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Structural Equation Models with latent variables (SEM) are hypothetical constructs used
to represent causality relationships in data, where the observed correlation structure is
transferred into the correlation structure of latent variables. In this paper a Bayesian analysis
of SEM is proposed using parameter expansion to overcome identifiability issues. An original
use of posterior draws from latent variables is proposed to model expert knowledge in
uncertainty analysis.
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1.1 Introduction

1.1.1 From latent variables to Structural Equation Models (SEM)

This paper relies on the ambivalent nature of latent variables. Their unobserved nature
makes them either auxiliary variables used as computational tricks or latent concepts asso-
ciated with observed variables.

This paper combines the power of these two aspects of latent variables.

Precisely latent auxiliary variables have proven to be efficient computational tools when
applied to the EM algorithm, see Dempster, Laird, Rubin [2], and to data augmentation, see
Tanner and Wong [10], and even more efficient when implemented in EM with parameter
expansion (PX), see Liu, Rubin, Wu [6] and in MCMC with PX-Gibbs sampling, see Liu
and Wu [7] and Van Dick [11].

On the other side, using meaningful latent variables is very popular in applied domains
like marketing, psychology, sociology, education where interest lies in quantifying unob-
servable characteristics or aptitudes of individuals like satisfaction, self esteem, alienation,
aptitude at school from studies.

Such latent constructs may also involve several meaningful latent variables associated
with observed variables, thus focusing the interest to the relationships between these latent
variables. The causal relationships between these latent variables are supposed to reflect
the structure in the observed variables. Hence the terminology structural equation models
(SEM).

In other words SEM are multivariate latent variable models used to represent causal
latent structures in the data. The observed (manifest) variables are associated with latent
variables in the outer (measurement) model and causality links are assumed between latent
variables in the inner (structural) model, see figure 1.1.

1.1.2 Motivation of a Bayesian approach of SEM

The Bayesian approach of this paper has been motivated by our own practice of SEM to
take advantage of the information conveyed in structural latent variables, processed outside
the SEM. To that respect we are especially interested in the prediction of the structural
latent variables.

Bayesian estimation of SEM meets this requirement providing draws from the joint
posterior distribution of latent variables that are directly reusable outside SEM.

1.1.3 Motivation of a Parameter Expansion (PX) framework

In this paper PX is used to overcome identifiability issues due to the unobserved nature of
latent variables. Identifiability issues of SEM are overcome by setting a scale for the latent
variables. This issue has been addressed by Skrondal and Rabe-Hesketh [9] who propose to
either scale latent variables in terms of a chosen manifest variable in each block (anchoring)
or standardize latent variables (scaling).

A Bayesian approach of SEM has already been proposed by Lee [5] under anchoring,
making however the imputation of structural latent variables somewhat tedious.

Using parameter expansion instead allows to easily sample the covariance matrix of
latent variables as a correlation matrix (see sections 1.3.1 and 1.3.3) thus overcoming iden-
tifiability issues.
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1.2 Specification of SEM for Mixed Observed Variables

1.2.1 Measurement (outer) model

Let Yi the row vector of mixed continuous, binary and ordered categorical observed out-
comes for individual i on the p manifest variables, divided into q disjoint blocks indexed by
k = 1 . . . q and nk the number of observed variables within block k. Each block is assumed
to reflect a unidimensional concept, summarized into a unique continuous latent variable.
Let Zi the row vector of q continuous latent variables for individual i.

SEM with mixed observed variables is defined within the framework of generalized linear
models where binary and ordered categorical observed variables (indexed by j = 1 . . . nk)
are modelled as latent responses following Albert and Chib [1], using probit links functions
and threshold values.

Let Y ∗
i =

{
Y ∗ikj , k = 1 . . . q, j = 1 . . . nk

}
be the row vector of latent responses defined

in expressions 1.3 and 1.4.
The measurement model relates each latent response vector to its associated structural

latent variable in a reflexive model (because each observed variable reflects its latent vari-
able) where conditional independence of observed variables is assumed given latent variables.

Using matricial notations the outer model is written for individual i as

Y ∗
i = µ+Ziθ +Ei, 1 ≤ i ≤ n (1.1)

where Ei is the measurement error term distributed Ei ∼ N (0,Σε) with Σε diagonal
and θ is the q × p matrix of regression coefficients.

To illustrate the formulas, with q = 3, p = 6, n1 = 2, n2 = 2 and n3 = 3 (see the
graphical model section 1.4.5) θ is the matrix

θ =

θ11 0 0 0 0 0
0 θ22 θ23 0 0 0
0 0 0 θ34 θ35 θ36

 (1.2)

If Ykj is continuous then it coincides with its quantified version Y ∗
kj .

If Ykj is binary or ordered categorical then Y ∗
kj is defined in the following univariate

probit models.
A probit link for binary variables is used to model the probability of success

p (Yikj = 1) = Φ (µkj + θkjZik).
The univariate probit model for binary outcomes is written

Yikj = 1{Y ∗ikj≥0}
Y ∗ikj ∼ N (µkj + θkjZik, 1)

(1.3)

A probit link for ordered categorical variables is used to model the cumulated probabil-
ities p (Ykj ≤ c) = Φ (γkj,c + θkjZk).

The univariate probit models for ordered categorical outcomes is written

Yikj = c⇐⇒ γkj,c−1 < Y ∗ikj ≤ γkj,c
Y ∗ikj ∼ N (θkjZik, 1)

(1.4)

where, to ensure identifiability of thresholds, γkj,0 = −∞, γkj,1 = 0 and γkj,nkj
= ∞ (

nkj the number of categories of question kj).
If Y ∗

i and Zi were observed, the measurement model (1.1) would reduce to a linear
regression model.
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1.2.2 Structural (inner) model: alternative modelling

Denoting Hi the endogenous latent variables and Ξi the exogeneous latent variables, the
structural equations are simultaneous equations given by

Hi = HiΠ + ΞiΓ + ∆i (1.5)

where Zi = HiΞi, Π is the q1×q1 matrix of regression coefficients between endogeneous
latent variables , Γ is the q2× q1 matrix of regression coefficients between endogeneous and
exogeneous latent variables. ∆i is the error term distributed ∆i ∼ N (0,Σδ) with Σδ
diagonal, independent with Ξi and Ξi is distributed N (0,Φ).

Since a Bayesian approach allows to work with the joint distribution of latent variables,
it is equivalent to work with the correlation matrix of latent variables, under the assumption
of multinormality for the conditional distribution of Zi, so that the inner model considered
in this paper is given by

Zi|RZ ∼ N (0,RZ) (1.6)

with RZ a correlation matrix.
In addition RZ

−1 contains the regression parameters of all possible regressions between
latent variables.

1.3 Bayesian Estimation of SEM with Mixed Observed Variables

1.3.1 Implementation of parameter expansion

The implementation of parameter expansion in this paper mimics the implementation of
parameter expansion in PX-EM algorithms as defined in Liu,Rubin,Wu [6] and so differs
from the usual implementation for MCMC algorithms described in [7].

Parameter expansion [6] consists in working with unidentified parameters in the com-
plete data model f (Y ,Z|θ) and indexing expanded latent variables W and expanded data
models p (Y ,W |θ,α) each corresponding to a value of the expansion parameter α, so that
the observed likelihood f (Y |θ) is preserved, that is, satisfies

f (Y |θ) =

∫
f (Y ,Z|θ) dZ =

∫
p (Y ,W |θ,α) dW (1.7)

Usually, the transformation indexed by the expansion parameter is a C1 diffeomorphism
(one-to-one mapping).

In this paper, the variances of structural latent variables Z = Z1, . . . ,Zq are expansion
parameters. Under scaling constraints (that is in the complete data model), recall that Z ∼
N (0,RZ) where RZ is a correlation matrix. Introducing variance parameters α1, . . . , αq
and defining α = diag (α1, . . . , αq), creates expanded latent variables W = α

1
2Z in the

expanded data model indexed by α where W ∼ N (0,ΣW ) with ΣW = α
1
2RZα

1
2 a

covariance matrix.
Identifiability issues are easily overcome in the parameter expansion setting: drawing a

correlation matrix in the complete data model only involves sampling a covariance matrix in
the expanded data model and applying the reverse transformation to the covariance matrix
RZ = α− 1

2 ΣWα
− 1

2 .
The same applies with residual variances of latent responses, where the expansion pa-

rameter α is the residual variance, see Meza, Jaffrézic, Foulley [8].
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Parameter expansion involves computation of conditional posterior distributions of orig-
inal and expansion parameters, where the expansion parameters are computed in the ex-
panded data model and the original parameters are computed in the complete data model.

1.3.2 Imputation of latent variables

Latent responses are computed following Albert and Chib [1] based on models 1.3 and 1.4
for binary and ordered categorical variables respectively.

For a binary observed variables, Y ∗ikj is drawn from

Y ∗ikj |µkj , θkj , Zik, Yikj ∼ NT (µkj + θkjZik, 1; 0,∞) si Yikj = 1 (1.8)

Y ∗ikj |µkj , θ, Zik, Yikj ∼ NT (µkj + θkjZik, 1;−∞, 0)) si Yikj = 0 (1.9)

where NT (µ, 1; a, b) stands for the normal distribution N (µ, 1) left truncated at a and
right truncated at b.

For ordered categorical variables, the latent response Y ∗ikj is drawn from

Y ∗ikj |, θ, Zik, Yikj ∼ NT
(
θkjZik, 1; γkj,Yikj−1, γkj,Yikj

)
(1.10)

Given Θ = {µ,θ,Σε,RZ} the conditional posterior distribution of latent variables is
expressed as

[
Wi|Y ∗

i ,Θ
]
∝
[
Y ∗
i |Zi,Θ

]
[Zi|Θ] (1.11)

∝
[
Y ∗
i |Zi,µ,θ,Σε

]
[Zi|RZ ] (1.12)

where Y ∗
i |Zi, µ, θ,Σε ∼ N (µ+ θZi,Σε) is the likelihood of individual i computed

from the measurement model (1.1) and Zi|RZ ∼ N (0,RZ) is the joint distribution of
latent variables.

Then it can be easily shown that

Wi|Y ∗
i ,µ,θ,Σε,RZ ∼ N

(
DθΣ−1

ε

(
Y ∗
i − µ

)
,D
)

(1.13)

where D−1 = θΣ−1
ε θt +R−1

Z .

1.3.3 Simulation of the covariance matrix of structural latent variables

The covariance matrix ΣW of structural latent variables is computed in the expanded data
model under the following conjugate prior distribution

ΣW ∼ Inverse-Wishartν0

(
(ν0S0)

−1
)

(1.14)

where ν0 is a degree of freedom and S0 is our prior guess on covariance matrix ΣW . A
weakly informative prior is given by ν0 = q or q + 1.

The posterior distribution of ΣW is given by

ΣW |W ∼ Inverse-Wishartν0+n

((
ν0S0 +W tW

)−1)
(1.15)
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1.3.4 Conditional posterior distributions in the measurement model

Conditional posterior distributions of regression parameters
The model relating each latent response to its associated latent variable is a linear

regression model, whose conjugate prior distribution is factorized as[
µkj , θkj , σ

2
kj

]
=
[
µkj , θkj |σ2

kj

] [
σ2
kj

]
(1.16)

Under the conjugate prior distributions

µkj , θkj |σ2
kj ∼ N

((
µ0kj

θ0kj

)
, σ2
kjH

−1
0

)
(1.17)

σ2
kj ∼ Inverse-Gamma

(ν0
2
,
ν0
2
s20

)
(1.18)

with H−1
0 the 2× 2 prior covariance matrix of (µkj , θkj), and s20 our prior guess for the

residual variance σ2
kj . A weakly informative prior is given by ν0 = 1 or 2.

Computation gives, with Xk = (1,Zk), βkj = (µkj , θkj) , β0kj = (µ0kj , θokj)

βkj |σ2
kj ,Y

∗
kj ,Zk

∼ N
((
Xt
kXk +H0

)−1 (
Xt
kY

∗
kj +H0β0

)
, σ2
kj

(
Xt
kXk +H0

)−1)
(1.19)

σ2
kj |Y ∗

kj ,Z
∗
k ∼ Inverse-Gamma

(
1

2
+
n

2
,

1

2
+
n

2
s̃2kj

)
(1.20)

ns̃2kj =
(
Y ∗
kj −Xkβkj

)t (
Y ∗
kj −Xkβkj

)
+ (βkj − β0kj)

t
H0 (βkj − β0kj) (1.21)

Conditional posterior distributions of thresholds (for categorical observed
variables)

Thresholds are defined in model 1.4 where threshold γkj,c separates modalities c and
c + 1. Assuming flat prior distributions [γkj,c] ∝ 1, the posterior distribution of threshold
γkj,c for 2 ≤ c ≤ nkj − 1 is given by

γkj,c|Ykj , Y ∗kj , {γkj,c′ , c′ 6= c}
∼ Unif

(
max

{
Y ∗kj : Ykj = c

}
,min

{
Y ∗kj : Ykj = c+ 1

})
(1.22)

which retrieves a stochastic EM estimate of threshold values. An alternative proposition
would be to assume, as in Foulley and Jaffrézic [3], that the ∆kj,c = γkj,c − γkj,c−1 are
uniformly distributed on the range [0, δ].

1.3.5 PX-Gibbs sampling

PX-Gibbs algorithm for estimating SEM with mixed outcomes involves two PX schemes
yielding a three steps algorithm described as follows, whose steps are similar to the homol-
ogous steps implemented in PX-EM.

• Step 1: PX implementation in the probit models to generate latent responses match-
ing the constraint of residual variance fixed at unity, given structural latent variables
and current values of parameters in the complete data model.
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– Draw latent responses in the expanded data model

Y
∗(t+1)
ikj = Yikj if Yikj is continuous

Y
∗(t+1)
ikj ∼ f

(
Y ∗ikj |µ

(t)
kj , θ

(t)
kj , σ

2
kj = 1, Z

(t)
ik , Yikj

)
if Yikj is binary

Y
∗(t+1)
ikj ∼ f

(
Y ∗ikj |µ

(t)
kj , θ

(t)
kj , σ

2
kj = 1, γ

(t)
kj,Yikj

, γ
(t)
kj,Yikj+1, Z

(t)
ik , Yikj

)
if Yikj is ordered categorical

where f is a generic notation defined in expressions 1.8, 1.9 and 1.10.

– Draw the expansion parameters of the probit models

σ2
kj ∼ f

(
σ2
kj |µ

(t)
kj , θ

(t)
kj , Y

∗(t+1)
ikj , Z

(t)
ik

)
where f is defined in expression 1.20.

– Compute latent responses in the complete data model

Y
∗(t+1)
ikj ← Y

∗(t+1)
ikj /

√
σ2
kj

• Step 2: PX implementation in the structural model to generate structural latent
variables matching the identifiability constraint of the covariance matrix being actu-
ally a correlation matrix, given latent responses with unit variance current values of
parameters in the complete data model.

– Draw latent responses in the expanded data model

W
(t+1)
i ∼ f

(
Wi|µ(t),θ(t),Σε = Iq,Y

∗(t),R
(t)
Z

)
according to formula 1.13.

– Draw the expansion parameters ( correlation matrix of structural LV) according
to formula 1.15

ΣZ ∼ f (ΣZ |W )

– Compute structural LV in the complete data model

R
(t+1)
Z = [diag (ΣZ)]

− 1
2 ΣZ [diag (ΣZ)]

− 1
2

Z(t+1) = W (t+1) [diag (ΣZ)]
− 1

2

• Step 3: Computation of the outer parameters from their posterior conditional distri-
bution in the complete data model under both constraints.

µ
(t+1)
kj , θ

(t+1)
kj ∼ f

(
µkj , θkj |Y ∗(t)

kj ,Z
(t)
k

)
γ
(t+1)
kj,c ∼ f

(
γkj,c|γ(t)kj,c−1, γ

(t)
kj,c+1,Y

∗
kj

(t),Ykj
(t)
)
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1.4 Application: Modelling Expert Knowledge in Uncertainty
Analysis

1.4.1 Context of interlaboratory comparisons

This section shows an original application of SEM for the first time in uncertainty analysis,
in the field of interlaboratory comparisons. Interlaboratory comparisons are external quality
controls designed to help laboratories improve their measurement process by measuring the
same quantity and comparing their results.

Quality indicators are the consensus value of the comparison, which is the estimated
value of the quantity computed from the results of the laboratories, its associated uncer-
tainty and measurement bias, which is for a given laboratory the difference between its
result and the consensus value.

If measurement bias were computed with respect to the true value of the quantity then
monitoring measurement bias over time would be meaningful and trends could be detected.
Instead, measurement bias intrinsically depends on results through the consensus value.
Hence the need to robustify the consensus value to make it less dependent to observed data.

Current practice to try to overcome this dependence in computing consensus value and
its associated uncertainty involve either

• robust algorithms to be less dependent to outliers, called robust method,

• computing the consensus value from a subset of expert laboratories, called expert
laboratories.

The originality of our approach lies in combining advantages of both current approaches
into an alternative approach, acting as a post processing of robustified results based on a
management of expert knowledge using SEM. This new method is called robustified consen-
sus value.

1.4.2 SEM to model prior distribution of measurement bias

Our use of SEM is to model expert knowledge to score laboratories according to the quality
of their practice, based on a ranking of categories for each observed variable from the worst to
the best practice. Latent variables can be interpreted as components of the overall quality
of laboratories and used as prior information on measurement bias with SEM actually
modelling the structure of bias.

This broader framework is still Bayesian in that latent variables represent pre existing
information independent from measurement results used to update knowledge on all the
indicators of the comparison: measurement bias, the consensus value and its associated
uncertainty.

1.4.3 Combining SEM with measurement results

Latent variables are transformed into weights wi reflecting the quality of practice to combine
with measurement results. Among others a logistic transform can be applied to the sum si
of latent variables

wi =
exp si

1 + exp si
(1.23)

A standardized robust algorithm from standard NF ISO 13528 [4] is first applied to
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measurement results to treat outliers. Raw results are thus transformed into a winsorized
sample. This step is not inconsistent with the approach in that a good laboratory will
have a high weight even if it is an outlier with respect to the normal distribution. Besides,
standards strongly recommend to treat outliers.

At each iteration of the PX-Gibbs algorithm used to estimate SEM, a weighted mean
of the winsorized measurement results xRi and its variance are computed from the latent
variables through the weights

x(t)p =
∑

w
(t)
i xRi (1.24)

u2
(
x(t)p

)
=
∑

w2
i
(t)
V
(
xRi
)

(1.25)

where V
(
xRi
)

is the winsorized variance of the sample.
According to the ergodicity theorem, MCMC draws consequently yield full posterior

distributions of the weighted mean and its variance.

1.4.4 Robustifying the consensus value

The consensus value is modelled in a hierarchical model whose first level is normal centred
on the weighted mean with variance being the variance of the weighted mean. Two other
levels represent the sampling variabilities of the weighted mean and its variance from the
Markov Chains released when estimating SEM.

The marginal posterior distribution of the consensus value is computed from Monte
Carlo draws according to the following hierarchical model

xc ∼ N
(
µw, σ

2
w

)
(1.26)

µw ∼ N
(
µw0

, σ2
w0

)
(1.27)

σ2
w ∼ Inverse-Gamma

(α0

2
,
α0

2
S0

)
(1.28)

where µw0
and σ2

w0
are identified from the posterior distribution of the weighted mean,

and α0 and S0 are identified from the posterior distribution of the variance of the weighted
mean.

Since the first level is integrated out the variance parameter, the marginal posterior
distribution of the consensus value is a Student distribution.

1.4.5 Results

The method was applied to the measurement of concentrations of water pollutants.
This analysis was performed on a small number of laboratories (18) regularly involved in

this comparison and willing to take part to this study. The auxiliary information was inves-
tigated by a questionnaire designed by selected experts from universities and environmental
laboratories.

The SEM resulting from expert processing is represented in figure 1.1 where posterior
distributions have been computed under the following prior distributions µkj , θkj |σ2

kj ∼

N

((
0

0.5

)
, σ2
kjI2

)
,

σ2
kj ∼ Inverse-Gamma

(
1
2 ,

1
2

)
, ΣW ∼ Inverse-Wishart3

(
(I3))−1

)
with I2 and I3 the 2×2

and 3× 3 identity matrices respectively.
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FIGURE 1.1
Estimates of SEM used to model expert knowledge in water pollutants field. Reg is the
estimated regression coefficient, sd is the associated standard deviation and cor is the
correlation coefficient. The dotted arrows represent reference variables defining the sign of
latent variables.

TABLE 1.1Results (xi) and robustified results (xRi )

xi 31.0 50.0 32.6 57.5 50.0 36.0 40.0 20.0

xRi 31.0 40.6 32.6 40.6 40.6 36.0 40.0 27.1

36.0 28.1 34.5 42.4 25.0 33.3 32.0 39.0 30.0 31.0
36.0 28.1 34.5 40.6 27.1 33.3 32.0 39.0 30.0 31.0

Results and robustified results are given in the table below

The results from the three competing methods are compared with the reference value,
called reference and its uncertainty provided by LNE in terms of consensus value, the
associated uncertainty and the 95% confidence interval and summarized in table 1.2.

Interpretation of results:

Results for the three methods used to compute the consensus value show consistency
between them (intervals overlap) and with the reference value because the four central
estimates belong to all the confidence intervals.

Due to the small number of laboratories, estimates of SEM are of poor quality, with
relatively high standard deviations, so that this application cannot be used in the general
purpose of testing relationships between pre analytical step, analytical step and quality
control.

The implementation of the methodology seems all the same very promising and points
out the benefits of additional information to improve existing methods, among them a
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TABLE 1.2
Consensus value, associated uncertainty and confidence intervals.

Method Cons. Val. As. Uncert. 95 % Conf. Int.

Reference 33 1.72 [29.55, 36.45]
Robust method 34.46 1.64 [31.18, 37.75]

Expert labs 34 1.6 [30.8, 37.2]
Robustified CV 33.82 1.62 [30.57, 37.06]

larger number of laboratories, and results with uncertainties, necessary to quantify sources
of measurement bias.

1.5 Conclusion and Perspectives

This work applied to uncertainty analysis provides practitioners with a powerful and flexible
statistical tool based on Structural Equation Modelling of expert knowledge on measurement
bias to improve the treatment of interlaboratory comparison data.

The new method relies on current robust standardized methods to propose a fully
Bayesian modelling of interlaboratory comparisons data involving a Bayesian estimation
of SEM.

The complete Bayesian framework allows to easily handle missing or censored data as
well as a hierarchical structure in the results (e.g. measurements by country) and provides
a rigorous framework for model comparison and validation.

The benefits of such a statistical approach are long term and the approach should ac-
company laboratories in the process of improving their measurements, along with the de-
velopment of new reference methods by National Metrology Institutes.
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