Skip to Main content Skip to Navigation
Conference papers

Approche bayesienne des modèles à équations structurelles utilisant l'expansion paramétrique

Abstract : Structural Equation Models with latent variables (SEM) are multivariate models usedto model causality relationships in data (observed variables), such that the correlationstructure of the observed variables is transferred into the correlation structure of thelatent variables. A Bayesian approach of SEM is proposed based on the analysis of thecovariance matrix of latent variables using parameter expansion to overcome identifiabilityissues. This paper is applied to the estimation of a SEM modelling a measurement processof water pollutants.
Complete list of metadatas

Cited literature [7 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01125869
Contributor : Laboratoire Cedric <>
Submitted on : Sunday, March 22, 2020 - 5:06:52 PM
Last modification on : Wednesday, March 25, 2020 - 1:40:25 AM

File

art_2093.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01125869, version 1

Collections

Citation

Séverine Demeyer, Jean-Louis Foulley, Nicolas Fischer, Gilbert Saporta. Approche bayesienne des modèles à équations structurelles utilisant l'expansion paramétrique. 43 émes Journées de Statistique, Jun 2011, Tunis, Tunisie. ⟨hal-01125869⟩

Share

Metrics

Record views

87

Files downloads

5