Skip to Main content Skip to Navigation
Book sections

Bayesian analysis of structural equation models using parameter expansion

Abstract : Structural Equation Models with latent variables (SEM) are hypothetical constructs used to represent causality relationships in data, where the observed correlation structure is transferred into the correlation structure of latent variables. In this paper a Bayesian analysis of SEM is proposed using parameter expansion to overcome identi fiability issues. An original use of posterior draws from latent variables is proposed to model expert knowledge in uncertainty analysis.
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01125864
Contributor : Laboratoire Cedric <>
Submitted on : Thursday, April 2, 2020 - 2:21:36 PM
Last modification on : Friday, May 1, 2020 - 1:17:52 AM

File

chapitreDemeyer_Foulley_etc.pd...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01125864, version 1

Citation

Séverine Demeyer, Jean-Louis Foulley, Nicolas Fischer, Gilbert Saporta. Bayesian analysis of structural equation models using parameter expansion. Mireille Gettler Summa; Leon Bottou; Bernard Goldfarb; Fionn Murtagh; Catherine Pardoux; Myriam Touati. Statistical learning and data science, Chapman Hall/CRC, pp.135-145, 2012, 978-1-4398-6763-1. ⟨hal-01125864⟩

Share

Metrics

Record views

120

Files downloads

11