G. Stephanopoulos, A. Aristidou, and J. Nielsen, Metabolic engineering: principles and methodologies, 1998.

J. Heijnen and P. Verheijen, Parameter identification of in vivo kinetic models: Limitations and challenges, Biotechnology Journal, vol.276, issue.7, pp.768-775, 2013.
DOI : 10.1002/biot.201300105

J. Orth, I. Thiele, and B. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, pp.245-248, 2010.
DOI : 10.1038/nbt.1614

R. Mahadevan, J. Edwards, and F. Doyle, Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli, Biophysical Journal, vol.83, issue.3, pp.1331-1340, 2002.
DOI : 10.1016/S0006-3495(02)73903-9

S. Schuster, T. Dandekar, and D. Fell, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering, Trends in Biotechnology, vol.17, issue.2, pp.53-60, 1999.
DOI : 10.1016/S0167-7799(98)01290-6

A. Burgard, V. Nikolaev, C. Schilling, and C. Maranas, Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions, Genome Research, vol.14, issue.2, pp.301-312, 2004.
DOI : 10.1101/gr.1926504

A. Provost, G. Bastin, S. Agathos, and Y. Schneider, Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells, Bioprocess and Biosystems Engineering, vol.21, issue.5-6, pp.349-366, 2006.
DOI : 10.1007/s00449-006-0083-y

H. Song, J. Morgan, and D. Ramkrishna, Systematic development of hybrid cybernetic models: Application to recombinant yeast co-consuming glucose and xylose, Biotechnology and Bioengineering, vol.100, issue.3, pp.984-1002, 2009.
DOI : 10.1002/bit.22332

H. Song, D. Ramkrishna, G. Pinchuk, A. Beliaev, and A. Konopka, Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth, Metabolic Engineering, vol.15, pp.25-33, 2012.
DOI : 10.1016/j.ymben.2012.08.004

J. Edwards, R. Ibarra, and B. Palsson, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data, Nature Biotechnology, vol.19, issue.2, pp.125-130, 2001.
DOI : 10.1038/84379

F. Zamorano, A. Van-de-wouwer, R. Jungers, and G. Bastin, Dynamic metabolic models of CHO cell cultures through minimal sets of elementary flux modes, Journal of Biotechnology, vol.164, issue.3, pp.409-422, 2013.
DOI : 10.1016/j.jbiotec.2012.05.005

H. Song and D. Ramkrishna, When is the Quasi-Steady-State Approximation Admissible in Metabolic Modeling? When Admissible, What Models are Desirable?, Industrial & Engineering Chemistry Research, vol.48, issue.17, pp.7976-7985, 2009.
DOI : 10.1021/ie900075f

R. Wijffels and M. Barbosa, An Outlook on Microalgal Biofuels, Science, vol.329, issue.5993, pp.796-799, 2010.
DOI : 10.1126/science.1189003

L. Lardon, A. Helias, B. Sialve, J. Steyer, and O. Bernard, Life-Cycle Assessment of Biodiesel Production from Microalgae, Environmental Science & Technology, vol.43, issue.17, pp.6475-6481, 2009.
DOI : 10.1021/es900705j

O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, Journal of Process Control, vol.21, issue.10, pp.1378-1389, 2011.
DOI : 10.1016/j.jprocont.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-00848385

T. Lacour, A. Sciandra, A. Talec, P. Mayzaud, and O. Bernard, DIEL VARIATIONS OF CARBOHYDRATES AND NEUTRAL LIPIDS IN NITROGEN-SUFFICIENT AND NITROGEN-STARVED CYCLOSTAT CULTURES OF ISOCHRYSIS SP.1, Journal of Phycology, vol.39, issue.9, pp.966-975, 2012.
DOI : 10.1111/j.1529-8817.2012.01177.x

H. Knoop, M. Gründel, Y. Zilliges, R. Lehmann, and S. Hoffmann, Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803, PLoS Computational Biology, vol.14, issue.6, pp.1-15, 2013.
DOI : 10.1371/journal.pcbi.1003081.s013

S. Klamt and J. Stelling, Two approaches for metabolic pathway analysis?, Trends in Biotechnology, vol.21, issue.2, pp.64-69, 2003.
DOI : 10.1016/S0167-7799(02)00034-3

J. Young and D. Ramkrishna, On the Matching and Proportional Laws of Cybernetic Models, Biotechnology Progress, vol.23, issue.1, pp.83-99, 2007.
DOI : 10.1021/bp060176q

E. Bendif, I. Probert, D. Schroeder, C. Vargas, and . De, On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov, the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta), 2013.
URL : https://hal.archives-ouvertes.fr/hal-01258231

C. Yang, Q. Hua, and K. Shimizu, Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions, Biochemical Engineering Journal, vol.6, issue.2, pp.87-102, 2000.
DOI : 10.1016/S1369-703X(00)00080-2

N. Boyle and J. Morgan, Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii, BMC Systems Biology, vol.3, issue.1, pp.1-14, 2009.
DOI : 10.1016/0165-022X(81)90067-1

A. Manichaikul, L. Ghamsari, E. Hom, C. Chin, and R. Murray, Metabolic network analysis integrated with transcript verification for sequenced genomes, Nature Methods, vol.267, issue.8, pp.589-592, 2009.
DOI : 10.1093/nar/gkh340

A. Kliphuis, A. Klok, D. Martens, P. Lamers, and M. Janssen, Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance, Journal of Applied Phycology, vol.6, issue.2, pp.253-266, 2012.
DOI : 10.1007/s10811-011-9674-3

R. Chang, L. Ghamsari, A. Manichaikul, E. Hom, and S. Balaji, Metabolic network reconstruction of Chlamydomonas offers insight into lightdriven algal metabolism, Mol Syst Biol, vol.7, pp.1-13, 2011.

G. Cogne, M. Rügen, A. Bockmayr, M. Titica, and C. Dussap, A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: Application to the green algae Chlamydomonas reinhardtii, Biotechnology Progress, vol.154, issue.3, pp.631-640, 2011.
DOI : 10.1002/btpr.596

C. Dal-'molin, L. Quek, R. Palfreyman, and L. Nielsen, AlgaGEM-a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome, BMC Genomics, vol.12, issue.4, pp.1-10, 2011.

E. Krumholz, H. Yang, P. Weisenhorn, C. Henry, and I. Libourel, Genome-wide metabolic network reconstruction of the picoalga Ostreococcus, Journal of Experimental Botany, vol.63, issue.6, pp.2353-2362, 2012.
DOI : 10.1093/jxb/err407

M. Terzer and J. Stelling, Large-scale computation of elementary flux modes with bit pattern trees, Bioinformatics, vol.24, issue.19, pp.2229-2235, 2008.
DOI : 10.1093/bioinformatics/btn401

P. Williams and L. Laurens, Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics, Energy & Environmental Science, vol.102, issue.25, pp.554-590, 2010.
DOI : 10.1007/s12155???009???9046-x

J. Perry, J. Staley, and L. S. , Biosynthèse des monomères. Microbiologie, cours et questions de révision. Paris: Dunod, pp.206-228, 2004.

Y. Chisti, Biodiesel from microalgae, Biotechnology Advances, vol.25, issue.3, pp.294-306, 2007.
DOI : 10.1016/j.biotechadv.2007.02.001

B. Liu and C. Benning, Lipid metabolism in microalgae distinguishes itself, Current Opinion in Biotechnology, vol.24, issue.2, pp.300-309, 2012.
DOI : 10.1016/j.copbio.2012.08.008

J. Guest, M. Van-loosdrecht, S. Skerlos, and N. Love, Lumped Pathway Metabolic Model of Organic Carbon Accumulation and Mobilization by the Alga Chlamydomonas reinhardtii, Environmental Science & Technology, vol.47, pp.3258-3267, 2013.
DOI : 10.1021/es304980y

F. Zamorano, A. Van-de-wouwer, and G. Bastin, A detailed metabolic flux analysis of an underdetermined network of CHO cells, Journal of Biotechnology, vol.150, issue.4, pp.497-508, 2010.
DOI : 10.1016/j.jbiotec.2010.09.944

C. Cheung, T. Williams, M. Poolman, D. Fell, and R. Ratcliffe, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions, The Plant Journal, vol.10, issue.192, pp.1050-1061, 2013.
DOI : 10.1111/tpj.12252

J. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

O. Ross and R. Geider, New cell-based model of photosynthesis and photo-acclimation: accumulation and mobilisation of energy reserves in phytoplankton, Marine Ecology Progress Series, vol.383, pp.53-71, 2009.
DOI : 10.3354/meps07961

C. Mocquet, A. Sciandra, A. Talec, and O. Bernard, (Bacillariophyceae), Journal of Phycology, vol.10, issue.2, pp.371-380, 2013.
DOI : 10.1111/jpy.12045

J. Willey, L. Sherwood, and C. Woolverton, Metabolism: Energy, Enzymes, and Regulation. Prescott, Harley and Klein's Microbiology. Mc Graw Hill higher Education, pp.167-190, 2008.

J. Ovádi and V. Saks, On the origin of intracellular compartmentation and organized metabolic systems, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.5-12, 2004.
DOI : 10.1023/B:MCBI.0000009855.14648.2c

S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar, Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae, Bioinformatics, vol.18, issue.2, pp.351-361, 2002.
DOI : 10.1093/bioinformatics/18.2.351

A. Larhlimi, L. David, J. Selbig, and A. Bockmayr, F2C2: a fast tool for the computation of flux coupling in genome-scale metabolic networks, BMC Bioinformatics, vol.13, issue.1, pp.1-9, 2012.
DOI : 10.1186/1471-2105-13-57

W. Verwoerd, A new computational method to split large biochemical networks into coherent subnets, BMC Systems Biology, vol.5, issue.1, pp.1-25, 2011.
DOI : 10.1186/1752-0509-5-25

A. Barabási and Z. Oltvai, Network biology: understanding the cell's functional organization, Nature Reviews Genetics, vol.5, issue.2, pp.101-113, 2004.
DOI : 10.1038/nrg1272

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

H. Song and D. Ramkrishna, Reduction of a set of elementary modes using yield analysis, Biotechnology and Bioengineering, vol.100, issue.3, pp.554-568, 2009.
DOI : 10.1002/bit.22062

H. Song and D. Ramkrishna, Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM), Biotechnology and Bioengineering, vol.100, issue.3, pp.271-284, 2010.
DOI : 10.1002/bit.22692

D. Ramkrishna and H. Song, Dynamic models of metabolism: Review of the cybernetic approach, AIChE Journal, vol.252, issue.4, pp.986-997, 2012.
DOI : 10.1002/aic.13734

G. Curien, O. Bastien, M. Robert-genthon, A. Cornish-bowden, and M. Cárdenas, Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters, Molecular Systems Biology, vol.191, p.271, 2009.
DOI : 10.1104/pp.010438

URL : https://hal.archives-ouvertes.fr/hal-00402907

A. Zomorrodi and C. Maranas, OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities, PLoS Computational Biology, vol.6, issue.2, pp.1-13, 2012.
DOI : 10.1371/journal.pcbi.1002363.s002

M. Rügen, A. Bockmayr, J. Legrand, and G. Cogne, Network reduction in metabolic pathway analysis: Elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii, Metabolic Engineering, vol.14, issue.4, pp.458-467, 2012.
DOI : 10.1016/j.ymben.2012.01.009

A. Packer, Y. Li, T. Andersen, Q. Hu, and Y. Kuang, Growth and neutral lipid synthesis in green microalgae: A mathematical model, Bioresource Technology, vol.102, issue.1, pp.111-117, 2011.
DOI : 10.1016/j.biortech.2010.06.029

F. Mairet, O. Bernard, T. Lacour, and A. Sciandra, Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities, IFAC Proceedings Volumes, vol.44, issue.1, pp.1-6, 2011.
DOI : 10.3182/20110828-6-IT-1002.03165

URL : https://hal.archives-ouvertes.fr/hal-00848427

J. Quinn, L. De-winter, and T. Bradley, Microalgae bulk growth model with application to industrial scale systems, Bioresource Technology, vol.102, issue.8, pp.5083-5092, 2011.
DOI : 10.1016/j.biortech.2011.01.019

R. Tevatia, Y. Demirel, and P. Blum, Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii, Bioresource Technology, vol.119, pp.419-424, 2012.
DOI : 10.1016/j.biortech.2012.05.124

J. Yang, E. Rasa, P. Tantayotai, K. Scow, and H. Yuan, Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions, Bioresource Technology, vol.102, issue.3, pp.3077-3082, 2011.
DOI : 10.1016/j.biortech.2010.10.049

P. Fleck-schneider, F. Lehr, and C. Posten, Modelling of growth and product formation of Porphyridium purpureum, Journal of Biotechnology, vol.132, issue.2, pp.134-141, 2007.
DOI : 10.1016/j.jbiotec.2007.05.030

F. Mairet, O. Bernard, P. Masci, T. Lacour, and A. Sciandra, Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation, Bioresource Technology, vol.102, issue.1, pp.142-149, 2011.
DOI : 10.1016/j.biortech.2010.06.138

G. Bastin and D. Dochain, On-line estimation and adaptive control of bioreactors, Analytica Chimica Acta, vol.243, 1990.
DOI : 10.1016/S0003-2670(00)82585-4

O. Bernard and G. Bastin, Identification of reaction networks for bioprocesses: determination of a partially unknown pseudo-stoichiometric matrix, Bioprocess and Biosystems Engineering, vol.8, issue.1, pp.293-301, 2005.
DOI : 10.1007/s00449-005-0407-3

URL : https://hal.archives-ouvertes.fr/inria-00122549

O. Bernard and G. Bastin, On the estimation of the pseudo-stoichiometric matrix for macroscopic mass balance modelling of biotechnological processes, Mathematical Biosciences, vol.193, issue.1, pp.51-77, 2005.
DOI : 10.1016/j.mbs.2004.10.004

URL : https://hal.archives-ouvertes.fr/inria-00122545

M. Koutinas, A. Kiparissides, R. Silva-rocha, M. Lam, M. Santos et al., Linking genes to microbial growth kinetics???An integrated biochemical systems engineering approach, Metabolic Engineering, vol.13, issue.4, pp.401-413, 2011.
DOI : 10.1016/j.ymben.2011.02.001

D. Segre, D. Vitkup, and G. Church, Analysis of optimality in natural and perturbed metabolic networks, Proceedings of the National Academy of Sciences, vol.99, issue.23, pp.15112-15117, 2002.
DOI : 10.1073/pnas.232349399

A. Burgard, P. Pharkya, and C. Maranas, Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnology and Bioengineering, vol.18, issue.6, pp.647-657, 2003.
DOI : 10.1002/bit.10803

P. Pharkya, A. Burgard, and C. Maranas, OptStrain: A computational framework for redesign of microbial production systems, Genome Research, vol.14, issue.11, pp.2367-2376, 2004.
DOI : 10.1101/gr.2872004

T. Shlomi, O. Berkman, and E. Ruppin, Regulatory on/off minimization of metabolic flux changes after genetic perturbations, Proceedings of the National Academy of Sciences, vol.102, issue.21, pp.7698-7700, 2005.
DOI : 10.1073/pnas.0406346102

J. Kim and J. Reed, OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains, BMC Systems Biology, vol.4, issue.1, pp.1-19, 2010.
DOI : 10.1186/1752-0509-4-53

J. Zanghellini, D. Ruckerbauer, M. Hanscho, and C. Jungreuthmayer, Elementary flux modes in a nutshell: Properties, calculation and applications, Biotechnology Journal, vol.279, issue.9, pp.1009-1016, 2013.
DOI : 10.1002/biot.201200269