Skip to Main content Skip to Navigation
Conference papers

PLS Regression with Functional Predictor and Missing Data

Cristian Preda 1, 2 Gilbert Saporta 3 Ben Hadj Mbarek 4
1 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille - École polytechnique universitaire de Lille, Université de Lille, Sciences et Technologies
3 CEDRIC - MSDMA - CEDRIC. Méthodes statistiques de data-mining et apprentissage
CEDRIC - Centre d'études et de recherche en informatique et communications
Abstract : Time-average approximation and principal component analysis of the stochastic process underlying the functional data are the main ingredients for adapting NIPALS algorithm to estimate missing data in the functional context. The influence of the amount of missing data in the estimation of linear regression models is studied using the PLS method. A simulation study illustrates our methodology. Keywords: functional data, missing data, PLS, functional regression models.
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01125705
Contributor : Laboratoire Cedric <>
Submitted on : Monday, March 23, 2020 - 6:57:36 PM
Last modification on : Thursday, March 26, 2020 - 2:04:37 AM

File

RC1813.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01125705, version 1

Collections

Citation

Cristian Preda, Gilbert Saporta, Ben Hadj Mbarek. PLS Regression with Functional Predictor and Missing Data. PLS'09,6th Int. Conf. on Partial Least Squares and Related Methods, Sep 2009, Pékin, China. pp.17-22. ⟨hal-01125705⟩

Share

Metrics

Record views

50

Files downloads

7