

pressure waves associated to shocks, blasts and explosions [12, 31, 117], although it is still

unclear which is the dominant dissipative mechanism at stake in such extreme conditions.

VI. CONCLUSIONS

The local mechanisms dominating dissipation in foams still remain elusive. Notably, more

research is needed to understand the precise links between surfactant dynamics (namely,

their surface elasticity and their exchanges between interfaces and bulk) and macroscopic

measurements of dissipation, such as the loss modulus.

There is still a lack of data at the local scale in the bulk of a 3D foam. Time and space-

resolved measurements of the deformations, elastic stresses, and distribution of plastic events

still remains an experimental challenge. The progress of fast X-ray tomography [93, 104]

and confocal microscopy (at least for index-matched emulsions) [66, 67] brings some hope

that this challenge will be overcome in the near future.

Finally, if most of the research focuses on interpreting rheometry measurements at the

scale of the foam with considerations at the microstructure scale, little is known about the

effect of the flow on the microstructure and its potential feedback. Regarding emulsions,

this question was already raised by Taylor [136] in the context of the formation of emulsions.

Droplets can either break [39] or coalesce [10] due to the interaction with the flow. Such

coupling might be very relevant for foams deformed at high shear rates.
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[10] N. Bremond, H. Doméjean, and J. Bibette. Propagation of drop coalescence in a two-

dimensional emulsion: a route towards phase inversion. Phys. Rev. Lett., 106:214502, 2011.

[11] F. P. Bretherton. The motion of long bubbles in tubes. J. Fluid Mech., 10:166–188, 1961.

[12] A. Britan, M. Liverts, and G. Ben-Dor. Mitigation of sound waves by wet aqueous foams.

Colloids Surf. A, 344:48–55, 2009.

28



[13] D. M. A. Buzza, C. Y. D. Lu, and M. E. Cates. Linear shear rheology of incompressible

foams. J. Phys. II France, 5:37–52, 1995.

[14] I. Cantat. Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical

simulation. Soft Matter, 7:448–455, 2011.

[15] I. Cantat. Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams. Phys.

Fluids, 25:031303, 2013.

[16] I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, and A. Saint-
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[125] F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S. M. Fielding. The large ampli-

tude oscillatory strain response of aqueous foam: Strain localization and full stress Fourier

spectrum. Eur. Phys. J. E, 27:309–321, 2008.

[126] A. Saint-Jalmes and D. J. Durian. Vanishing elasticity for wet foams: Equivalence with

emulsions and rol of polydispersity. J. Rheol., 43:1411–1422, 1999.

[127] L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio. What is the mechanism of

soap film entrainment? Langmuir, 27:13406–13409, 2011.

[128] L. L. Schramm. Foams: Fundamentals and Applications in the Petroleum Industry. American

Chemical Society, 1994.

[129] L. W. Schwartz and H. M. Princen. A theory of extensional viscosity for flowing foams and

concentrated emulsions. J. Colloid Interface Sci., 118:201–211, 1987.

36



[130] J. Seiwert, M. Monloubou, B. Dollet, and I. Cantat. Extension of a suspended soap film: a

homogeneous dilatation followed by new film extraction. Phys. Rev. Lett., 111:094501, 2013.

[131] J. Seiwert, B. Dollet, and I. Cantat. Theoretical study of the generation of soap films: role

of interfacial visco-elasticity. J. Fluid Mech., 739:124–142, 2014.
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